A Kinetic Study on Combustible Coastal Debris Pyrolysis via Thermogravimetric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. TG Run for Pyrolysis Analysis
2.3. Non-Isothermal Kinetics
3. Results and Discussion
3.1. Thermogravimetric Analysis of Coastal Debris
3.2. Effect of the Heating Rate on the Pyrolysis Process of Coastal Debris
3.3. Decomposition Curves in the Kinetic Models
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wilcox, C.; Van Sebille, E.; Hardesty, B.D. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Nat. Acad. Sci. USA 2015, 112, 11899–11904. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Galgani, F.; Hanke, G.; Maes, T. Global distribution, composition and abundance of marine litter. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Berlin, Germany, 2015; pp. 29–56. [Google Scholar]
- Derraik, J.G. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Iñiguez, M.E.; Conesa, J.A.; Fullana, A. Pollutant content in marine debris and characterization by thermal decomposition. Mar. Pollut. Bull. 2017, 117, 359–365. [Google Scholar] [Green Version]
- Gall, S.C.; Thompson, R.C. The impact of debris on marine life. Mar. Pollut. Bull. 2015, 92, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Watabe, Y.; Mizoue, K.; Oki, T.; Ukai, A.; Mitarai, Y. Interpretation of construction management data recorded during installation of cutoff sheet pile wall in coastal waste reclamation facilities. Jpn. Geotech. Soc. Spec. Publ. 2015, 3, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Marine Litter Information System [Internet]. Marine Litter statistics reports, Korea. Available online: https://www.malic.or.kr/rest/monitoring/year/null/null/null/ (accessed on 4 April 2017).
- Kusui, T.; Noda, M. International survey on the distribution of stranded and buried litter on beaches along the Sea of Japan. Mar. Pollut. Bull. 2003, 47, 175–179. [Google Scholar] [CrossRef]
- Kim, D.; Kim, D.Y.; Son, M.A. Study on physicochemical characteristics of coastal wastes in island areas. J. Korean Soc. Environ. Technol. 2017, 18, 259–266. [Google Scholar]
- Iñiguez, M.E.; Conesa, J.A.; Fullana, A. Marine debris occurrence and treatment: A review. Renew. Sustain. Energy Rev. 2016, 64, 394–402. [Google Scholar] [Green Version]
- Pietrelli, L.; Poeta, G.; Battisti, C.; Sighicelli, M. Characterization of plastic beach debris finalized to its removal: A proposal for a recycling scheme. Environ. Sci. Pollut. Res. Int. 2017, 24, 16536–16542. [Google Scholar] [CrossRef] [PubMed]
- Tondl, G.; Bonell, L.; Pfeifer, C. Thermogravimetric analysis and kinetic study of marine plastic litter. Mar. Pollut. Bull. 2018, 133, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Encinar, J.M.; González, J.F. Pyrolysis of synthetic polymers and plastic wastes: kinetic study. Fuel Process. Technol. 2008, 89, 678–686. [Google Scholar] [CrossRef]
