Next Article in Journal
Inspection of PN, CO2, and Regulated Gaseous Emissions Characteristics from a GDI Vehicle under Various Real-World Vehicle Test Modes
Next Article in Special Issue
Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems
Previous Article in Journal
Voltage Fed Control of Distributed Power Generation Inverters with Inherent Service to Grid Stability
Previous Article in Special Issue
Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark. VI: Overall Impact of 1st- and 2nd-Order Sensitivities on Response Uncertainties
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involving Isotopic Number Densities

Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
*
Author to whom correspondence should be addressed.
Energies 2020, 13(10), 2580; https://doi.org/10.3390/en13102580
Submission received: 26 January 2020 / Accepted: 3 May 2020 / Published: 19 May 2020

Abstract

:
This work applies the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) to compute the mixed 2nd-order sensitivities of a polyethylene-reflected plutonium (PERP) benchmark’s leakage response with respect to the benchmark’s imprecisely known isotopic number densities and the other benchmark imprecisely known parameters, including: (i) the 6 × 180 mixed 2nd-order sensitivities involving the total microscopic cross sections; (ii) the 6 × 21,600 mixed 2nd-order sensitivities involving the scattering microscopic cross sections; (iii) the 6 × 60 mixed 2nd-order sensitivities involving the fission microscopic cross sections; and (iv) the 6 × 60 mixed 2nd-order sensitivities involving the average number of neutrons produced per fission. It is shown that many of these mixed 2nd-order sensitivities involving the isotopic number densities have very large values. Most of the large sensitivities involve the isotopic number density of 239Pu, and the microscopic total, scattering or fission cross sections for the 12th or 30th energy groups of 239Pu or 1H, respectively. The 2nd-order mixed sensitivity of the PERP leakage response with respect to the isotopic number density of 239Pu and the microscopic total cross section for the 30th energy group of 1H is the largest of the above mentioned sensitivities, attaining the value −94.91.

1. Introduction

In Parts I−IV [1,2,3,4], which are precursors of this work, the Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) conceived by Cacuci [5,6,7] has been successfully applied to the subcritical polyethylene-reflected plutonium (acronym: PERP) metal fundamental physics benchmark [8], to compute the exact values of the 1st-order and 2nd-order sensitivities of the PERP’s benchmark leakage response with respect to the 180 group-averaged total microscopic cross sections [1], 21,600 group-averaged scattering microscopic cross sections [2], 120 fission process parameters [3], and 10 source parameters [4]. This work presents the results obtained for the mixed 2nd-order sensitivities of the PERP benchmark’s leakage response with respect to the benchmark’s six isotopic number densities. Table 1 summarizes the dimensions and material composition of the PERP benchmark; additional details are presented in Part I [1]. As shown in Table 1, the six isotopic number densities correspond to each of the isotopes contained in the PERP benchmark, respectively. The isotopic number density is one of important parameters that contribute to the accuracy of the neutron transport calculation, as it appears in the definitions/constructions of the total, scattering and fission macroscopic cross sections, as well as the source term of the neutron transport equation.
The mixed 2nd-order sensitivities of the leakage response with respect to the isotopic number densities are computed by specializing the general expressions derived by Cacuci [5,6,7] to the PERP benchmark. This work is organized as follows: Section 2 presents the numerical results for the 6 × 180 mixed 2nd-order sensitivities with respect to the isotopic number densities and total microscopic cross sections. Section 3 summarizes the numerical results for the 6 × 21600 matrix of mixed 2nd-order sensitivities to the isotopic number densities and scattering microscopic cross sections. Section 4 presents the numerical results for the 6 × 60 mixed 2nd-order sensitivities to the isotopic number densities and fission microscopic cross sections. Section 5 reports the numerical results for the 6 × 60 mixed 2nd-order sensitivities to the isotopic number densities and the average number of neutrons per fission. The conclusions drawn from the numerical results presented in this work are summarized in Section 6.

2. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the Parameters Underlying the Benchmark’s Isotopic Number Densities and Total Cross Sections

As described in Part I [1], the neutron flux is computed by solving numerically the neutron transport equation using the PARTISN [9] multigroup discrete ordinates transport code. For the PERP benchmark under consideration, PARTISN [9] solves the following multi-group approximation of the neutron transport equation with a spontaneous fission source provided by the code SOURCES4C [10]:
B g α φ g r , Ω = Q g r , g = 1 , , G ,
φ g r d , Ω = 0 , Ω n < 0 , g = 1 , , G ,
where r d denotes the external radius of the PERP benchmark, and where
B g α φ g r , Ω Ω · φ g r , Ω + Σ t g r φ g r , Ω g = 1 G 4 π Σ s g g r , Ω Ω φ g r , Ω d Ω χ g r g = 1 G 4 π ν Σ f g r φ g r , Ω d Ω ,
Q g r k = 1 N f λ k N k , 1 F k S F ν k S F 2 π a k 3 b k e a k b k 4 E g + 1 E g d E e E / a k sinh b k E .
In Equation (1), the vector α denotes the “vector of imprecisely known model parameters”, which has been defined in Part I [1] as α σ t ; σ s ; σ f ; ν ; p ; q ; N . The vector-valued components σ t , σ s , σ f , ν , p , q and N comprise the various model parameters for the microscopic total cross sections, scattering cross sections, fission cross sections, average number of neutrons per fission, fission spectra, sources, and isotopic number densities, respectively. For convenient reference, the components of the vector of model parameters α are reproduced in Appendix A.
The PARTISN [9] calculations used the MENDF71X [11] 618-group cross sections collapsed to G = 30 energy groups, with group boundaries, E g , as presented in [1]. The MENDF71X library uses ENDF/B-VII.1 Nuclear Data [12].
The total neutron leakage from the PERP sphere, denoted as L α , will depend (indirectly, through the neutron flux) on the imprecisely known model parameters and is defined as follows:
L α S b d S g = 1 G   Ω n > 0 d Ω Ω n φ g r , Ω .  
As has been shown by Cacuci [5], the 2nd-order mixed sensitivities 2 L α / N σ t can be computed using two distinct expressions, involving distinct 2nd-level adjoint systems and corresponding 2nd-level adjoint functions, by considering either the computation of 2 L α / N σ t or the computation of 2 L α / σ t N . These two distinct paths will be presented in Section 2.1 and Section 2.2, respectively. The end results produced by these two distinct paths must be identical to one another, thus providing a mutual “solution verification” which ensures that the respective computations were performed correctly. Moreover, the computation of 2 L α / N σ t can be significantly more efficient than the computation of 2 L α / σ t N , as will be further illustrated by the numerical results presented in Section 2.3.

2.1. Computing the Second-Order Sensitivities 2 L α / N σ t

The PERP benchmark comprises six distinct isotopes and two distinct materials; the respective isotopes are not repeated in the two materials. Therefore, only the following isotopic number densities exist for this benchmark: N 1 , 1 , N 2 , 1 , N 3 , 1 , N 4 , 1 , N 5 , 2 , N 6 , 2 , so that the vector N is defined as follows:
N n 1 , , n J n N 1 , 1 , N 2 , 1 , N 3 , 1 , N 4 , 1 , N 5 , 2 , N 6 , 2 , J n = 6.
The vector σ t is defined in Part I [1] and in Equation (A6) in Appendix A.
The equations needed for deriving the expression of the 2nd-order sensitivities 2 L α / N σ t are obtained by particularizing Equations (158), (167), (177) and (204) in [5] to the PERP benchmark and adding their respective contributions. The expression obtained by particularizing Equation (158) in [5] takes on the following form:
2 L n j t m 2 1 = g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω φ g r , Ω 2 Σ t g t n j t m 2 g = 1 G V d V 4 π d Ω ψ 1 , i ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + ψ 2 , i ( 2 ) , g r , Ω φ g r , Ω Σ t g t t m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ t .
The multigroup adjoint fluxes ψ 1 , g r , Ω , g = 1 , , G , appearing in Equation (7) are the solutions of the following 1st-Level Adjoint Sensitivity System (1st-LASS) presented in Equations (156) and (157) of [5]:
A 1 , g α ψ 1 , g r , Ω = Ω n δ r r d , g = 1 , , G ,
ψ 1 , g r d , Ω = 0 , Ω n > 0 , g = 1 , , G ,
where the adjoint operator A 1 , g α takes on the following particular form of Equation (149) in [5]:
A 1 , g α ψ 1 , g r , Ω Ω · ψ 1 , g r , Ω + Σ t g t ψ 1 , g r , Ω g = 1 G 4 π d Ω Σ s g g s ; Ω Ω ψ 1 , g r , Ω ν Σ f g f g = 1 G 4 π d Ω χ g ψ 1 , g r , Ω , g = 1 , , G .
The 2nd-level adjoint functions ψ 1 , i ( 2 ) , g and ψ 2 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , appearing in Equation (7) are the solutions of the following 2nd-Level Adjoint Sensitivity System (2nd-LASS) obtained from Equations (164)–(166) of [5]:
B g α 0 ψ 1 , j ( 2 ) , g r , Ω = σ t , i j g φ g r , Ω , j = 1 , , J n ; g = 1 , , G ,
ψ 1 , i ( 2 ) , g r d , Ω = 0 , Ω n < 0 ; i = 1 , , J n ; g = 1 , , G ,
A ( 1 ) , g α 0 ψ 2 , j ( 2 ) , g r , Ω = σ t , i j g ψ ( 1 ) , g r , Ω , j = 1 , , J n ; g = 1 , , G ,
ψ 2 , i ( 2 ) , g r d , Ω = 0 , Ω n > 0 ; i = 1 , , J n ; g = 1 , , G .
The parameters n j and t m 2 in Equation (7) correspond to the isotopic number densities and microscopic total cross sections, respectively, and will therefore be denoted as n j N i j , m j and t m 2 σ t , i m 2 g m 2 , where the subscripts i j and m j denote the isotope and material associated with the parameter n j , while the subscripts i m 2 , g m 2 and m m 2 denote the isotope, energy group and material associated with the parameter t m 2 , respectively. The following derivatives will be used in Equation (7) and subsequently in this work:
Σ t g t t m 2 = Σ t g t σ t , i m 2 g m 2 = m = 1 M i = 1 I N i , m σ t , i g σ t , i m 2 g m 2 = δ g m 2 g N i m 2 , m m 2 ,
2 Σ t g t n j t m 2 = 2 Σ t g t N i j , m j σ t , i m 2 g m 2 = Σ t g t / N i j , m j σ t , i m 2 g m 2 = m = 1 M i = 1 I N i , m σ t , i g / N i j , m j σ t , i m 2 g m 2 = σ t , i j g σ t , i m 2 g m 2 = δ i j i m 2 δ g m 2 g ,
where δ g m 2 g denotes the Kronecker-delta functionals (e.g., δ g m 2 g = 1 if g m 2 = g ; δ g m 2 g = 0 if g m 2 g ). Inserting the results obtained in Equations (15) and (16) into Equation (7), yields:
2 L n j t m 2 1 = δ i j i m 2 V d V 4 π d Ω ψ ( 1 ) , g m 2 r , Ω φ g m 2 r , Ω N i m 2 , m m 2 V d V 4 π d Ω ψ 1 , i ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + ψ 2 , i ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω , f o r j = 1 , , J n ; m 2 = 1 , , J σ t .
The contributions stemming from Equation (167) in [5] have the following expression:
2 L n j t m 2 2 = g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + θ 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g t t m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ t ,
where the 2nd-level adjoint functions θ 1 , j ( 2 ) , g , and θ 2 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the following 2nd-Level Adjoint Sensitivity System resulted from Equations (164)–(166) of [5]:
B g α 0 θ 1 , j ( 2 ) , g r , Ω = g = 1 G l = 0 I S C T 2 l + 1 σ s , l , i j g g P l Ω ϕ l g r , j = 1 , , J n ; g = 1 , , G ,
θ 1 , j ( 2 ) , g r d , Ω = 0 , Ω n < 0 ; j = 1 , , J n ; g = 1 , , G ,
A ( 1 ) , g α 0 θ 2 , j ( 2 ) , g r , Ω = g = 1 G l = 0 I S C T 2 l + 1 σ s , l , i j g g P l Ω ξ l ( 1 ) , g r , j = 1 , , J n ; g = 1 , , G ,
θ 2 , j ( 2 ) , g r d , Ω = 0 , Ω n > 0 ; j = 1 , , J n ; g = 1 , , G .
In Equations (19) and (21), σ s , l , i j g g denotes the l t h -order Legendre-expanded microscopic scattering cross section from energy group g into energy group g for isotope i j , as defined in Equation (A7) in Appendix A. The l t h -moments φ l g r and ξ l ( 1 ) , g r are defined as follows:
φ l g r 4 π d Ω P l Ω φ g r , Ω ,
ξ l ( 1 ) , g r 4 π d Ω P l Ω ψ ( 1 ) , g r , Ω .
Inserting Equation (15) into Equation (18) yields:
2 L n j t m 2 2 = N i m 2 , m m 2 V d V 4 π d Ω θ 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + θ 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω , f o r j = 1 , , J n ; m 2 = 1 , , J σ t .
The contributions stemming from Equation (177) in [5] have the following expression:
2 L n j t m 2 3 = g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + u 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g t t m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ t ,
where the 2nd-level adjoint functions u 1 , j ( 2 ) , g , and u 2 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the following 2nd-Level Adjoint Sensitivity System obtained from Equations (183)–(185) of [5]:
B g α 0 u 1 , j ( 2 ) , g r , Ω = χ g g = 1 G ν i j g σ f , i j g φ 0 g r , j = 1 , , J n ; g = 1 , , G ,
u 1 , j ( 2 ) , g r d , Ω = 0 , Ω n < 0 ; j = 1 , , J n ; g = 1 , , G ,
A ( 1 ) , g α 0 u 2 , j ( 2 ) , g r , Ω = ν i j g σ f , i j g g = 1 G χ g ξ 0 ( 1 ) , g r , j = 1 , , J n ; g = 1 , , G ,
u 2 , j ( 2 ) , g r d , Ω = 0 , Ω n > 0 ; j = 1 , , J n ; g = 1 , , G .
In Equations (27) and (29), the 0th-moments are defined as follows:
φ 0 g r 4 π d Ω φ g r , Ω ,
ξ 0 ( 1 ) , g r 4 π d Ω ψ ( 1 ) , g r , Ω .
Inserting Equation (15) into Equation (26) yields:
2 L n j t m 2 3 = N i m 2 , m m 2 V d V 4 π d Ω u 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + u 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω , f o r j = 1 , , J n ; m 2 = 1 , , J σ t .
Finally, the contribution stemming from Equation (204) in [5] has the following expression:
2 L n j t m 2 4 = g = 1 G V d V 4 π d Ω g 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω Σ t g t t m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ t ,
where the 2nd-level adjoint functions g 1 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the following 2nd-Level Adjoint Sensitivity System resulted from Equations (200) and (202) of [5]:
B g α 0 g 1 , j ( 2 ) , g r , Ω = Q S F , i j g n j , j = 1 , , J n ; g = 1 , , G ,
g 1 , j ( 2 ) , g r d , Ω = 0 , Ω n < 0 ; j = 1 , , J n ; g = 1 , , G .
The α , n source is zero for the PERP benchmark. Only the spontaneous fission source is present in the PERP benchmark, which implies that
Q g = Q S F g = m = 1 M k = 1 N f Q S F , k g ,
where the spontaneous source rate density in group g for isotope k is defined as follows [10]:
Q S F , k g = λ k N k , m χ S F , k g = λ k N k , m F k S F ν k S F 2 π a k 3 b k e a k b k 4 E g + 1 E g d E e E / a k sinh b k E .
In Equation (38), the quantity λ k denotes the decay constant for isotope k , while χ S F , k g includes the spontaneous fission branch ratio and the spontaneous fission neutron spectra, which are approximated by a Watt’s fission spectra using two evaluated parameters ( a k and b k ).
Inserting Equation (15) into Equation (34) yields:
2 L n j t m 2 4 = N i m 2 , m m 2 V d V 4 π d Ω g 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω , f o r j = 1 , , J n , m 2 = 1 , , J σ t .
Combining the partial contributions obtained in Equations (17), (25), (33) and (39) yields the following expression:
2 L n j t m 2 = i = 1 4 2 L n j t m 2 i = δ i j i m 2 V d V 4 π d Ω ψ ( 1 ) , g m 2 r , Ω φ g m 2 r , Ω N i m 2 , m m 2 V d V 4 π d Ω ψ 1 , i ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + ψ 2 , i ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω N i m 2 , m m 2 V d V 4 π d Ω θ 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + θ 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω N i m 2 , m m 2 V d V 4 π d Ω u 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + u 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω N i m 2 , m m 2 V d V 4 π d Ω g 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω , f o r     j = 1 , , J n ; m 2 = 1 , , J σ t .

