Design and Analysis of Surface-Mounted PM Vernier Machines Considering Harmonic Characteristics of Winding MMF
Abstract
:1. Introduction
2. Air-Gap Magnetic Field by Armature Windings
2.1. Structures of the SPMVM
2.2. Winding MMF Distribution
- For Machine 1,
- For Machine 2,
- For Machine 3,
2.3. Permeance Distribution
2.4. Flux Density Distribution by the Windings
- For Machine 1,
- For Machine 2,
- For Machine 3,
3. Simulation Study
3.1. Optimization of the FMP Shape
3.2. Back EMF and Torque Characteristics
4. Experiment and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, F.; Kim, M.; Kwon, B.; Baek, J. A small axial-flux vernier machine with ring-type magnets for the auto-focusing lens drive system. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Xu, L.; Liu, G.; Zhao, W.; Yang, X.; Cheng, R. Hybrid stator design of fault-tolerant permanent-magnet vernier machines for direct-drive applications. IEEE Trans. Ind. Electron. 2017, 64, 179–190. [Google Scholar] [CrossRef]
- Liu, Y.; Ho, S.L.; Fu, W.N.; Zhang, X. Design optimization of a novel doubly fed dual-rotor flux-modulated machine for hybrid electric vehicles. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar]
- Liu, G.; Yang, J.; Zhao, W.; Ji, J.; Chen, Q.; Gong, W. Design and analysis of a new fault-tolerant permanent-magnet vernier machine for electric vehicles. IEEE Trans. Magn. 2012, 48, 4176–4179. [Google Scholar] [CrossRef]
- Jia, S.; Qu, R.; Li, D.; Li, J. A high torque density vernier PM machines for hybrid electric vehicle applications. In Proceedings of the 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, 17–20 October 2016. [Google Scholar]
- B. Design of a Direct Drive Permanent Magnet Vernier Generator for a Wind Turbine System. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 4275–4282.
- Li, X.; Chau, K.T.; Cheng, M. Analysis, design and experimental verification of a field-modulated permanent-magnet machine for direct-drive wind turbines. IET Electr. Power Appl. 2015, 9, 150–159. [Google Scholar] [CrossRef]
- Gao, Y.; Qu, R.; Li, D.; Li, J.; Zhou, G. Design of a dual-stator LTS vernier machine for direct-drive wind power generation. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Wn, F.; El-Refaie, A.M. Permanent magnet vernier machine: A review. IET Electr. Power Appl. 2019, 13, 127–137. [Google Scholar]
- Niu, S.; Ho, S.L.; Fu, W.N.; Wang, L.L. Quantitative comparison of novel vernier permanent magnet machines. IEEE Trans. Magn. 2010, 46, 2032–2035. [Google Scholar] [CrossRef]
- Toba, A.; Lipo, T.A. Generic torque-maximizing design methodology of surface permanent-magnet vernier machine. IEEE Trans. Ind. Appl. 2000, 36, 1539–1546. [Google Scholar]
- Vukoti´c, M.; Miljavec, D. Design of a permanent-magnet flux-modulated machine with a high torque density and high power factor. IET Electr. Power Appl. 2016, 10, 36–44. [Google Scholar] [CrossRef]
- Kim, B.; Lipo, T.A. Operation and design principles of a PM vernier motor. IEEE Trans. Ind. Appl. 2014, 50, 3656–3663. [Google Scholar] [CrossRef]
- Jang, D.; Chang, J. Influences of winding MMF harmonics on torque characteristics in surface-mounted permanent magnet vernier machines. Energies 2017, 10, 580. [Google Scholar] [CrossRef]
- Clayton, A.E. A mathematical development of the theory of the magnetomotive force of windings. J. Inst. Electr. Eng. 1923, 61, 749–787. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Howe, D. Instantaneous magnetic field distribution in brushless permanent magnet dc motors, Part III. Effect of stator slotting. IEEE Trans. Magn. 1933, 29, 143–151. [Google Scholar] [CrossRef]
- Ishak, D.; Zhu, Z.Q.; Howe, D. Comparison of PM brushless motors, having either all teeth or alternate teeth wound. IEEE Trans. Energy Convers. 2006, 21, 95–103. [Google Scholar] [CrossRef]
Machine | FMP Shape | Design Variables [degree] | Working Harmonic [mT] | |||
---|---|---|---|---|---|---|
θ1 | θ2 | θso | Analytical | FEA | ||
1 | Basic | 7.5 | 7.5 | 7.5 | 10.31 | 10.33 |
Optimal | 10.64 | 7 | 5.36 | 11.27 | 11.22 | |
2 | Basic | 7.5 | 7.5 | 7.5 | 14.45 | 14.38 |
Optimal | 12.38 | 7.05 | 3.52 | 17.96 | 17.77 | |
3 | Basic | 7.5 | 7.5 | 7.5 | 15.47 | 15.26 |
Optimal | 8.82 | 8.59 | 4 | 18.95 | 18.62 |
Machine | FMP Shape | Fundamental of Back-EMF [VLL] | Average Torque [Nm] | Torque Ripple [%] |
---|---|---|---|---|
1 | Basic | 4.4 (100%) | 1.03 (100%) | 7.5 |
Optimal | 4.77 (108.4%) | 1.12 (108.4%) | 4.2 | |
2 | Basic | 5.62 (100%) | 1.32 (100%) | 3.7 |
Optimal | 6.93 (123.2%) | 1.62 (123.2%) | 3.8 | |
3 | Basic | 5.71 (100%) | 1.34 (100%) | 1.9 |
Optimal | 6.97 (122.1%) | 1.63 (122.1%) | 1.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, D.; Chang, J. Design and Analysis of Surface-Mounted PM Vernier Machines Considering Harmonic Characteristics of Winding MMF. Energies 2019, 12, 897. https://doi.org/10.3390/en12050897
Jang D, Chang J. Design and Analysis of Surface-Mounted PM Vernier Machines Considering Harmonic Characteristics of Winding MMF. Energies. 2019; 12(5):897. https://doi.org/10.3390/en12050897
Chicago/Turabian StyleJang, Daekyu, and Junghwan Chang. 2019. "Design and Analysis of Surface-Mounted PM Vernier Machines Considering Harmonic Characteristics of Winding MMF" Energies 12, no. 5: 897. https://doi.org/10.3390/en12050897