- Kunwar, B.; Cheng, H.N.; Chandrashekaran, S.R.; Sharma, B.K. Plastics to fuel: A review. Renew. Sustain. Energy Rev. 2016, 54, 421–428. [Google Scholar] [CrossRef]
- Lam, S.S.; Liew, R.K.; Jusoh, A.; Chong, C.T.; Ani, F.N.; Chase, H.A. Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renew. Sustain. Energy Rev. 2016, 53, 741–753. [Google Scholar] [CrossRef]
- Ferreiro, A.I.; Giudicianni, P.; Grottola, C.M.; Rabaçal, M.; Costa, M.; Ragucci, R. Unresolved issues on the kinetic modeling of pyrolysis of woody and nonwoody biomass fuels. Energy Fuels 2017, 31, 4035–4044. [Google Scholar] [CrossRef]
- Rabaçal, M.; Costa, M.; Vascellarib, M.; Hasseb, C. Kinetic modelling of sawdust and beech wood pyrolysis in drop tube reactors using advanced predictive models. Chem. Eng. 2014, 37, 79–84. [Google Scholar]
- Richards, A.P.; Fletcher, T.H. A comparison of simple global kinetic models for coal devolatilization with the CPD model. Fuel 2016, 185, 171–180. [Google Scholar] [CrossRef]
- Yao, F.; Wu, Q.; Zhou, D. Thermal decomposition of natural fibers: Global kinetic modeling with nonisothermal thermogravimetric analysis. J. Appl. Polym. Sci. 2009, 114, 834–842. [Google Scholar] [CrossRef]
- Weerachanchai, P.; Tangsathitkulchai, C.; Tangsathitkulchai, M. Comparison of pyrolysis kinetic models for thermogravimetric analysis of biomass. Suranaree J. Sci. Technol. 2010, 17, 387–400. [Google Scholar]
- Varhegyi, G.; Antal, M.J., Jr.; Jakab, E.; Szabó, P. Kinetic modeling of biomass pyrolysis. J. Anal. Appl. Pyrolysis 1997, 42, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, V.; Beers, K.L.; Balazs, G.H.; Royer, S.J.; Hyrenbach, K.D.; Jensen, B.A.; Lynch, J.M. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Mohanty, K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour. Technol. 2018, 251, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Stefanidis, S.D.; Kalogiannis, K.G.; Iliopoulou, E.F.; Michailof, C.M.; Pilavachi, P.A.; Lappas, A.A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis 2014, 105, 143–150. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.; Park, K.Y. Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization. J. Ind. Eng. Chem. 2016, 42, 95–100. [Google Scholar] [CrossRef]
- Várhegyi, G.; Bobály, B.; Jakab, E.; Chen, H. Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy Fuels 2010, 25, 24–32. [Google Scholar] [CrossRef]
- Riley, J.; Siriwardane, R.; Tian, H.; Benincosa, W.; Poston, J. Kinetic analysis of the interactions between calcium ferrite and coal char for chemical looping gasification applications: Identifying reduction routes and modes of oxygen transfer. Appl. Energy 2017, 201, 94–110. [Google Scholar] [CrossRef]
- Paraschiv, M.; Kuncser, R.; Tazerout, M.; Prisecaru, T. New energy value chain through pyrolysis of hospital plastic waste. Appl. Therm. Eng. 2015, 87, 424–433. [Google Scholar] [CrossRef]
- Anene, A.; Fredriksen, S.; Sætre, K.; Tokheim, L.A. Experimental study of thermal and catalytic pyrolysis of plastic waste components. Sustainability 2018, 10, 3979. [Google Scholar] [CrossRef]