2.2. Alternative Path: Computing the Second-Order Sensitivities 2 L α / σ t N

As mentioned earlier, the mixed 2nd-order sensitivities 2 L α / N σ t can be alternatively computed by using the symmetric expression 2 L α / σ t N . The equations needed for deriving the expression for 2 L α / σ t N are obtained by particularizing Equations (158), (159), (160) and (162) in [5] to the PERP benchmark. The combined expression obtained by particularizing these equations takes on the following form:
2 L t j n m 2 = g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω φ g r , Ω 2 Σ t g t t j n m 2 g = 1 G V d V 4 π d Ω ψ 1 , i ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + ψ 2 , i ( 2 ) , g r , Ω φ g r , Ω Σ t g t n m 2 + g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g f n m 2 + g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω ν Σ f g f n m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω + g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω Q g q ; r , Ω n m 2 , f o r   j = 1 , , J σ t ; m 2 = 1 , , J n ,
where the adjoint functions ψ 1 , j ( 2 ) , g and ψ 2 , j ( 2 ) , g , j = 1 , , J σ t ; g = 1 , , G are the solutions of the 2nd-LASS presented in Equations (32), (34), (39) and (40) of Part I [1], which are reproduced below for convenient reference:
B g α 0 ψ 1 , j ( 2 ) , g r , Ω = δ g j g N i j , m j φ g r , Ω , j = 1 , , J σ t ; g = 1 , , G ,
ψ 1 , j ( 2 ) , g r d , Ω = 0 , Ω n < 0 ; j = 1 , , J σ t ; g = 1 , , G ,
A ( 1 ) , g α 0 ψ 2 , j ( 2 ) , g r , Ω = δ g j g N i j , m j ψ ( 1 ) , g r , Ω , j = 1 , , J σ t ; g = 1 , , G ,
ψ 2 , j ( 2 ) , g r d , Ω = 0 , Ω n > 0 ; j = 1 , , J σ t ; g = 1 , , G .
The parameters t j and n m 2 in Equation (41) correspond to the total cross sections and isotopic number densities, and are therefore denoted as t j σ t , i j g j and n m 2 N i m 2 , m m 2 , respectively. The following results will be used in subsequent derivations:
2 Σ t g t t j n m 2 = 2 Σ t g t σ t , i j g j N i m 2 , m m 2 = m = 1 M i = 1 I N i , m σ t , i g / σ t , i j g j N i m 2 , m m 2 = δ g j g N i j , m j N i m 2 , m m 2 = δ i j i m 2 δ g j g ,
Σ t g t n m 2 = Σ t g t N i m 2 , m m 2 = m = 1 M i = 1 I N i , m σ t , i g N i m 2 , m m 2 = σ t , i m 2 g ,
Σ s g g ( s ; Ω Ω ) n m 2 = Σ s g g ( s ; Ω Ω ) N i m 2 , m m 2 = l = 0 I S C T 2 l + 1 σ s , l , i m 2 g g P l Ω Ω ,
Σ s g g ( s ; Ω Ω ) n m 2 = Σ s g g ( s ; Ω Ω ) N i m 2 , m m 2 = l = 0 I S C T 2 l + 1 σ s , l , i m 2 g g P l Ω Ω ,
ν Σ f g f n m 2 = m = 1 M i = 1 I N i , m ν σ f i g N i m 2 , m m 2 = m = 1 M i = 1 I N i , m ν i g σ f , i g N i m 2 , m m 2 = ν i m 2 g σ f , i m 2 g ,
ν Σ f g f n m 2 = m = 1 M i = 1 I N i , m ν σ f i g N i m 2 , m m 2 = m = 1 M i = 1 I N i , m ν i g σ f , i g N i m 2 , m m 2 = ν i m 2 g σ f , i m 2 g ,
Q g q ; r , Ω n m 2 = Q S F g n m 2 = m = 1 M k = 1 N f λ k N k , m χ S F , k g N i m 2 , m m 2 = λ m 2 χ S F , i m 2 g = Q S F , i m 2 g N i m 2 , m m 2 = Q S F , i m 2 g n m 2 .
Inserting the results obtained in Equations (46)–(52) into Equation (41), and performing the respective angular integrations yields the following expression for Equation (41):
2 L t j n m 2 = δ i j i m 2 V d V 4 π d Ω ψ ( 1 ) , g j r , Ω φ g j r , Ω g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + ψ 2 , j ( 2 ) , g r , Ω φ g r , Ω σ t , i m 2 g + g = 1 G l = 0 I S C T 2 l + 1 V d V ξ 1 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g ξ l ( 1 ) , g r + g = 1 G l = 0 I S C T 2 l + 1 V d V ξ 2 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g φ l g r + g = 1 G V d V χ g ξ 2 , j ; 0 ( 2 ) , g r g = 1 G ν i m 2 g σ f , i m 2 g φ 0 g r + g = 1 G V d V ν i m 2 g σ f , i m 2 g ξ 1 , j ; 0 ( 2 ) , g r g = 1 G χ g ξ 0 ( 1 ) , g r + 1 n m 2 g = 1 G V d V ξ 2 , j ; 0 ( 2 ) , g r Q S F , i m 2 g , f o r   j = 1 , , J σ t ; m 2 = 1 , , J n ,
where
ξ 1 , j ; l ( 2 ) , g r 4 π d Ω P l Ω ψ 1 , j ( 2 ) , g r , Ω ,
ξ 2 , j ; l ( 2 ) , g r 4 π d Ω P l Ω ψ 2 , j ( 2 ) , g r , Ω ,
ξ 1 , j ; 0 ( 2 ) , g r 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω ,
ξ 2 , j ; 0 ( 2 ) , g r 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω .

2.3. Numerical Results for 2 L α / N σ t

The second-order absolute sensitivities, 2 L α / N σ t , of the leakage response with respect to the isotopic number densities and the total cross sections for all isotopes of the PERP benchmark have been computed using Equation (40), and have been independently verified by computing 2 L α / σ t N using Equation (53). Regarding computational requirements: computing 2 L α / N σ t requires 16 forward and adjoint PARTISN transport computations for obtaining the various 2nd-level adjoint functions ψ 1 , j ( 2 ) , g , ψ 2 , j ( 2 ) , g , θ 1 , j ( 2 ) , g , θ 2 , j ( 2 ) , g , u 1 , j ( 2 ) , g , u 2 , j ( 2 ) , g and g 1 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G needed in Equation (40). In contradistinction, computing 2 L α / σ t N using Equation (53) would require J σ t = G × I = 30 × 6 = 180 forward and adjoint PARTISN computations for obtaining the adjoint functions ψ 1 , j ( 2 ) , g and ψ 2 , j ( 2 ) , g , j = 1 , , J σ t ; g = 1 , , G which are needed in Equation (53). It is thus evident that computing 2 L α / N σ t using Equation (40) is about 10 times more efficient than computing 2 L α / σ t N using Equation (53).
The matrix 2 L / n j t m 2 , j = 1 , , J ; n m 2 = 1 , , J σ t has dimensions J n × J σ t ( = 6 × 180 ) ; corresponding to this matrix is the matrix denoted as S ( 2 ) N i , m , σ t , k g of 2nd-order relative sensitivities, which is defined as follows:
S ( 2 ) N i , m , σ t , k g 2 L N i , m σ t , k g N i , m σ t , k g L , i , k = 1 , , 6 ; m = 1 , 2 ; g = 1 , , 30.
To facilitate the presentation and interpretation of the numerical results, the J n × J σ t ( = 6 × 180 ) matrix S ( 2 ) N i , m , σ t , k g has been partitioned into J n × I = 6 × 6 submatrices, each of dimensions 1 × G = 1 × 30 . The summary of the main features of each of these submatrices is presented in Table 2 in the following form: when a submatrix comprises elements with relative sensitivities with absolute values that are greater than 1.0, the total number of such elements are counted and shown in the shaded cells of the table. Otherwise, if the relative sensitivities of all the elements of a submatrix have values that lie in the interval 1.0 , 1.0 , only the element having the largest absolute value in the submatrix is listed in Table 2, together with the phase-space coordinates of that element. The sub-matrices in Table 2, which comprise components with absolute values greater than 1.0, will be discussed in detail in subsequent sub-sections of this section.
Almost all [i.e., 1072 out of J n × J σ t ( = 1080 ) ] of the elements of the matrix S ( 2 ) N i , m , σ t , k g , i , k = 1 , , 6 ; m = 1 , 2 ; g = 1 , , 30 have negative values. The remaining 8 elements have very small (of the order of 10−4 or less) positive values; they are all related to the isotopic number densities of isotopes 240Pu or 71Ga. The results shown in Table 2 indicate that, 125 elements (of the total of 1080 elements) have very large relative sensitivities, greater than 1.0. The majority (123 out of 125) of those large sensitivities involve the isotopic number densities of 239Pu or 1H (namely, N 1 , 1 and N 6 , 2 ) and/or the microscopic total cross sections of isotopes 239Pu or 1H (namely, σ t , 1 g and σ t , 6 g ). Of the sensitivities summarized in Table 2, the single largest relative value is S ( 2 ) N 1 , 1 , σ t , 6 30 = 94.91 . The results in Table 2 also indicate that when the 2nd-order mixed relative sensitivities S ( 2 ) N i , m , σ t , k g involve the isotopic number densities of isotopes 69Ga and 71Ga or the microscopic total cross sections of isotopes 69Ga and 71Ga, their absolute values are all smaller than 1.0. Moreover, as shown in Table 2, the element with the most negative value in each of the submatrices involves the microscopic total cross sections for the 12th or the 30th energy group of the isotopes.

2.3.1. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ t , 1 g , g = 1 , , 30

Table 3 shows the results obtained for the 2nd-order mixed relative sensitivity of the leakage response with respect to the isotopic number density and the microscopic total cross sections of isotope 1 (239Pu), denoted as S ( 2 ) N 1 , 1 , σ t , 1 g 2 L / N i = 1 , m = 1 σ t , k = 1 g N 1 , 1 σ t , 1 g / L , g = 1 , , 30 . The 18 elements that have values greater than 1.0, shown bold in this table, involve the total cross sections of isotope 239Pu for the energy groups g = 6 , , 22 and g = 30 . The largest negative value in this submatrix is attained by the relative 2nd-order mixed sensitivity S ( 2 ) N 1 , 1 , σ t , 1 g = 12 = 17.172 , which involves the isotopic number density and the 12th energy group of the total cross sections of isotope 239Pu.

2.3.2. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ t , 2 g , g = 1 , , 30

The matrix S ( 2 ) N 1 , 1 , σ t , 2 g 2 L / N i = 1 , m = 1 σ t , k = 2 g N 1 , 1 σ t , 2 g / L , g = 1 , , 30 , comprising the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of isotope 1 (239Pu) and the microscopic total cross sections of isotope 2 (240Pu), contains a single large element that has an absolute value greater than 1.0, which is S ( 2 ) N 1 , 1 , σ t , 2 g = 12 = 1.005 .

2.3.3. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ t , 5 g , g = 1 , , 30

The submatrix S ( 2 ) N 1 , 1 , σ t , 5 g 2 L / N i = 1 , m = 1 σ t , k = 5 g N 1 , 1 σ t , 5 g / L , g = 1 , , 30 , comprising the 2nd-order relative sensitivities of the leakage response with respect to the isotopic number density of isotope 1 (239Pu) and the microscopic total cross sections of isotope 5 (C), is presented in Table 4. This submatrix includes 12 elements that have absolute values greater than 1.0, noted in bold, involving the total cross sections of isotope C for the energy groups g = 12 , , 22 and g = 30 . The largest negative value is displayed by the 2nd-order relative sensitivity of the leakage response with respect to the isotopic number density for 239Pu and the 30th energy group of the total cross section for C, namely, S ( 2 ) N 1 , 1 , σ t , 5 g = 30 = 7.952 .

2.3.4. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ t , 6 g , g = 1 , , 30

Table 5 lists the values of the components of the submatrix S ( 2 ) N 1 , 1 , σ t , 6 g 2 L / N i = 1 , m = 1 σ t , k = 6 g N 1 , 1 σ t , 6 g / L , g = 1 , , 30 , comprising the 2nd-order mixed relative sensitivities of the leakage response with respect to the isotopic number density of isotope 1 (239Pu) and the microscopic total cross sections of isotope 6 (1H). This submatrix includes 22 elements that have absolute values greater than 1.0, shown in bold; the large sensitivities involve the total cross sections of isotope 1H for energy groups g = 9 , , 30 . The largest negative value is for the 2nd-order relative sensitivity of the leakage response with respect to isotopic number density of isotope 239Pu and the 30th energy group of the total cross section of isotope 1H, i.e., S ( 2 ) N 1 , 1 , σ t , 6 g = 30 = 94.909 .

2.3.5. Second-Order Relative Sensitivities S ( 2 ) N 2 , 1 , σ t , 1 g , g = 1 , , 30

Table 6 shows the results obtained for the matrix S ( 2 ) N 2 , 1 , σ t , 1 g 2 L / N i = 2 , m = 1 σ t , k = 1 g N 2 , 1 σ t , k = 1 g / L , g = 1 , , 30 , comprising the 2nd-order mixed relative sensitivity of the leakage response with respect to the isotopic number density of 240Pu and the total cross sections of 239Pu. As highlighted in bold in this table, 10 elements of this submatrix have relative sensitivities with absolute values greater than 1.0. These large mixed relative sensitivities involve the total cross sections of isotope 239Pu for energy groups g = 7 , , 16 , respectively. The largest negative value in this submatrix is S ( 2 ) N 2 , 1 , σ t , 1 g = 12 = 1.914 , also occurring in the 12th energy group of the total cross sections.

2.3.6. Second-Order Relative Sensitivities S ( 2 ) N 2 , 1 , σ t , 5 g , g = 1 , , 30

The matrix S ( 2 ) N 2 , 1 , σ t , 5 g 2 L / N i = 2 , m = 1 σ t , k = 5 g N 2 , 1 σ t , 5 g / L , g = 1 , , 30 , comprising the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of isotope 2 (240Pu) and the microscopic total cross sections of isotope 5 (C), has only one large element with absolute value greater than 1.0, namely, S ( 2 ) N 2 , 1 , σ t , 5 g = 30 = 1.067 , which occurs for the 30th energy group of the total cross sections of isotope C.

2.3.7. Second-Order Relative Sensitivities S ( 2 ) N 2 , 1 , σ t , 6 g , g = 1 , , 30

Table 7 summaries the 2nd-order relative sensitivities in submatrix S ( 2 ) N 2 , 1 , σ t , 6 g 2 L / N i = 2 , m = 1 σ t , k = 6 g N 2 , 1 σ t , 6 g / L , g = 1 , , 30 , of the leakage response with respect to the isotopic number density of isotope 2 (240Pu) and the microscopic total cross sections of isotope 6 (1H). As shown in bold characters in this table, 9 elements in this submatrix have absolute values greater than 1.0. These 9 elements are related to the energy groups g = 16 , , 23 and g = 30 of the total cross sections of isotope 1H, respectively. The largest 2nd-order mixed relative sensitivity attained in this submatrix involves the isotopic number density for 240Pu and the 30th energy group of the total cross section for 1H, i.e., S ( 2 ) N 2 , 1 , σ t , 6 g = 30 = 12.741 .

2.3.8. Second-Order Relative Sensitivities S ( 2 ) N 5 , 2 , σ t , 1 g , g = 1 , , 30

Table 8 presents the results for the submatrix S ( 2 ) N 5 , 2 , σ t , 1 g 2 L / N i = 5 , m = 2 σ t , k = 1 g N 5 , 2 σ t , 1 g / L , g = 1 , , 30 , which comprises the 2nd-order relative sensitivities of the leakage response with respect to the isotopic number density of isotope 5 (C) and the microscopic total cross sections of isotope 1 (239Pu). This submatrix contains 9 elements that have absolute values greater than 1.0, as shown in bold in this table. These 9 elements are related to the total cross sections of isotope C for the energy groups g = 7 and g = 9 , , 16 , respectively. The most negative value is S ( 2 ) N 5 , 2 , σ t , 1 g = 12 = 1.803 for the 2nd-order relative sensitivity with respect to isotopic number density of isotope C and the 12th energy group of the total cross section of isotope 239Pu.

2.3.9. Second-Order Relative Sensitivities S ( 2 ) N 5 , 2 , σ t , 5 g , g = 1 , , 30

The submatrix S ( 2 ) N 5 , 2 , σ t , 5 g 2 L / N i = 5 , m = 2 σ t , k = 5 g N 5 , 2 σ t , 5 g / L , g = 1 , , 30 , comprising the 2nd-order mixed relative sensitivities of the leakage response with respect to the isotopic number density of isotope 5 (C) and the total cross sections of isotope 5 (C), has a single large element that has an absolute value greater than 1.0, namely S ( 2 ) N 5 , 2 , σ t , 5 g = 30 = 2.016 .

2.3.10. Second-Order Relative Sensitivities S ( 2 ) N 5 , 2 , σ t , 6 g , g = 1 , , 30

Table 9 lists the values for the elements of the submatrix S ( 2 ) N 5 , 2 , σ t , 6 g 2 L / N i = 5 , m = 2 σ t , k = 6 g N 5 , 2 σ t , 6 g / L , g = 1 , , 30 , comprising the 2nd-order mixed relative sensitivities of the leakage response with respect to the isotopic number density of isotope 5 (C) and the microscopic total cross sections of isotope 6 (1H). This submatrix includes 11 elements, highlighted in bold, which have absolute values greater than 1.0. These 11 elements involve the total cross sections of isotope 1H for energy groups g = 16 , , 25 , and g = 30 , respectively. The largest negative value in this submatrix is S ( 2 ) N 5 , 2 , σ t , 6 g = 30 = 14.695 .

2.3.11. Second-Order Relative Sensitivities S ( 2 ) N 6 , 2 , σ t , 1 g , g = 1 , , 30

Table 10 presents the results obtained for the submatrix S ( 2 ) N 6 , 2 , σ t , 1 g 2 L / N i = 6 , m = 2 σ t , k = 1 g N 6 , 2 σ t , k = 1 g / L , g = 1 , , 30 , comprising the 2nd-order mixed relative sensitivities of the leakage response with respect to the isotopic number density of isotope 6 (1H) and to the microscopic total cross sections of isotope 1 (239Pu). As highlighted in bold in this table, 11 elements have relative sensitivities with absolute values greater than 1.0. These large 2nd-order mixed relative sensitivities pertain to the total cross sections of isotope 239Pu for energy groups g = 7 , , 16 and g = 30 , respectively. The largest negative value in this submatrix is attained by the relative 2nd-order mixed sensitivity S ( 2 ) N 6 , 2 , σ t , 1 g = 12 = 2.884 .

2.3.12. Second-Order Relative Sensitivities S ( 2 ) N 6 , 2 , σ t , 5 g , g = 1 , , 30

The matrix S ( 2 ) N 6 , 2 , σ t , 5 g 2 L / N i = 6 , m = 2 σ t , k = 5 g N 6 , 2 σ t , 5 g / L , g = 1 , , 30 , comprising the 2nd-order relative sensitivities of the leakage response with respect to the isotopic number density of isotope 6 (1H) and the microscopic total cross sections of isotope 5 (C), contains a single large element that has an absolute value greater than 1.0, which is S ( 2 ) N 6 , 2 , σ t , 5 g = 30 = 3.186 .

2.3.13. Second-Order Relative Sensitivities S ( 2 ) N 6 , 2 , σ t , 6 g , g = 1 , , 30

Table 11 lists the values obtained for the 2nd-order relative sensitivities of the leakage response with respect to the isotopic number density of isotope 6 (1H) and the microscopic total cross sections of 1H, which are components of S ( 2 ) N 6 , 2 , σ t , 6 g 2 L / N i = 6 , m = 2 σ t , k = 6 g N 6 , 2 σ t , 6 g / L , g = 1 , , 30 . In this submatrix, 19 elements have relative sensitivities with absolute values greater than 1.0, all involving the total cross sections of isotope 1H for energy groups g = 12 , , 30 . The largest negative value is attained by the 2nd-order mixed relative sensitivity S ( 2 ) N 6 , 2 , σ t , 6 g = 30 = 47.398 , occurring in the 30th energy group of the total cross section of isotope 1H.

3. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the Parameters Underlying the Benchmark’s Isotopic Number Densities and Scattering Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order mixed sensitivities 2 L α / N σ s of the leakage response with respect to the isotopic number densities and group-averaged scattering microscopic cross sections for all isotopes of the PERP benchmark. These 2nd-order mixed sensitivities can also be computed by using the symmetric expression 2 L α / σ s N . These two distinct paths for computing the 2nd-order sensitivities with respect to the isotopic number densities and group-averaged scattering microscopic cross sections will be presented in Section 3.1 and, respectively, Section 3.2. As shown in Section 3.3, below, the pathway for computing 2 L α / N σ s turns out to be about 450 times more efficient than the pathway for computing 2 L α / σ s N .

3.1. Computing the Second-Order Sensitivities 2 L α / N σ s

The equations needed for deriving the expressions of the 2nd-order sensitivities 2 L / n j s m 2 , j = 1 , , J n ; m 2 = 1 , , J σ s will differ from each other depending on whether the parameter s m 2 corresponds to the 0th-order l = 0 scattering cross sections or to the higher-order l 1 scattering cross sections. This is because, as shown in Equation (A3) of Appendix A, the zeroth-order scattering cross sections contribute to the total cross sections while the higher-order scattering cross sections do not. Therefore, the zeroth-order scattering cross sections must be considered separately from the higher order scattering cross sections. As described in [1,2,3] and Appendix A, the total number of zeroth-order l = 0 scattering cross section comprised in σ s is denoted as J σ s , l = 0 , where J σ s , l = 0 = G × G × I . The total number of higher order (i.e., l 1 ) scattering cross sections comprised in σ s is denoted as J σ s , l 1 , where J σ s , l 1 = G × G × I × I S C T , with J σ s , l = 0 + J σ s , l 1 = J σ s . There are two distinct cases, as follows:
Case 1: 2 L n j s m 2 n = N , s = σ s , l = 0 , j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 , where the quantities n j refer to the isotopic number densities, while the quantities s m 2 refer to the parameters underlying the 0th-order scattering microscopic cross sections; and
Case 2: 2 L n j s m 2 n = N , s = σ s , l 1 , j = 1 , , J n ; m 2 = 1 , , σ s , l 1 , , where the quantities n j refer to the isotopic number densities, and the quantities s m 2 refer to the parameters underlying the l t h -order ( l 1 ) scattering microscopic cross sections.

3.1.1. Second-Order Sensitivities 2 L n j s m 2 n = N , s = σ s , l = 0 , j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0