- Gunasee, S.D.; Carrier, M.; Gorgens, J.F.; Mohee, R. Pyrolysis and combustion of municipal solid wastes: evaluation of synergistic effects using TGA-MS. J. Anal. Appl. Pyrolysis 2016, 121, 50–61. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, J.; Zhang, Q. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresour. Technol. 2014, 169, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Westerhout, R.W.J.; Balk, R.H.P.; Meijer, R.; Kuipers, J.A.M.; van Swaaij, W.P.M. Examination and evaluation of the use of screen heaters for the measurement of the high temperature pyrolysis kinetics of polyethene and polypropene. Ind. Eng. Chem. Res. 1997, 36, 3360–3368. [Google Scholar] [CrossRef]
- Bockhorn, H.; Hentschel, J.; Hornung, A.; Hornung, U. Environmental engineering: stepwise pyrolysis of plastic waste. Chem. Eng. Sci. 1999, 54, 3043–3051. [Google Scholar] [CrossRef]
- Sørum, L.; Grønli, M.G.; Hustad, J.E. Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 2001, 80, 1217–1227. [Google Scholar]
- Bockhorn, H.; Hornung, A.; Hornung, U. Stepwise pyrolysis for raw material recovery from plastic waste. J. Anal. Appl. Pyrolysis 1998, 46, 1–13. [Google Scholar] [CrossRef]
- Dou, B.; Wang, K.; Jiang, B.; Song, Y.; Zhang, C.; Chen, H.; Xu, Y. Fluidized-bed gasification combined continuous sorption-enhanced steam reforming system to continuous hydrogen production from waste plastic. Int. J. Hydrogen Energy 2016, 41, 3803–3810. [Google Scholar] [CrossRef]
- Das, P.; Tiwari, P. Valorization of packaging plastic waste by slow pyrolysis. Resour. Conserv. Recycl. 2018, 128, 69–77. [Google Scholar] [CrossRef]
Category | Nylon (Fishing Net) | PE (Fishing Net) | PP (Rope) | Waste Wood (Bamboo) | |
---|---|---|---|---|---|
Moisture content (wt.%) a | 2.3 | 1.4 | 1.3 | 7.3 | |
Proximate analysis (wt.%) b | Volatile matter | 95.3 | 96.4 | 93.8 | 75.2 |
Fixed carbon | 0.3 | 0.1 | 0.2 | 21.3 | |
Ash | 0.4 | 3.5 | 6 | 3.5 | |
Ultimate analysis (wt.%) b | Carbon | 63.1 | 82.4 | 80.1 | 48.3 |
Hydrogen | 8.4 | 13.2 | 12.9 | 5.9 | |
Oxygen | 17.9 | 0.7 | 0.8 | 39.4 | |
Nitrogen | 10.2 | 0.2 | 0.2 | 0.4 | |
Cl− | 0.1 | 0.3 | 0.3 | 2.8 | |
Calorific value (kcal/kg) b | 9884 | 10,406 | 10,876 | 4201 |
Sample | β (°C·min−1) | Ti (°C) | Tm (°C) | Tf (°C) | Rm (min−1) | Mf (g/g) |
---|---|---|---|---|---|---|
Nylon fishing net | 5 | 330.00 | 434.98 | 475.01 | 0.1088 | 0.4803 |
10 | 370.00 | 454.94 | 494.98 | 0.2116 | 0.2012 | |
20 | 380.06 | 464.98 | 520.05 | 0.4169 | 0.3108 | |
PE fishing net | 5 | 405.01 | 474.97 | 505.02 | 0.1785 | 1.4043 |
10 | 410.07 | 484.92 | 515.07 | 0.3310 | 2.1120 | |
20 | 430.08 | 499.96 | 535.16 | 0.6475 | 1.6969 | |
PP rope | 5 | 395.01 | 455.02 | 490.01 | 0.1387 | 0.4935 |
10 | 405.01 | 465.01 | 505.02 | 0.2760 | 0.2638 | |
20 | 419.96 | 474.97 | 520.03 | 0.5450 | 0.4641 |
Sample | β (°C·min−1) | Regime | Ti (°C) | Tm (°C) | Tf (°C) | Rm (min−1) | Mf (g/g) |