The equations needed for deriving the expression of the 2nd-order mixed sensitivities 2 L n j s m 2 n = N , s = σ s , l = 0 are obtained by particularizing Equations (158), (159), (167), (168), (177), (178), (204) and (205) in [5] to the PERP benchmark. Specifically, using Equation (158) in [5] to the PERP benchmark yields the following expression:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 1 ) = g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω φ g r , Ω 2 Σ t g t n j s m 2 g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + ψ 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g t s m 2 , f o r j = 1 , , J n , m 2 = 1 , , J σ s , l = 0 ,
where the adjoint functions ψ 1 , j ( 2 ) , g and ψ 2 , j ( 2 ) , g , j = 1 , , J σ f ; g = 1 , , G are the solutions of the 2nd-LASS presented previously in Equations (11)–(14). In Equation (59), the parameters n j and s m 2 correspond to the isotopic number densities and microscopic total cross sections, respectively, and are therefore denoted as n j N i j , m j and s m 2 σ s , l m 2 = 0 , i m 2 g m 2 g m 2 , where the subscripts i m 2 , l m 2 , g m 2 and g m 2 refer to the isotope, order of Legendre expansion, and energy groups associated with the parameter s m 2 , respectively. Noting that
2 Σ t g t n j s m 2 = 2 Σ t g t N i j , m j σ s , l m 2 = 0 , i m 2 g m 2 g m 2 = m = 1 M i = 1 I N i , m σ f , i g + σ c , i g + g = 1 G σ s , l = 0 , i g g / N i j , m j σ s , l m 2 = 0 , i m 2 g m 2 g m 2 = m = 1 M i = 1 I g = 1 G N i , m σ s , l = 0 , i g g / N i j , m j σ s , l m 2 = 0 , i m 2 g m 2 g m 2 = g = 1 G σ s , l = 0 , i j g g σ s , l m 2 = 0 , i m 2 g m 2 g m 2 = δ i j i m 2 δ g m 2 g ,
Σ t g t s m 2 = m = 1 M i = 1 I N i , m σ t , i g ( t ) σ s , l m 2 = 0 , i m 2 g m 2 g m 2 = m = 1 M i = 1 I N i , m σ f , i g f + σ c , i g c + g = 1 G σ s , l = 0 , i g g s σ s , l m 2 = 0 , i m 2 g m 2 g m 2 = m = 1 M i = 1 I g = 1 G N i , m σ s , l = 0 , i g g s σ s , l m 2 = 0 , i m 2 g m 2 g m 2 = δ g m 2 g N i m 2 , m m 2 ,
and inserting the results obtained in Equations (60) and (61) into Equation (59) yields the following expression for Equation (59):
2 L n j s m 2 n = N , s = σ s , l = 0 ( 1 ) = δ i j i m 2 V d V 4 π d Ω ψ ( 1 ) , g m 2 r , Ω φ g m 2 r , Ω N i m 2 , m m 2 V d V 4 π d Ω ψ 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + ψ 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω , f o r   j = 1 , , J n , m 2 = 1 , , J σ s , l = 0 .
Additional contributions stem from Equation (159) in [5], which takes on the following particular form:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 2 ) = g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 + g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 , f o r   j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 .
Noting that
Σ s g g ( s ; Ω Ω ) s m 2 = Σ s g g ( s ; Ω Ω ) σ s , l m 2 , i m 2 g m 2 g m 2 = m = 1 M i = 1 I N i , m σ s , i g g ( s ; Ω Ω ) σ s , l m 2 , i m 2 g m 2 g m 2 = m = 1 M i = 1 I l = 0 I S C T N i , m 2 l + 1 σ s , l , i g g P l Ω · Ω σ s , l m 2 , i m 2 g m 2 g m 2 = δ g m 2 g δ g m 2 g N i m 2 , m m 2 2 l m 2 + 1 P l m 2 Ω · Ω ,
Σ s g g ( s ; Ω Ω ) s m 2 = Σ s g g ( s ; Ω Ω ) σ s , l m 2 , i m 2 g m 2 g m 2 = δ g m 2 g δ g m 2 g N i m 2 , m m 2 2 l m 2 + 1 P l m 2 Ω Ω ,
inserting the results obtained in Equations (64) and (65) into Equation (63), using the addition theorem for spherical harmonics in one-dimensional geometry, performing the respective angular integrations, and setting l m 2 = 0 , yields the following expression for Equation (63):
2 L n j s m 2 n = N , s = σ s , l = 0 ( 2 ) = N i m 2 , m m 2 V d V ξ 0 ( 1 ) , g m 2 r ξ 1 , j ; 0 ( 2 ) , g m 2 r + φ 0 g m 2 r ξ 2 , j ; 0 ( 2 ) , g m 2 r , f o r j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 .
Using Equation (167) in [5] in conjunction with the relations 2 L s j t m 2 s j n j t m 2 s m 2 = 2 L n j s m 2 and Σ t g t m 2 t m 2 s m 2 = Σ t g s m 2 yields the following expression:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 3 ) = g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + θ 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g t s m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 ,
where the 2nd-level adjoint functions θ 1 , j ( 2 ) , g , and θ 2 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the 2nd-Level Adjoint Sensitivity System presented previously in Equations (19)–(22). Inserting the results obtained in Equation (61) into Equation (67), yields the following expression:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 3 ) = N i m 2 , m m 2 V d V 4 π d Ω θ 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + θ 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω , f o r j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 .
The contributions stemming from Equation (168) in [5] to the PERP benchmark are computed as follows:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 4 ) = g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω 2 Σ s g g ( s ; Ω Ω ) n j s m 2 + g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 + g = 1 G V d V 4 π d Ω θ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 , f o r   j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 .
Noting that
2 Σ s g g ( s ; Ω Ω ) n j s m 2 = Σ s g g ( s ; Ω Ω ) N i j , m j σ s , l m 2 , i m 2 g m 2 g m 2 = m = 1 M i = 1 I N i , m σ s , i g g ( s ; Ω Ω ) / N i j , m j σ s , l m 2 , i m 2 g m 2 g m 2 = m = 1 M i = 1 I l = 0 I S C T N i , m 2 l + 1 σ s , l , i g g P l Ω · Ω / N i j , m j σ s , l m 2 , i m 2 g m 2 g m 2 = l = 0 I S C T 2 l + 1 σ s , l , i j g g P l Ω · Ω σ s , l m 2 , i m 2 g m 2 g m 2 = δ i j i m 2 δ g m 2 g δ g m 2 g 2 l m 2 + 1 P l m 2 Ω · Ω ,
inserting Equations (64), (65) and (70) into Equation (69), using the addition theorem for spherical harmonics in one-dimensional geometry, performing the respective angular integrations, and setting l m 2 = 0 into the resulting expression yields:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 4 ) = δ i j i m 2 ξ 0 ( 1 ) , g m 2 r φ 0 g m 2 r + N i m 2 , m m 2 V d V ξ 0 ( 1 ) , g m 2 r Θ 1 , j ; 0 ( 2 ) , g m 2 r + φ 0 g m 2 r Θ 2 , j ; 0 ( 2 ) , g m 2 r , f o r j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 ,
where
Θ 1 , j ; 0 ( 2 ) , g r 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ,
Θ 2 , j ; 0 ( 2 ) , g r 4 π d Ω θ 2 , j ( 2 ) , g r , Ω .
Contributions from the fission cross sections are computed by particularizing Equation (177) in [5], in conjunction with the relations 2 L f j t m 2 f j n j t m 2 s m 2 = 2 L n j s m 2 and Σ t g t t m 2 t m 2 s m 2 = Σ t g t s m 2 , to obtain:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 5 ) = g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + u 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g t s m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 ,
where the 2nd-level adjoint functions u 1 , j ( 2 ) , g , and u 2 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the 2nd-Level Adjoint Sensitivity System presented previously in Equations (27)–(30). Replacing the result obtained in Equation (61) into Equation (74) yields the following expression:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 5 ) = N i m 2 , m m 2 V d V 4 π d Ω u 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + u 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω , f o r j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 .
Contributions stemming from particularizing Equation (178) in [5] to the PERP benchmark take on the following form:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 6 ) = g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 + g = 1 G V d V 4 π d Ω u 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 , f o r   j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 .
Inserting the results obtained in Equations (64) and (65) into Equation (76), using the addition theorem for spherical harmonics in one-dimensional geometry, performing the respective angular integrations, and finally setting l m 2 = 0 in the resulting expression yields the following expression for Equation (76):
2 L n j s m 2 n = N , s = σ s , l = 0 ( 6 ) = N i m 2 , m m 2 V d V ξ 0 ( 1 ) , g m 2 r U 1 , j ; 0 ( 2 ) , g m 2 r + φ 0 g m 2 r U 2 , j ; 0 ( 2 ) , g m 2 r , f o r j = 1 , , J ; n m 2 = 1 , , J σ s , l = 0 ,
where
U 1 , j ; 0 ( 2 ) , g r 4 π d Ω u 1 , j ( 2 ) , g r , Ω ,
U 2 , j ; 0 ( 2 ) , g r 4 π d Ω u 2 , j ( 2 ) , g r , Ω .
Contributions stemming from the source are computed by particularizing Equations (204) and (205) in [5] to the PERP benchmark. Particularizing Equation (204) in [5], in conjunction with the relations 2 L q j t m 2 q j n j t m 2 s m 2 = 2 L n j s m 2 and Σ t g t t m 2 t m 2 s m 2 = Σ t g t s m 2 , yields:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 7 ) = g = 1 G V d V 4 π d Ω g 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω Σ t g t s m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 ,
where the 2nd-level adjoint functions g 1 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the 2nd-Level Adjoint Sensitivity System presented previously in Equations (35) and (36). Inserting the result obtained in Equation (61) into Equation (80) yields the following expression:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 7 ) = N i m 2 , m m 2 V d V 4 π d Ω g 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω , f o r j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 .
Particularizing Equation (205) in [5] to the PERP benchmark yields the following contributions:
2 L n j s m 2 n = N , s = σ s , l = 0 ( 8 ) = g = 1 G V d V 4 π d Ω g 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 , f o r j = 1 , , J ; n m 2 = 1 , , J σ s , l = 0 .
Inserting the results obtained in Equations (64) into Equation (82), using the addition theorem for spherical harmonics in one-dimensional geometry, performing the respective angular integrations, and finally setting l m 2 = 0 in the resulting expression yields the following simplified expression for Equation (82):
2 L n j s m 2 n = N , s = σ s , l = 0 ( 8 ) = N i m 2 , m m 2 V d V ξ 0 ( 1 ) , g m 2 r G 1 , j ; 0 ( 2 ) , g m 2 r , f o r j = 1 , , J ; n m 2 = 1 , , J σ s , l = 0 ,
where
G 1 , j ; 0 ( 2 ) , g r 4 π d Ω g 1 , j ( 2 ) , g r , Ω .
Collecting the partial contributions obtained in Equations (62), (66), (68), (71), (75), (77), (81) and (83), yields the following result:
2 L n j s m 2 n = N , s = σ s , l = 0 = i = 1 8 2 L n j s m 2 n = N , s = σ s , l = 0 ( i ) = δ i j i m 2 V d V 4 π d Ω ψ ( 1 ) , g m 2 r , Ω φ g m 2 r , Ω N i m 2 , m m 2 V d V 4 π d Ω ψ 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + ψ 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω + N i m 2 , m m 2 V d V ξ 0 ( 1 ) , g m 2 r ξ 1 , j ; 0 ( 2 ) , g m 2 r + φ 0 g m 2 r ξ 2 , j ; 0 ( 2 ) , g m 2 r N i m 2 , m m 2 V d V 4 π d Ω θ 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + θ 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω + δ i j i m 2 ξ 0 ( 1 ) , g m 2 r φ 0 g m 2 r + N i m 2 , m m 2 V d V ξ 0 ( 1 ) , g m 2 r Θ 1 , j ; 0 ( 2 ) , g m 2 r + φ 0 g m 2 r Θ 2 , j ; 0 ( 2 ) , g m 2 r N i m 2 , m m 2 V d V 4 π d Ω u 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + u 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω + N i m 2 , m m 2 V d V ξ 0 ( 1 ) , g m 2 r U 1 , j ; 0 ( 2 ) , g m 2 r + φ 0 g m 2 r U 2 , j ; 0 ( 2 ) , g m 2 r N i m 2 , m m 2 V d V 4 π d Ω g 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + N i m 2 , m m 2 V d V ξ 0 ( 1 ) , g m 2 r G 1 , j ; 0 ( 2 ) , g m 2 r , f o r j = 1 , , J n ; m 2 = 1 , , J σ s , l = 0 .

3.1.2. Second-Order Sensitivities 2 L n j s m 2 n = N , s = σ s , l 1 , j = 1 , , J n ; m 2 = 1 , , σ s , l 1

For the 2nd-order sensitivities 2 L / n j s m 2 n = N , s = σ s , l 1 , j = 1 , , J n ; m 2 = 1 , , σ s , l 1 , the parameters n j N i j , m j correspond to the isotopic number densities, and the parameters s m 2 σ s , l m 2 , i m 2 g m 2 g m 2 correspond to the l t h -order l 1 scattering cross sections. For this case, the expression for 2 L / n j s m 2 n = N , s = σ s , l 1 is obtained by particularizing Equations (159), (168), (178) and (205) in [5] to the PERP benchmark, which yields,
2 L n j s m 2 n = N , s = σ s , l 1 = g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 + g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 + g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω 2 Σ s g g ( s ; Ω Ω ) n j s m 2 + g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 + g = 1 G V d V 4 π d Ω θ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 + g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 + g = 1 G V d V 4 π d Ω u 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 + g = 1 G V d V 4 π d Ω g 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) s m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ s , l 1 ,
where the 2nd-level adjoint functions ψ 1 , i ( 2 ) , g , ψ 2 , i ( 2 ) , g , θ 1 , i ( 2 ) , g , θ 2 , i ( 2 ) , g , u 1 , i ( 2 ) , g , u 2 , i ( 2 ) , g and g 2 , j ( 2 ) , g for j = 1 , , J n ; g = 1 , , G are the same as those presented in Section 3.1.1, above. Inserting the results obtained in Equations (64), (65) and (70) into Equation (86), using the addition theorem for spherical harmonics in one-dimensional geometry and performing the respective angular integrations, yields the following expression:
2 L n j s m 2 n = N , s = σ s , l 1 = N i m 2 , m m 2 2 l m 2 + 1 V d V ξ l m 2 ( 1 ) , g m 2 r ξ 1 , j ; l m 2 ( 2 ) , g m 2 r + φ l m 2 g m 2 r ξ 2 , j ; l m 2 ( 2 ) , g m 2 r + δ i j i m 2 2 l m 2 + 1 ξ l m 2 ( 1 ) , g m 2 r φ l m 2 g m 2 r + N i m 2 , m m 2 2 l m 2 + 1 V d V ξ l m 2 ( 1 ) , g m 2 r Θ 1 , j ; l m 2 ( 2 ) , g m 2 r + φ l m 2 g m 2 r Θ 2 , j ; l m 2 ( 2 ) , g m 2 r + N i m 2 , m m 2 2 l m 2 + 1 V d V ξ l m 2 ( 1 ) , g m 2 r U 1 , j ; l m 2 ( 2 ) , g m 2 r + φ l m 2 g m 2 r U 2 , j ; l m 2 ( 2 ) , g m 2 r + N i m 2 , m m 2 2 l m 2 + 1 V d V ξ l m 2 ( 1 ) , g m 2 r G 1 , j ; l m 2 ( 2 ) , g m 2 r , f o r j = 1 , , J n ; m 2 = 1 , , J σ s , l 1 ,
where
Θ 1 , j ; l ( 2 ) , g r 4 π d Ω P l Ω θ 1 , j ( 2 ) , g r , Ω ,
Θ 2 , j ; l ( 2 ) , g r 4 π d Ω P l Ω θ 2 , j ( 2 ) , g r , Ω ,
U 1 , j ; l ( 2 ) , g r 4 π d Ω P l Ω u 1 , j ( 2 ) , g r , Ω ,
U 2 , j ; l ( 2 ) , g r 4 π d Ω P l Ω u 2 , j ( 2 ) , g r , Ω ,
G 1 , j ; l ( 2 ) , g r 4 π d Ω P l Ω g 1 , j ( 2 ) , g r , Ω .

3.2. Alternative Path: Computing the Second-Order Sensitivities 2 L α / σ s N

The results computed using the expressions for 2 L α / N σ s obtained in Eqs. (85) and (87) can be verified by obtaining the expressions for the symmetric expression 2 L α / σ s N , the computation of which also requires separate consideration of the zeroth-order scattering cross sections. The two cases involved are as follows:
Case 1: 2 L s j n m 2 s = σ s , l = 0 , n = N , j = 1 , , J σ s , l = 0 ; m 2 = 1 , , J n , where the quantity s j refers to the parameters underlying the 0th-order scattering cross sections while n m 2 refers to the isotopic number densities;
Case 2: 2 L s j n m 2 s = σ s , l 1 , n = N , j = 1 , , σ s , l 1 ; m 2 = 1 , , J n , where s j refers to the parameters underlying the l t h -order ( l 1 ) scattering cross sections and where n m 2 refers to the isotopic number densities.

3.2.1. Second-Order Sensitivities 2 L / s j n m 2 s = σ s , l = 0 , n = N , j = 1 , , J σ s , l = 0 ; m 2 = 1 , , J n

The equations needed for deriving the expression of the 2nd-order mixed sensitivities 2 L / s j n m 2 s = σ s , l = 0 , n = N , j = 1 , , J σ s , l = 0 ; m 2 = 1 , , J n are obtained by particularizing Equations (158), (159), (160), (162), (167), (168), (169) and (171) in [5] to the PERP benchmark. This procedure leads to the following expression:
2 L s j n m 2 s = σ s , l = 0 , n = N = g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω φ g r , Ω 2 Σ t g t s j n m 2 g = 1 G V d V 4 π d Ω ψ 1 , i ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + ψ 2 , i ( 2 ) , g r , Ω φ g r , Ω Σ t g t n m 2 + g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g f n m 2 + g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω ν Σ f g f n m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω + g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω Q g q ; r , Ω n m 2 g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + θ 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g t n m 2 + g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω 2 Σ s g g ( s ; Ω Ω ) s j n m 2 + g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω θ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ν Σ f g f n m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω + g = 1 G V d V 4 π d Ω θ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g f n m 2 + g = 1 G V d V 4 π d Ω θ 2 , j ( 2 ) , g r , Ω Q g q ; r , Ω n m 2 , f o r   j = 1 , , J σ s , l = 0 ; m 2 = 1 , , J n .
In Equation (93), the adjoint functions ψ 1 , j ( 2 ) , g and ψ 2 , j ( 2 ) , g , j = 1 , , J σ s , l = 0 ; g = 1 , , G are the solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (30), (32), (36) and (37) of Part II [2], which are reproduced below for convenient reference:
B g α 0 ψ 1 , j ( 2 ) , g r , Ω = δ g j g N i j , m j φ g r , Ω , j = 1 , , J σ s , l = 0 ; g = 1 , , G ,
ψ 1 , j ( 2 ) , g r d , Ω = 0 , Ω n < 0 ; j = 1 , , J σ s , l = 0 ; g = 1 , , G ,
A ( 1 ) , g α 0 ψ 2 , j ( 2 ) , g r , Ω = δ g j g N i j , m j ψ ( 1 ) , g r , Ω , j = 1 , , J σ s , l = 0 ; g = 1 , , G ,
ψ 2 , j ( 2 ) , g r d , Ω = 0 , Ω n > 0 ; j = 1 , , J σ s , l = 0 ; g = 1 , , G .
The 2nd-level adjoint functions, θ 1 , j ( 2 ) , g and θ 2 , j ( 2 ) , g , j = 1 , , J σ s , l = 0 ; g = 1 , , G , in Equation (93) are solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (46), (48), (51) and (52) of Part II [2], which are reproduced below for convenient reference:
B g α 0 θ 1 , j ( 2 ) , g r , Ω = δ g j g N i j , m j 2 l j + 1 P l j Ω ϕ l g j r , j = 1 , , J σ s ; g = 1 , , G ; l = 0 , , I S C T ,
θ 1 , j ( 2 ) , g r d , Ω = 0 , Ω n < 0 ; j = 1 , , J σ s ; g = 1 , , G ,
A ( 1 ) , g α 0 θ 2 , j ( 2 ) , g r , Ω = δ g j g N i j , m j 2 l j + 1 P l j Ω ξ l j ( 1 ) , g j r , j = 1 , , J σ s ; g = 1 , , G ; l = 0 , , I S C T ,
θ 2 , j ( 2 ) , g r d , Ω = 0 , Ω n > 0 ; j = 1 , , J σ s ; g = 1 , , G .
In Equation (93), the parameters s j and n m 2 correspond to the 0th-order scattering cross sections and the isotopic number densities, denoted as s j σ s , l j = 0 , i j g j g j and n m 2 N i m 2 , m m 2 , respectively. Note that:
2 Σ t g t s j n m 2 = 2 Σ t g t σ s , l j = 0 , i j g j g j N i m 2 , m m 2 = m = 1 M i = 1 I N i , m σ f , i g + σ c , i g + g = 1 G σ s , l = 0 , i g g / N i m 2 , m m 2 σ s , l j = 0 , i j g j g j = m = 1 M i = 1 I g = 1 G N i , m σ s , l = 0 , i g g / N i m 2 , m m 2 σ s , l j = 0 , i j g j g j = g = 1 G σ s , l = 0 , i m 2 g g σ s , l j = 0 , i j g j g j = δ i j i m 2 δ g j g ,
and
2 Σ s g g ( s ; Ω Ω ) s j n m 2 = Σ s g g ( s ; Ω Ω ) σ s , l j = 0 , i j g j g j N i m 2 , m m 2 = m = 1 M i = 1 I N i , m σ s , i g g ( s ; Ω Ω ) / N i m 2 , m m 2 σ s , l j = 0 , i j g j g j = m = 1 M i = 1 I l = 0 I S C T N i , m 2 l + 1 σ s , l , i g g P l Ω · Ω / N i m 2 , m m 2 σ s , l j = 0 , i j g j g j = l = 0 I S C T 2 l + 1 σ s , l , i m 2 g g P l Ω · Ω σ s , l j = 0 , i j g j g j = δ i j i m 2 δ g j g δ g j g 2 l j + 1 P l j Ω · Ω .
Inserting the results obtained in Equations (47)–(52), (102) and (103) into Equation (93) yields the following expression for Equation (93):
2 L s j n m 2 s = σ s , l = 0 , n = N = δ i j i m 2 V d V 4 π d Ω ψ ( 1 ) , g j r , Ω φ g j r , Ω g = 1 G V d V 4 π d Ω ψ 1 , i ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + ψ 2 , i ( 2 ) , g r , Ω φ g r , Ω σ t , i m 2 g + g = 1 G l = 0 I S C T 2 l + 1 V d V ξ 1 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g ξ l ( 1 ) , g r + g = 1 G l = 0 I S C T 2 l + 1 V d V ξ 2 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g φ l g r + g = 1 G V d V χ g ξ 2 , j ; 0 ( 2 ) , g r g = 1 G ν i m 2 g σ f , i m 2 g φ 0 g r + g = 1 G V d V ν i m 2 g σ f , i m 2 g ξ 1 , j ; 0 ( 2 ) , g r g = 1 G χ g ξ 0 ( 1 ) , g r + 1 n m 2 g = 1 G V d V ξ 2 , j ; 0 ( 2 ) , g r Q S F , i m 2 g g = 1 G V d V σ t , i m 2 g 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + θ 2 , j ( 2 ) , g r , Ω φ g r , Ω + δ i j i m 2 2 l j + 1 V d V ξ l j ( 1 ) , g j r φ l j g j r + g = 1 G l = 0 I S C T 2 l + 1 V d V Θ 1 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g ξ l ( 1 ) , g r + g = 1 G l = 0 I S C T 2 l + 1 V d V Θ 2 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g φ l g r + g = 1 G V d V ν i m 2 g σ f , i m 2 g Θ 1 , j ; 0 ( 2 ) , g r g = 1 G χ g ξ 0 ( 1 ) , g r + g = 1 G V d V χ g Θ 2 , j ; 0 ( 2 ) , g r g = 1 G ν i m 2 g σ f , i m 2 g φ 0 g r + 1 n m 2 g = 1 G V d V Θ 2 , j ; 0 ( 2 ) , g r Q S F , i m 2 g , f o r   j = 1 , , J σ s , l = 0 ; m 2 = 1 , , J n .

3.2.2. Second-Order Sensitivities 2 L / s j n m 2 s = σ s , l 1 , n = N , j = 1 , , σ s , l 1 ; m 2 = 1 , , J n

For this case, the parameters s j correspond to the l t h -order ( l 1 ) scattering cross sections, denoted as s j σ s , l j , i j g j g j , and the parameters n m 2 correspond to the isotopic number densities, denoted as n m 2 N i m 2 , m m 2 . Since the l t h -order ( l 1 ) scattering cross sections are not part of the total cross sections, the expression of 2 L / s j n m 2 s = σ s , l 1 , n = N is obtained by particularizing Equations (167), (168), (169) and (171) in [5] to the PERP benchmark, which yields,
2 L s j n m 2 s = σ s , l 1 , n = N = g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + θ 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g t n m 2 + g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω 2 Σ s g g ( s ; Ω Ω ) s j n m 2 + g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω θ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ν Σ f g f n m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω + g = 1 G V d V 4 π d Ω θ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g f n m 2 + g = 1 G V d V 4 π d Ω θ 2 , j ( 2 ) , g r , Ω Q g q ; r , Ω n m 2 , f o r   j = 1 , , J s , l 1 ; m 2 = 1 , , J n ,
where the 2nd-level adjoint functions, θ 1 , j ( 2 ) , g and θ 2 , j ( 2 ) , g , j = 1 , , J s , l 1 ; g = 1 , , G , are the solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (46), (48), (51) and (52) of Part II [2], which have been reproduced, for convenience, in Equations (98)–(101). Inserting the results obtained in Equations (47)–(52) and (103) into Equation (105), using the addition theorem for spherical harmonics in one-dimensional geometry and performing the respective angular integrations yields the following expression:
2 L s j n m 2 s = σ s , l 1 , n = N = g = 1 G V d V σ t , i m 2 g 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + θ 2 , j ( 2 ) , g r , Ω φ g r , Ω + δ i j i m 2 2 l j + 1 V d V ξ l j ( 1 ) , g j r φ l j g j r + g = 1 G l = 0 I S C T 2 l + 1 V d V Θ 1 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g ξ l ( 1 ) , g r + g = 1 G l = 0 I S C T 2 l + 1 V d V Θ 2 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g φ l g r + g = 1 G V d V ν i m 2 g σ f , i m 2 g Θ 1 , j ; 0 ( 2 ) , g r g = 1 G χ g ξ 0 ( 1 ) , g r + g = 1 G V d V χ g Θ 2 , j ; 0 ( 2 ) , g r g = 1 G ν i m 2 g σ f , i m 2 g φ 0 g r + 1 n m 2 g = 1 G V d V Θ 2 , j ; 0 ( 2 ) , g r Q S F , i m 2 g , f o r   j = 1 , , J s , l 1 ; m 2 = 1 , , J n .

3.3. Numerical Results for 2 L α / N σ s

The second-order absolute sensitivities, 2 L α / N σ s , of the leakage response with respect to the isotopic number densities and the scattering cross sections for all isotopes of the PERP benchmark have been computed using Equations (85) and (87), and have been independently verified by computing the symmetric expression 2 L α / σ s N using Equations (104) and (106). For the PERP benchmark, computing the second-order absolute sensitivities, 2 L α / N σ s , using Equations (85) and (87) requires 16 forward and adjoint PARTISN [9] computations to obtain all the required adjoint functions. On the other hand, computing the alternative expression 2 L α / σ s N using Equations (104) and (106), requires 7101 forward and adjoint PARTISN [9] computations to obtain the needed second level adjoint functions. As have been discussed in Part III [3], the reason for needing “only” 7101, rather than 21,600, PARTISN [9] computations is that all of the up-scattering and some of the down-scattering cross sections are zero for the PERP benchmark. Thus, computing 2 L α / N σ s using Equations (85) and (87) is about 450 (≈7101/16) times more efficient than computing 2 L α / σ s N by using Equations (104) and (106).
The dimensions of the matrix 2 L / n j s m 2 , j = 1 , , J ; n m 2 = 1 , , J σ s is J n × J σ s ( = 6 × 21600 ) , where J σ s = G × G × ( I S C T + 1 ) × I = 30 × 30 × 4 × 6 = 21600 . The matrix of 2nd-order relative sensitivities corresponding to 2 L / n j s m 2 , j = 1 , , J ; n m 2 = 1 , , J σ s , denoted as S ( 2 ) N i , m , σ s , l , k g g , is defined as follows:
S ( 2 ) N i , m , σ s , l , k g g 2 L N i , m σ s , l , k g g N i , m σ s , l , k g g L , l = 0 , , 3 ; i , k = 1 , , 6 ; m = 1 , 2 ; g , g = 1 , , 30.
To facilitate the presentation and interpretation of the numerical results, the J n × J σ s ( = 6 × 21600 ) matrix S ( 2 ) N i , m , σ s , l , k g g has first been partitioned into 4 submatrices, namely, S ( 2 ) N i , m , σ s , l = 0 , k g g , S ( 2 ) N i , m , σ s , l = 1 , k g g , S ( 2 ) N i , m , σ s , l = 2 , k g g and S ( 2 ) N i , m , σ s , l = 3 , k g g , corresponding to the scattering orders l = 0 , l = 1 , l = 2 , and l = 3 , respectively. Subsequently, each of the 4 submatrices is further partitioned into I × I = 6 × 6 smaller submatrices, each of dimensions 1 × ( G G ) = 1 × 900 . The results are summarized in Section 3.3.1, Section 3.3.2, Section 3.3.3 and Section 3.3.4, below.

3.3.1. Results for the Relative Sensitivities S ( 2 ) N i , m , σ s , l = 0 , k g g

Table 12 presents the summary of the results for the components of the matrix S ( 2 ) N i , m , σ s , l = 0 , k g g 2 L / N i , m σ s , l = 0 , k g g N i , m σ s , l = 0 , k g g / L , i , k = 1 , , 6 ; m = 1 , 2 ; g , g = 1 , , 30 , for the 2nd-order relative sensitivities of the leakage response with respect to the isotopic number densities and the 0th-order scattering cross sections for all isotopes. Among the J n × J σ s , l = 0 = 6 × 5400 = 32400 elements in the matrix S ( 2 ) N i , m , σ s , l = 0 , k g g , 8844 elements have positive values and 2142 elements have negative values, while the remaining elements are zero. Most of these relative sensitivities are very small. However, 15 elements in the matrix S ( 2 ) N i , m , σ s , l = 0 , k g g have relative sensitivities with absolute values greater than 1.0, as shown in the shaded cells in Table 12. These 15 large values reside in the sub-matrices S ( 2 ) N 1 , 1 , σ s , l = 0 , 1 g g and S ( 2 ) N 1 , 1 , σ s , l = 0 , 6 g g . The value of the largest element of each of the other sub-matrices is positive, involving the 0th-order self-scattering cross sections for the 12th energy group of isotopes 239Pu, 240Pu, 69Ga, 71G, and C, or (occasionally) the 0th-order out-scattering cross section σ s , l = 0 , k = 6 16 17 for isotope 1H. The overall largest value in the matrix S ( 2 ) N i , m , σ s , l = 0 , k g g is S ( 2 ) N 1 , 1 , σ s , l = 0 , k = 1 12 12 = 1.912 .
Additional information regarding the two submatrices in Table 12 that have elements with absolute values greater than 1.0 is as follows:
  • The submatrix S ( 2 ) N 1 , 1 , σ s , l = 0 , 1 g g , g , g = 1 , , 30 , comprises the 2nd-order sensitivities of the leakage response with respect to the isotopic number density and to the 0th-order scattering cross sections of 239Pu. Table 13 presents the 8 relative sensitivities in this submatrix that have values greater than 1.0. All of these sensitivities involve the 0th-order self-scattering cross sections for energy groups g = 7 , , 14 of isotope 239Pu. The largest value in this submatrix is S ( 2 ) N 1 , 1 , σ s , l = 0 , k = 1 12 12 = 1.912 , which involves the 0th-order self-scattering cross sections for the 12th energy group of 239Pu.
  • The submatrix S ( 2 ) N 1 , 1 , σ s , l = 0 , k = 6 g g , g , g = 1 , , 30 , comprising the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of 239Pu and to the 0th-order scattering cross sections of 1H, includes 7 elements that have values greater than 1.0, as listed in Table 14. Most of these 7 relative sensitivities are with respect to the 0th-order in-scattering or out-scattering cross sections. The largest value in this submatrix is S ( 2 ) N 1 , 1 , σ s , l = 0 , k = 1 16 17 = 1.585 , involving the 0th-order out-scattering cross sections for energy groups g = 16 g = 17 of isotope 239Pu.