---|---|---|---|---|---|---|---|
Wood (bamboo) coastal debris | 5 | 1st | 224.96 | 305.01 | 390.01 | 0.0191 | 0.3540 |
2nd | 285.00 | 330.02 | 380.03 | 0.0410 | 0.3634 | ||
3rd | 114.95 | 360.00 | 745.01 | 0.0042 | 0.2414 | ||
10 | 1st | 230.00 | 314.98 | 404.95 | 0.0379 | 0.8073 | |
2nd | 299.98 | 340.01 | 390.01 | 0.0839 | 0.3621 | ||
3rd | 114.98 | 365.00 | 765.03 | 0.0091 | 0.2431 | ||
20 | 1st | 234.99 | 324.90 | 419.98 | 0.0680 | 0.3470 | |
2nd | 304.95 | 350.06 | 404.97 | 0.1613 | 0.3609 | ||
3rd | 115.02 | 374.90 | 779.94 | 0.0169 | 0.2467 |
Sample | β (°C/min) | Ea (kJ·mol−1) | A (min−1) | r2 (-) | S (%) |
---|---|---|---|---|---|
Nylon fishing net | 5 | 212.95 | 1.22 × 1015 | 0.9892 | 0.2411 |
10 | 217.98 | 2.50 × 1015 | 0.9889 | 0.4783 | |
20 | 218.17 | 7.30 × 1015 | 0.9827 | 1.1865 | |
PE fishing net | 5 | 336.20 | 9.77 × 1022 | 0.9737 | 0.4838 |
10 | 380.28 | 1.37 × 1026 | 0.9587 | 1.1520 | |
20 | 389.78 | 3.24 × 1026 | 0.9798 | 1.6053 | |
PP rope | 5 | 297.03 | 7.28 × 1020 | 0.9925 | 0.2214 |
10 | 309.67 | 5.33 × 1021 | 0.9913 | 0.4837 | |
20 | 326.14 | 6.22 × 1022 | 0.9936 | 0.7913 |
Sample | β (°C/min) | Regime | N (-) | E (kJ/mol) | A (min−1) | r2 (-) | S (%) | yi (-) |
---|---|---|---|---|---|---|---|---|
Wood (bamboo) coastal debris sample | 5 | Global | 3.2 | 119.01 | 8.16 × 109 | 0.7727 | 0.5529 | - |
1st | 1.2 | 112.97 | 5.52 × 109 | 0.9976 | 0.3932 | 0.3195 | ||
2nd | 1.2 | 259.97 | 2.02 × 1022 | 0.9884 | 0.6884 | 0.3544 | ||
3rd | 1.4 | 24.11 | 4.55 | 0.9843 | 0.2185 | 0.0055 | ||
10 | Global | 3.2 | 138.85 | 6.30 × 1011 | 0.7896 | 1.0581 | - | |
1st | 1.4 | 141.38 | 1.57 × 1012 | 0.9980 | 0.7095 | 0.3246 | ||
2nd | 1.2 | 274.29 | 4.86 × 1022 | 0.9878 | 1.3794 | 0.3447 | ||
3rd | 1.6 | 31.21 | 2.59 × 10 | 0.9850 | 0.3987 | 0.0120 | ||
20 | Global | 3.2 | 141.82 | 1.46 × 1012 | 0.7876 | 2.0686 | - | |
1st | 1.6 | 144.70 | 2.20 × 1012 | 0.9994 | 1.4814 | 0.3181 | ||
2nd | 1.2 | 300.07 | 1.79 × 1025 | 0.9904 | 2.7466 | 0.3575 | ||
3rd | 2 | 44.30 | 3.96 × 102 | 1.0000 | 0.8037 | 0.0224 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, E.; Kim, D.; Jeong, C.-J.; Kim, D.-Y. A Kinetic Study on Combustible Coastal Debris Pyrolysis via Thermogravimetric Analysis. Energies 2019, 12, 836. https://doi.org/10.3390/en12050836
Song E, Kim D, Jeong C-J, Kim D-Y. A Kinetic Study on Combustible Coastal Debris Pyrolysis via Thermogravimetric Analysis. Energies. 2019; 12(5):836. https://doi.org/10.3390/en12050836
Chicago/Turabian StyleSong, Eunhye, Daegi Kim, Cheol-Jin Jeong, and Do-Yong Kim. 2019. "A Kinetic Study on Combustible Coastal Debris Pyrolysis via Thermogravimetric Analysis" Energies 12, no. 5: 836. https://doi.org/10.3390/en12050836
APA StyleSong, E., Kim, D., Jeong, C. -J., & Kim, D. -Y. (2019). A Kinetic Study on Combustible Coastal Debris Pyrolysis via Thermogravimetric Analysis. Energies, 12(5), 836. https://doi.org/10.3390/en12050836