3.3.2. Results for the Relative Sensitivities S ( 2 ) N i , m , σ s , l = 1 , k g g

Table 15 summarizes the results obtained for the elements of the matrix S ( 2 ) N i , m , σ s , l = 1 , k g g 2 L / N i , m σ s , l = 1 , k g g N i , m σ s , l = 1 , k g g / L , i , k = 1 , , 6 ; m = 1 , 2 ; g , g = 1 , , 30 , which comprises the 2nd-order mixed relative sensitivities of the leakage response with respect to the isotopic number densities and the 1st-order scattering cross sections for all isotopes. Most of these 2nd-order mixed sensitivities are zero, and the non-zero ones are mostly negative. Specifically, the matrix S ( 2 ) N i , m , σ s , l = 1 , k g g , having dimensions J n × J σ s , l = 1 = 6 × 5400 = 32400 , comprises 7772 elements with negative values, 2764 elements with positive values, while the remaining elements are zero. Most of the relative 2nd-order mixed relative sensitivities are very small. Only 8 components have large relative sensitivities with absolute values greater than 1.0, as shown in the shaded sub-matrices S ( 2 ) N 1 , 1 , σ s , l = 1 , 1 g g and S ( 2 ) N 1 , 1 , σ s , l = 1 , 6 g g in Table 15. Also, in the submatrices which have all their elements with absolute values less than 1.0, the value of the largest element of the respective submatrix is negative and involves the 1st-order self-scattering cross sections for the 7th energy group of isotopes 239Pu, 240Pu, 69Ga and 71Ga, or the 12th energy group of isotope C, or the 1st-order out-scattering cross section σ s , l = 1 , k = 6 12 13 of isotope 1H. The overall most negative element in the matrix S ( 2 ) N i , m , σ s , l = 1 , k g g is S ( 2 ) N 1 , 1 , σ s , l = 1 , k = 6 12 12 = 1.386 .
Detailed information regarding the two submatrices in Table 15 comprising elements having absolute values greater than 1.0 is as follows:
  • The sensitivity matrix S ( 2 ) N 1 , 1 , σ s , l = 1 , 1 g g , g , g = 1 , , 30 , comprising the 2nd-order mixed sensitivities of the leakage response with respect to the isotopic number density and the 1st-order scattering cross sections of 239Pu, includes only one element, namely S ( 2 ) N 1 , 1 , σ s , l = 1 , 1 7 7 = 1.245 , which has an absolute value greater than 1.0. This element involves the 1st-order self-scattering cross section for the 7th energy group of 239Pu.
  • The sensitivity matrix S ( 2 ) N 1 , 1 , σ s , l = 1 , 6 g g , g , g = 1 , , 30 , comprising the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of 239Pu and to the 1st-order scattering cross sections of 1H, includes 6 elements that have values greater than 1.0, as listed in Table 16. These 6 large relative sensitivities involve the 1st-order self-scattering or out-scattering cross sections for energy groups g , g = 12 , , 16 of isotope 1H, respectively.

3.3.3. Results for the Relative Sensitivities S ( 2 ) N i , m , σ s , l = 2 , k g g

The sensitivity results in the matrix S ( 2 ) N i , m , σ s , l = 2 , k g g 2 L / N i , m σ s , l = 2 , k g g N i , m σ s , l = 2 , k g g / L , i , k = 1 , , 6 ; m = 1 , 2 ; g , g = 1 , , 30 , comprising the 2nd-order mixed relative sensitivities of the leakage response with respect to the isotopic number densities and the 2nd-order scattering cross sections for all isotopes, are summarized in Table 17. All of the values in this matrix are smaller than 1.0. This is expected for the 2nd-order sensitivities with respect to higher order scattering cross sections. Of the J n × J σ s , l = 2 = 6 × 5400 = 32400 components of S ( 2 ) N i , m , σ s , l = 1 , k g g , 6164 elements are positive, 4426 elements are negative, and the remaining elements are zero. As shown in Table 17, most of the largest absolute values in respective submatrices involve either the 2nd-order self-scattering cross sections for the 7th energy group of isotopes 239Pu, 240Pu, 69Ga and 71G and C, or the 12th energy group of 1H. Also, as shown in Table 17, the largest elements in the respective sub-matrix are all positive, and the vast majority of them are very small. The overall largest element in the matrix S ( 2 ) N i , m , σ s , l = 2 , k g g is S ( 2 ) N 1 , 1 , σ s , l = 2 , k = 6 12 12 = 3.50 × 10 1 .

3.3.4. Results for the Relative Sensitivities S ( 2 ) N i , m , σ s , l = 3 , k g g

Table 18 reports the summary of the results for the 2nd-order mixed relative sensitivities S ( 2 ) N i , m , σ s , l = 3 , k g g 2 L / N i , m σ s , l = 3 , k g g N i , m σ s , l = 3 , k g g / L , i , k = 1 , , 6 ; m = 1 , 2 ; g , g = 1 , , 30 , of the leakage response with respect to the isotopic number densities and the 3rd-order scattering cross sections for all isotopes of the PERP benchmark. Of the J n × J σ s , l = 3 = 6 × 5400 = 32400 components of the matrix S ( 2 ) N i , m , σ s , l = 3 , k g g , 5311 elements have negative values and 5183 elements have positive values, while the remaining elements are zero. As in Table 17, most of the largest absolute values in respective submatrices shown in Table 18 involve the 3rd-order self-scattering cross sections for the 7th energy group of isotopes 239Pu, 240Pu, 69Ga and 71G and C, or the 12th energy group of 1H. All of the values presented in Table 18 are very small; the overall largest element in the matrix S ( 2 ) N i , m , σ s , l = 3 , k g g is S ( 2 ) N 1 , 1 , σ s , l = 3 , 6 12 12 = 7.00 × 10 2 .

4. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the Parameters Underlying the Benchmark’s Isotopic Number Densities and Fission Cross Sections

This Section presents the computation and analysis of the numerical results for the 2nd-order mixed sensitivities 2 L α / N σ f of the leakage response with respect to the isotopic number densities and group-averaged fission microscopic cross sections of all isotopes of the PERP benchmark. Due to symmetry, these 2nd-order mixed sensitivities can also be computed by using the alternative expression 2 L α / σ f N . These two alternative paths are presented in Section 4.1 and Section 4.2, respectively. The numerical results for the 2nd-order mixed sensitivities 2 L α / N σ f have been verified with the results obtained for 2 L α / σ f N , and are presented in Section 4.3.

4.1. Computing the Second-Order Sensitivities 2 L α / N σ f

The equations needed for deriving the expressions of the 2nd-order sensitivities 2 L α / N σ f are obtained by particularizing Equations (158), (160), (167), (169), (177), (179), (204) and (206) in [5] to the PERP benchmark. Specifically, using Equation (158) in [5] in conjunction with the relations 2 L t j t m 2 t j n j t m 2 f m 2 = 2 L n j f m 2 , Σ t g t t m 2 t m 2 f m 2 = Σ t g t f m 2 and 2 Σ t g t t j t m 2 t j n j t m 2 f m 2 = 2 Σ t g t n j f m 2 yields the following expression:
2 L n j f m 2 n = N , f = σ f ( 1 ) = g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω φ g r , Ω 2 Σ t g t n j f m 2 g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + ψ 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g t f m 2 , f o r j = 1 , , J n , m 2 = 1 , , J σ f .
The 2nd-level adjoint functions ψ 1 , j ( 2 ) , g and ψ 2 , j ( 2 ) , g , j = 1 , , J σ f ; g = 1 , , G in Equation (108) are the solutions of the 2nd-LASS presented in Equations (11)–(14). In Equation (108), the parameters n j and f m 2 correspond to the isotopic number densities and microscopic fission cross sections, respectively, and are denoted as n j N i j , m j and f m 2 σ f , i m 2 g m 2 , where the subscripts i m 2 and g m 2 refer to the isotope and energy group associated with the parameter f m 2 , respectively. Noting that
2 Σ t g t n j f m 2 = 2 Σ t g t N i j , m j σ f , i m 2 g m 2 = m = 1 M i = 1 I N i , m σ f , i g + σ c , i g + g = 1 G σ s , l = 0 , i g g / N i j , m j σ f , i m 2 g m 2 = m = 1 M i = 1 I N i , m σ f , i g / N i j , m j σ f , i m 2 g m 2 = σ f , i j g σ f , i m 2 g m 2 = δ i j i m 2 δ g m 2 g ,
Σ t g f m 2 = m = 1 M i = 1 I N i , m σ t , i g σ f , i m 2 g m 2 = δ g m 2 g N i m 2 , m m 2 ,
and inserting the results obtained in Equations (109) and (110) into Equation (108) yields the following expression for Equation (108):
2 L n j f m 2 n = N , f = σ f ( 1 ) = δ i j i m 2 V d V 4 π d Ω ψ ( 1 ) , g m 2 r , Ω φ g m 2 r , Ω N i m 2 , m m 2 V d V 4 π d Ω ψ 1 , i ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + ψ 2 , i ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω , f o r j = 1 , , J n ; m 2 = 1 , , J σ f .
The contributions stemming from Equation (160) in [5] takes on the following particular form:
2 L n j f m 2 n = N , f = σ f ( 2 ) = g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g f m 2 + g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω ν Σ f g f m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω , f o r   j = 1 , , J n ; m 2 = 1 , , J σ f .
Noting that
ν Σ f g f m 2 = m = 1 M i = 1 I N i , m ν σ f i g σ f , i m 2 g m 2 = m = 1 M i = 1 I N i , m ν i g σ f , i g σ f , i m 2 g m 2 = δ g m 2 g N i m 2 , m m 2 ν i m 2 g ,
ν Σ f g f m 2 = m = 1 M i = 1 I N i , m ν σ f i g σ f , i m 2 g m 2 = m = 1 M i = 1 I N i , m ν i g σ f , i g σ f , i m 2 g m 2 = δ g m 2 g N i m 2 , m m 2 ν i m 2 g ,
and inserting the results obtained in Equations (113) and (114) into Equation (112) yields the following expression for Equation (114):
2 L n j f m 2 n = N , f = σ f ( 2 ) = N i m 2 , m m 2 ν i m 2 g m 2 V d V ξ 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g ξ 2 , j ; 0 ( 2 ) , g ( r ) , f o r j = 1 , , J n ; m 2 = 1 , , J σ f .
Using Equation (167) in [5] in conjunction with the relations 2 L s j t m 2 s j n j t m 2 f m 2 = 2 L n j f m 2 and Σ t g t m 2 t m 2 f m 2 = Σ t g f m 2 yields the following expression:
2 L n j f m 2 n = N , f = σ f ( 3 ) = g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + θ 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g f m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ f ,
where the 2nd-level adjoint functions θ 1 , j ( 2 ) , g , and θ 2 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (19)–(22). Inserting the results obtained in Equation (110) into Equation (116) yields the following relation:
2 L n j f m 2 n = N , f = σ f ( 3 ) = N i m 2 , m m 2 V d V 4 π d Ω θ 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + θ 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω , f o r j = 1 , , J n ; m 2 = 1 , , J σ f .
The contributions stemming from Equation (169) in [5] to 2 L / n j f m 2 are obtained in the following form:
2 L n j f m 2 n = N , f = σ f ( 4 ) = g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ν Σ f g f m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω + g = 1 G V d V 4 π d Ω θ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g f m 2 , f o r   j = 1 , , J n ; m 2 = 1 , , J σ f .
Inserting Equations (113) and (114) into Equation (118) yields the following expression for Equation (118):
2 L n j f m 2 n = N , f = σ f ( 4 ) = N i m 2 , m m 2 ν i m 2 g m 2 V d V Θ 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g Θ 2 , j ; 0 ( 2 ) , g ( r ) , f o r j = 1 , , J n ; m 2 = 1 , , J . σ f
Further contributions stem from Equation (177) in [5] in conjunction with the relations 2 L f j t m 2 f j n j t m 2 f m 2 = 2 L n j f m 2 and Σ t g t m 2 t m 2 f m 2 = Σ t g f m 2 , as follows:
2 L n j f m 2 n = N , f = σ f ( 5 ) = g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + u 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g f m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ f ,
where the 2nd-level adjoint functions u 1 , j ( 2 ) , g , and u 2 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the 2nd-Level Adjoint Sensitivity System comprising Equations (27)–(30). Replacing the result obtained in Equation (110) into Equation (120) yields the following relation:
2 L n j f m 2 n = N , f = σ f ( 5 ) = N i m 2 , m m 2 V d V 4 π d Ω u 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + u 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω , f o r j = 1 , , J n ; m 2 = 1 , , J σ f .
Contributions stemming from Equation (179) in [5] to 2 L / n j f m 2 are given by the following relation:
2 L n j f m 2 n = N , f = σ f ( 6 ) = g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g 2 ν Σ f g n j f m 2 + g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω ν Σ f g f m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω + g = 1 G V d V 4 π d Ω u 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g f m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ f ,
where
2 ν Σ f g n j f m 2 = 2 ν Σ f g N i j , m j σ f , i m 2 g m 2 = m = 1 M i = 1 I N i , m ν i g σ f , i g / N i j , m j σ f , i m 2 g m 2 = ν i j g σ f , i j g σ f , i m 2 g m 2 = δ i j i m 2 δ g m 2 g ν i m 2 g .
Inserting the results obtained in Equations (113), (114) and (123) into Equation (122) yields the following expression for Equation (122):
2 L n j f m 2 n = N , f = σ f ( 6 ) = δ i j i m 2 ν i m 2 g m 2 V d V φ 0 g m 2 ( r ) g = 1 G χ g ξ 0 ( 1 ) , g r + N i m 2 , m m 2 ν i m 2 g m 2 V d V U 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g U 2 , j ; 0 ( 2 ) , g ( r ) , f o r j = 1 , , J n ; m 2 = 1 , , J σ f .
Additional contributions stemming from the sources are computed by particularizing Equations (204) and (206) in [5] to the PERP benchmark. The expression obtained by particularizing Equation (204) in [5], in conjunction with the relations 2 L q j t m 2 q j n j t m 2 f m 2 = 2 L n j f m 2 and Σ t g t t m 2 t m 2 f m 2 = Σ t g t f m 2 yields:
2 L n j f m 2 n = N , f = σ f ( 7 ) = g = 1 G V d V 4 π d Ω g 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω Σ t g t f m 2 , f o r j = 1 , , J n ; m 2 = 1 , , J σ f ,
where the 2nd-level adjoint functions g 1 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the 2nd-LASS presented previously in Equations (35) and (36). Inserting the result obtained in Equation (110) into Equation (125) yields the following result:
2 L n j f m 2 n = N , f = σ f ( 7 ) = N i m 2 , m m 2 V d V 4 π d Ω g 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω , f o r j = 1 , , J n ; m 2 = 1 , , J σ f .
Finally, using Equation (206) in [5] to the PERP benchmark yields the following contributions:
2 L n j f m 2 n = N , f = σ f ( 8 ) = g = 1 G V d V 4 π d Ω g 1 , j ( 2 ) , g r , Ω ν Σ f g f f m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω , f o r j = 1 , , J n ; m 2 = 1 , , J σ f .
Using the result obtained in Equation (113) into Equation (127) yields the following expression for Equation (127):
2 L n j f m 2 n = N , f = σ f ( 8 ) = N i m 2 , m m 2 ν i m 2 g m 2 V d V G 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r , f o r j = 1 , , J n ; m 2 = 1 , , J σ f .
Collecting the partial contributions obtained in Equations (111), (115), (117), (119), (121), (124), (126) and (128), yields the following result:
2 L n j f m 2 n = N , f = σ f = i = 1 8 2 L n j f m 2 n = N , f = σ f ( i ) = δ i j i m 2 V d V 4 π d Ω ψ ( 1 ) , g m 2 r , Ω φ g m 2 r , Ω N i m 2 , m m 2 V d V 4 π d Ω ψ 1 , i ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + ψ 2 , i ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω + N i m 2 , m m 2 ν i m 2 g m 2 V d V ξ 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g ξ 2 , j ; 0 ( 2 ) , g ( r ) N i m 2 , m m 2 V d V 4 π d Ω θ 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + θ 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω + N i m 2 , m m 2 ν i m 2 g m 2 V d V Θ 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g Θ 2 , j ; 0 ( 2 ) , g ( r ) N i m 2 , m m 2 V d V 4 π d Ω u 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + u 2 , j ( 2 ) , g m 2 r , Ω φ g m 2 r , Ω + δ i j i m 2 ν i m 2 g m 2 V d V φ 0 g m 2 ( r ) g = 1 G χ g ξ 0 ( 1 ) , g r + N i m 2 , m m 2 ν i m 2 g m 2 V d V U 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g U 2 , j ; 0 ( 2 ) , g ( r ) N i m 2 , m m 2 V d V 4 π d Ω g 1 , j ( 2 ) , g m 2 r , Ω ψ ( 1 ) , g m 2 r , Ω + N i m 2 , m m 2 ν i m 2 g m 2 V d V G 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r , f o r j = 1 , , J n ; m 2 = 1 , , J σ f .

4.2. Alternative Path: Computing the Second-Order Sensitivities 2 L α / σ f N

Due to symmetry of the mixed 2nd-order sensitivities, the results computed using the expression for 2 L α / N σ f obtained in Equation (129) can be verified by obtaining and using the expressions for 2 L α / σ f N . The equations needed for deriving the expression of the 2nd-order mixed sensitivities 2 L α / σ f N are obtained by particularizing Equations (158), (159), (160), (162), (177), (178), (179) and (181) in [5] to the PERP benchmark, which yields the following relation:
2 L f j n m 2 f = σ f , n = N = g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω φ g r , Ω 2 Σ t g t f j n m 2 g = 1 G V d V 4 π d Ω ψ 1 , i ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + ψ 2 , i ( 2 ) , g r , Ω φ g r , Ω Σ t g t n m 2 + g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g f n m 2 + g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω ν Σ f g f n m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω + g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω Q g q ; r , Ω n m 2 g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + u 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g t n m 2 + g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω u 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g 2 ν Σ f g f j n m 2 + g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω ν Σ f g n m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω + g = 1 G V d V 4 π d Ω u 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g n m 2 + g = 1 G V d V 4 π d Ω u 2 , j ( 2 ) , g r , Ω Q g q ; r , Ω n m 2 , f o r   j = 1 , , J σ f ; m 2 = 1 , , J n .
In Equation (130), the adjoint functions ψ 1 , j ( 2 ) , g and ψ 2 , j ( 2 ) , g , j = 1 , , J σ f ; g = 1 , , G are the solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (33), (35), (39) and (40) of Part III [3], which are reproduced below for convenient reference:
B g α 0 ψ 1 , j ( 2 ) , g r , Ω = δ g j g N i j , m j φ g r , Ω , j = 1 , , J σ f ; g = 1 , , G ,
ψ 1 , j ( 2 ) , g r d , Ω = 0 , Ω n < 0 ; j = 1 , , J σ f ; g = 1 , , G ,
A ( 1 ) , g α 0 ψ 2 , j ( 2 ) , g r , Ω = δ g j g N i j , m j ψ ( 1 ) , g r , Ω , j = 1 , , J σ f ; g = 1 , , G ,
ψ 2 , j ( 2 ) , g r d , Ω = 0 , Ω n > 0 ; j = 1 , , J σ f ; g = 1 , , G .
Furthermore, the 2nd-level adjoint functions, u 1 , j ( 2 ) , g and u 2 , j ( 2 ) , g , j = 1 , , J σ f ; g = 1 , , G , which appear in Equation (130) are the solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (19), (21), (29) and (30) of Part III [3], which are reproduced below for convenient reference:
B g α 0 u 1 , j ( 2 ) , g r , Ω = N i j , m j ν i j g j χ g φ 0 g j r , j = 1 , , J σ f ; g = 1 , , G ,
u 1 , j ( 2 ) , g r d , Ω = 0 , Ω n < 0 ; j = 1 , , J σ f ; g = 1 , , G ,
A ( 1 ) , g α 0 u 2 , j ( 2 ) , g r , Ω = δ g j g N i j , m j ν i j g g = 1 G χ g ξ 0 ( 1 ) , g r , j = 1 , , J σ f ; g = 1 , , G ,
u 2 , j ( 2 ) , g r d , Ω = 0 , Ω n > 0 ; j = 1 , , J σ f ; g = 1 , , G .
In Equation (130), the parameters f j and n m 2 correspond to the fission cross sections and the isotopic number densities, denoted as f j σ f , i j g j and n m 2 N i m 2 , m m 2 , respectively. The following results will be used in subsequent derivations:
2 Σ t g t f j n m 2 = 2 Σ t g t σ f , i j g j N i m 2 , m m 2 = m = 1 M i = 1 I N i , m σ f , i g + σ c , i g + g = 1 G σ s , l = 0 , i g g / σ f , i j g j N i m 2 , m m 2 = m = 1 M i = 1 I N i , m σ f , i g / σ f , i j g j N i m 2 , m m 2 = δ g j g N i j , m j N i m 2 , m m 2 = δ i j i m 2 δ g j g ,
2 ν Σ f g f j n m 2 = 2 ν Σ f g σ f , i j g j N i m 2 , m m 2 = m = 1 M i = 1 I N i , m ν i g σ f , i g / σ f , i j g j N i m 2 , m m 2 = δ g j g N i j , m j ν i j g N i m 2 , m m 2 = δ i j i m 2 δ g j g ν i m 2 g .
Inserting the results obtained in Equations (47)–(52), (139) and (140) into Equation (130) and performing the respective angular integrations yields the following expression for Equation (130):
2 L f j n m 2 f = σ f , n = N = δ i j i m 2 V d V 4 π d Ω ψ ( 1 ) , g j r , Ω φ g j r , Ω g = 1 G V d V 4 π d Ω ψ 1 , i ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + ψ 2 , i ( 2 ) , g r , Ω φ g r , Ω σ t , i m 2 g + g = 1 G l = 0 I S C T 2 l + 1 V d V ξ 1 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g ξ l ( 1 ) , g r + g = 1 G l = 0 I S C T 2 l + 1 V d V ξ 2 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g φ l g r + g = 1 G V d V χ g ξ 2 , j ; 0 ( 2 ) , g r g = 1 G ν i m 2 g σ f , i m 2 g φ 0 g r + g = 1 G V d V ν i m 2 g σ f , i m 2 g ξ 1 , j ; 0 ( 2 ) , g r g = 1 G χ g ξ 0 ( 1 ) , g r + 1 n m 2 g = 1 G V d V ξ 2 , j ; 0 ( 2 ) , g r Q S F , i m 2 g g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + u 2 , j ( 2 ) , g r , Ω φ g r , Ω σ t , i m 2 g + g = 1 G l = 0 I S C T 2 l + 1 V d V U 1 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g ξ l ( 1 ) , g r + g = 1 G l = 0 I S C T 2 l + 1 V d V U 2 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g φ l g r + δ i j i m 2 ν i m 2 g j V d V φ 0 g j r g = 1 G χ g ξ 0 ( 1 ) , g r + g = 1 G V d V ν i m 2 g σ f , i m 2 g U 1 , j ; 0 ( 2 ) , g r g = 1 G χ g ξ 0 ( 1 ) , g r + g = 1 G V d V χ g U 2 , j ; 0 ( 2 ) , g r g = 1 G ν i m 2 g σ f , i m 2 g φ 0 g r + 1 n m 2 g = 1 G V d V U 2 , j ; 0 ( 2 ) , g r Q S F , i m 2 g , f o r   j = 1 , , J σ f ; m 2 = 1 , , J n .

4.3. Numerical Results for 2 L α / N σ f

The second-order absolute sensitivities, 2 L α / N σ f , of the leakage response with respect to the isotopic number densities and the fission cross sections for all isotopes of the PERP benchmark have been computed using Equation (129) and have been independently verified by computing 2 L α / σ f N using Equation (141). For the PERP benchmark, computing the second-order absolute sensitivities, 2 L α / N σ f , using Equation (129) requires 16 forward and adjoint PARTISN computations to obtain all the adjoint functions required in Equation (129). On the other hand, computing the alternative expression 2 L α / σ f N using Equation (141), requires 120 forward and adjoint PARTISN computations to obtain the needed second level adjoint functions required in Equation (141). Thus, computing 2 L α / N σ f using Equation (129) is about 8 (≈ 120/16) times more efficient than computing 2 L α / σ f N by using Equation (141).
The matrix 2 L / n j f m 2 , j = 1 , , J ; n m 2 = 1 , , J σ f has dimensions J n × J σ f ( = 6 × 60 ) , where J σ f = G × N f = 30 × 2 , and where N f = 2 denotes the total number of fissionable isotopes in the PERP benchmark. The matrix of 2nd-order relative sensitivities corresponding to 2 L / n j f m 2 , j = 1 , , J ; n m 2 = 1 , , J σ f , is denoted as S ( 2 ) N i , m , σ f , k g and is defined as follows:
S ( 2 ) N i , m , σ f , k g 2 L N i , m σ f , k g N i , m σ f , k g L , i = 1 , , 6 ; m = 1 , 2 ; k = 1 , 2 ; g = 1 , , 30.
Table 19 summarizes the results for the matrix S ( 2 ) N i , m , σ f , k g , i = 1 , , 6 ; k , m = 1 , 2 ; g = 1 , , 30 , which comprises the 2nd-order relative sensitivities of the leakage response with respect to the isotopic number densities and the fission cross sections, for all isotopes. To facilitate the presentation of the numerical results, the J n × J σ f ( = 6 × 60 ) matrix S ( 2 ) N i , m , σ f , k g has been partitioned into J n × N f ( = 6 × 2 ) submatrices, each of dimensions 1 × G = 1 × 30 . The computational results are as follows: (i) all 360 elements of the matrix S ( 2 ) N i , m , σ f , k g have positive values, and (ii) of the 360 elements, 21 elements have very large relative sensitivities, with absolute values greater than 1.0, as shown in shaded cells in the table. All of these large sensitivities involve the fission cross sections of 239Pu and most of them relate to the isotopic number densities of 239Pu or 1H. Of the sensitivities summarized in Table 19, the single largest relative value is S ( 2 ) N 1 , 1 , σ f , 1 12 = 11.735 . The results in Table 19 also indicate that, when the 2nd-order mixed relative sensitivities S ( 2 ) N i , m , σ f , k g involve the isotopic number densities of isotopes 69Ga and 71Ga or the microscopic fission cross sections of isotope 240Pu, their absolute values are all smaller than 1.0. The element with the largest value in the respective submatrix is related to the microscopic fission cross sections for the 12th energy group of isotopes 239Pu and 240Pu.

4.3.1. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ f , 1 g , g = 1 , , 30

The submatrix S ( 2 ) N 1 , 1 , σ f , 1 g , g = 1 , , 30 , comprises the 2nd-order sensitivities of the leakage response with respect to the isotopic number density and the fission cross sections of 239Pu. The 12 elements of this matrix which have values greater than 1.0 are presented in bold in Table 20. These 12 large 2nd-order mixed relative sensitivities involve the fission cross sections of isotope 239Pu for the energy groups g = 6 , , 16 and g = 30 , respectively. The element having the largest value in this submatrix is S ( 2 ) N 1 , 1 , σ f , 1 12 = 11.735 .

4.3.2. Second-Order Relative Sensitivities S ( 2 ) N 2 , 1 , σ f , 1 g , g = 1 , , 30

The submatrix S ( 2 ) N 2 , 1 , σ f , 1 g , g = 1 , , 30 , comprising the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of isotope 2 (240Pu) and the fission cross sections of isotope 1 (239Pu), contains a single large element that has an absolute value greater than 1.0, which is S ( 2 ) N 2 , 1 , σ f , 1 g = 12 = 1.290 .

4.3.3. Second-Order Relative Sensitivities S ( 2 ) N 5 , 2 , σ f , 1 g , g = 1 , , 30

The submatrix S ( 2 ) N 5 , 2 , σ f , 1 g , g = 1 , , 30 , for the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of isotope 5 (C) and the fission cross sections of isotope 1 (239Pu), also contains a single large element that has an absolute value greater than 1.0, namely, S ( 2 ) N 5 , 2 , σ f , 1 g = 12 = 1.184 .

4.3.4. Second-Order Relative Sensitivities S ( 2 ) N 6 , 2 , σ f , 1 g , g = 1 , , 30

The submatrix S ( 2 ) N 6 , 2 , σ f , 1 g , g = 1 , , 30 , comprising the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of isotope 6 (1H) and the fission cross sections of isotope 1 (239Pu), includes 7 elements that have values greater than 1.0, as listed in Table 21. These 7 relative sensitivities are concentrated in the energy groups g = 7 , , 13 of the fission cross sections for isotope 239Pu.

5. Mixed Second-Order Sensitivities of the PERP Total Leakage Response with Respect to the Parameters Underlying the Benchmark’s Isotopic Number Densities and Average Number of Neutrons per Fission

This Section presents the computation and analysis of the numerical results for the 2nd-order mixed sensitivities 2 L α / N ν of the leakage response with respect to the isotopic number densities and the average number of neutrons per fission of all isotopes of the PERP benchmark. These 2nd-order mixed sensitivities can also be computed using the alternative expression 2 L α / ν N . These two alternative paths are presented in Section 5.1 and Section 5.2, respectively.

5.1. Computing the Second-Order Sensitivities 2 L α / N ν

The equations needed for deriving the expressions of the 2nd-order sensitivities 2 L α / N ν are obtained by particularizing Equations (160), (169), (179) and (206) in [5] to the PERP benchmark. Specifically, Equation (160) in [5] takes on the following particular form for the PERP benchmark:
2 L n j f m 2 n = N , f = ν ( 1 ) = g = 1 G V d V 4 π d Ω ψ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g f m 2 + g = 1 G V d V 4 π d Ω ψ 1 , j ( 2 ) , g r , Ω ν Σ f g f m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω , f o r   j = 1 , , J n ; m 2 = J σ f + 1 , , J σ f + J ν ,
where the 2nd-level adjoint functions ψ 1 , j ( 2 ) , g and ψ 2 , j ( 2 ) , g , j = 1 , , J σ f ; g = 1 , , G are the solutions of the 2nd-Level Adjoint Sensitivity System presented previously in Equations (11)–(14). In Equation (143), the parameters n j correspond to the isotopic number densities, denoted as n j N i j , m j , and the parameters f m 2 , m 2 = J σ f + 1 , , J σ f + J ν , denoted as f m 2 ν i m 2 g m 2 , correspond to the respective parameter for average number of neutrons per fission in the vector ν f J σ f + 1 , , f J σ f + J ν ν i = 1 1 , ν i = 1 2 , , ν i = 1 G , , ν i g , , ν i = N f 1 , , ν i = N f G , for i = 1 , , N f ; g = 1 , , G ; J ν = G × N f , as shown in Part I [1] and Appendix A. Noting that
ν Σ f g f m 2 = m = 1 M i = 1 I N i , m ν σ f i g ν i m 2 g m 2 = m = 1 M i = 1 I N i , m ν i g σ f , i g ν i m 2 g m 2 = δ g m 2 g N i m 2 , m m 2 σ f , i m 2 g ,
ν Σ f g f m 2 = m = 1 M i = 1 I N i , m ν σ f i g ν i m 2 g m 2 = m = 1 M i = 1 I N i , m ν i g σ f , i g ν i m 2 g m 2 = δ g m 2 g N i m 2 , m m 2 σ f , i m 2 g ,
and inserting the results obtained in Equations (144) and (145) into Equation (143), yields the following expression for Equation (143):
2 L n j f m 2 n = N , f = ν ( 1 ) = N i m 2 , m m 2 σ f , i m 2 g m 2 V d V ξ 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g ξ 2 , j ; 0 ( 2 ) , g ( r ) , f o r j = 1 , , J n ; m 2 = J σ f + 1 , , J σ f + J ν .
The contributions stemming from Equation (169) in [5] to 2 L / n j f m 2 are:
2 L n j f m 2 n = N , f = ν ( 2 ) = g = 1 G V d V 4 π d Ω θ 1 , j ( 2 ) , g r , Ω ν Σ f g f m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω + g = 1 G V d V 4 π d Ω θ 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g f m 2 , f o r   j = 1 , , J n ; m 2 = J σ f + 1 , , J σ f + J ν ,
where the 2nd-level adjoint functions θ 1 , j ( 2 ) , g , and θ 2 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (19)–(22). Inserting Equations (144) and (145) into Equation (147), yields the following expression for Equation (147):
2 L n j f m 2 n = N , f = ν ( 2 ) = N i m 2 , m m 2 σ f , i m 2 g m 2 V d V Θ 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g Θ 2 , j ; 0 ( 2 ) , g ( r ) , f o r j = 1 , , J n ; m 2 = J σ f + 1 , , J σ f + J ν .
The contributions stemming from Equation (179) in [5] to 2 L / n j f m 2 are given by the following expression:
2 L n j f m 2 n = N , f = ν ( 3 ) = g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g 2 ν Σ f g n j f m 2 + g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω ν Σ f g f m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω + g = 1 G V d V 4 π d Ω u 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g f m 2 , f o r   j = 1 , , J n ; m 2 = J σ f + 1 , , J σ f + J ν ,
where the 2nd-level adjoint functions u 1 , j ( 2 ) , g , and u 2 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (27)–(30). Note that the following relations hold:
2 ν Σ f g n j f m 2 = 2 ν Σ f g N i j , m j ν i m 2 g m 2 = m = 1 M i = 1 I N i , m ν i g σ f , i g / N i j , m j ν i m 2 g m 2 = ν i j g σ f , i j g ν i m 2 g m 2 = δ i j i m 2 δ g m 2 g σ f , i m 2 g .
Inserting the results obtained in Equations (144), (145) and (150) into Equation (149), yields the following expression for Equation (149):
2 L n j f m 2 n = N , f = ν ( 3 ) = δ i j i m 2 σ f , i m 2 g m 2 V d V φ 0 g m 2 ( r ) g = 1 G χ g ξ 0 ( 1 ) , g r + N i m 2 , m m 2 σ f , i m 2 g m 2 V d V U 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g U 2 , j ; 0 ( 2 ) , g ( r ) , f o r   j = 1 , , J n ; m 2 = J σ f + 1 , , J σ f + J ν .
Additional contributions stemming from the sources are computed by particularizing Equation (206) in [5] to the PERP benchmark, which yields the following expression:
2 L n j f m 2 n = N , f = ν ( 4 ) = g = 1 G V d V 4 π d Ω g 1 , j ( 2 ) , g r , Ω ν Σ f g f f m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω , f o r j = 1 , , J n ; m 2 = J σ f + 1 , , J σ f + J ν ,
where the 2nd-level adjoint functions g 1 , j ( 2 ) , g , j = 1 , , J n ; g = 1 , , G , are the solutions of the 2nd-LASS presented previously in Equations (35) and (36). Inserting the results obtained in Equations (144) into Equation (152) yields the following expression for Equation (152):
2 L n j f m 2 n = N , f = ν ( 4 ) = N i m 2 , m m 2 σ f , i m 2 g m 2 V d V G 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r , f o r j = 1 , , J n ; m 2 = J σ f + 1 , , J σ f + J ν .
Collecting the partial contributions obtained in Equations (146), (148), (151) and (153), yields the following result:
2 L n j f m 2 n = N , f = ν = i = 1 4 2 L n j f m 2 n = N , f = ν ( i ) = N i m 2 , m m 2 σ f , i m 2 g m 2 V d V ξ 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g ξ 2 , j ; 0 ( 2 ) , g ( r ) + N i m 2 , m m 2 σ f , i m 2 g m 2 V d V Θ 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g Θ 2 , j ; 0 ( 2 ) , g ( r ) + δ i j i m 2 σ f , i m 2 g m 2 V d V φ 0 g m 2 ( r ) g = 1 G χ g ξ 0 ( 1 ) , g r + N i m 2 , m m 2 σ f , i m 2 g m 2 V d V U 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r + φ 0 g m 2 ( r ) g = 1 G χ g U 2 , j ; 0 ( 2 ) , g ( r ) + N i m 2 , m m 2 σ f , i m 2 g m 2 V d V G 1 , j ; 0 ( 2 ) , g m 2 r g = 1 G χ g ξ 0 ( 1 ) , g r , f o r   j = 1 , , J n ; m 2 = J σ f + 1 , , J σ f + J ν .

5.2. Alternative Path: Computing the Second-Order Sensitivities 2 L α / ν N

Due to symmetry of the mixed 2nd-order sensitivities, the results to be computed using the expressions for 2 L α / N ν obtained in Equation (154) can be verified by obtaining and using the expressions for 2 L α / ν N . The equations needed for deriving the expression of the 2nd-order mixed sensitivities 2 L α / ν N are obtained by particularizing Equations (177), (178), (179) and (181) in [5] to the PERP benchmark, which yields:
2 L f j n m 2 f = ν , n = N = g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + u 2 , j ( 2 ) , g r , Ω φ g r , Ω Σ t g t n m 2 + g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω ψ ( 1 ) , g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω u 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω Σ s g g ( s ; Ω Ω ) n m 2 + g = 1 G V d V 4 π d Ω ψ ( 1 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g 2 ν Σ f g f j n m 2 + g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω ν Σ f g n m 2 g = 1 G 4 π d Ω χ g ψ ( 1 ) , g r , Ω + g = 1 G V d V 4 π d Ω u 2 , j ( 2 ) , g r , Ω g = 1 G 4 π d Ω φ g r , Ω χ g ν Σ f g n m 2 + g = 1 G V d V 4 π d Ω u 2 , j ( 2 ) , g r , Ω Q g q ; r , Ω n m 2 , f o r   j = J σ f + 1 , , J σ f + J ν ; m 2 = 1 , , J n ,
where the 2nd-level adjoint functions, u 1 , j ( 2 ) , g and u 2 , j ( 2 ) , g , j = 1 , , J σ f ; g = 1 , , G , are the solutions of the 2nd-Level Adjoint Sensitivity System presented in Equations (116), (118), (124) and (125) of Part III [3], which are reproduced below for convenient reference:
B g α 0 u 1 , j ( 2 ) , g r , Ω = N i j , m j σ f , i j g j χ g φ 0 g j r , j = J σ f + 1 , , J σ f + J ν ; g = 1 , , G ,
u 1 , j ( 2 ) , g r d , Ω = 0 , Ω n < 0 ; j = J σ f + 1 , , J σ f + J ν ; g = 1 , , G ,
A ( 1 ) , g α 0 u 2 , j ( 2 ) , g r , Ω = δ g j g N i j , m j σ f , i j g j g = 1 G χ g ξ 0 ( 1 ) , g r , j = J σ f + 1 , , J σ f + J ν ; g = 1 , , G ,
u 2 , j ( 2 ) , g r d , Ω = 0 , Ω n > 0 ; j = J σ f + 1 , , J σ f + J ν ; g = 1 , , G .
In Equation (155), the parameters f j and n m 2 correspond to the average number of neutrons per fission and the isotopic number densities, denoted as f j ν i j g j and n m 2 N i m 2 , m m 2 , respectively. The following relations hold:
2 ν Σ f g f j n m 2 = 2 ν Σ f g ν i j g j N i m 2 , m m 2 = m = 1 M i = 1 I N i , m ν i g σ f , i g / ν i j g j N i m 2 , m m 2 = δ g j g N i j , m j σ f , i j g N i m 2 , m m 2 = δ i j i m 2 δ g j g σ f , i m 2 g .
Inserting the results obtained in Equations (47)–(52) and (160) into Equation (155) and performing the respective angular integrations yields the following expression for Equation (155):
2 L f j n m 2 f = ν , n = N = g = 1 G V d V 4 π d Ω u 1 , j ( 2 ) , g r , Ω ψ ( 1 ) , g r , Ω + u 2 , j ( 2 ) , g r , Ω φ g r , Ω σ t , i m 2 g + g = 1 G l = 0 I S C T 2 l + 1 V d V U 1 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g ξ l ( 1 ) , g r + g = 1 G l = 0 I S C T 2 l + 1 V d V U 2 , j ; l ( 2 ) , g r g = 1 G σ s , l , i m 2 g g φ l g r + δ i j i m 2 σ f , i m 2 g j V d V φ 0 g j r g = 1 G χ g ξ 0 ( 1 ) , g r + g = 1 G V d V ν i m 2 g σ f , i m 2 g U 1 , j ; 0 ( 2 ) , g r g = 1 G χ g ξ 0 ( 1 ) , g r + g = 1 G V d V χ g U 2 , j ; 0 ( 2 ) , g r g = 1 G ν i m 2 g σ f , i m 2 g φ 0 g r + 1 n m 2 g = 1 G V d V U 2 , j ; 0 ( 2 ) , g r Q S F , i m 2 g , f o r   j = J σ f + 1 , , J σ f + J ν ; m 2 = 1 , , J n .

5.3. Numerical Results for 2 L α / N ν

The second-order absolute sensitivities, 2 L α / N ν , of the leakage response with respect to the isotopic number densities and the average number of neutrons per fission for all isotopes of the PERP benchmark have been computed using Equation (154) and have been independently verified by computing 2 L α / ν N using Equation (161). Computing the second-order absolute sensitivities 2 L α / N ν using Equation (154) requires 16 forward and adjoint PARTISN computations to obtain all of the required 2nd-level adjoint functions. On the other hand, computing the alternative expression 2 L α / ν N using Equation (161) requires 60 forward and adjoint PARTISN computations to obtain the second-level adjoint functions required in Equation (161). Thus, computing 2 L α / N ν using Equation (154) is about 4 times more efficient than computing 2 L α / ν N by using Equation (161).
The matrix 2 L / n j f m 2 , j = 1 , , J ; n m 2 = J σ f + 1 , , J σ f + J ν has dimensions J n × J ν ( = 6 × 60 ) , where J ν = G × N f = 30 × 2 . The matrix of 2nd-order relative sensitivities corresponding to 2 L / n j f m 2 , j = 1 , , J ; n m 2 = J σ f + 1 , , J σ f + J ν , is denoted as S ( 2 ) N i , m , ν k g and is defined as follows:
S ( 2 ) N i , m , ν k g 2 L N i , m ν k g N i , m ν k g L , i = 1 , , 6 ; m = 1 , 2 ; k = 1 , 2 ; g = 1 , , 30.
Table 22 summarizes the results obtained for the elements of the matrix S ( 2 ) N i , m , ν k g , i = 1 , , 6 ; k , m = 1 , 2 ; g = 1 , , 30 , for the 2nd-order relative sensitivities of the leakage response with respect to the isotopic number densities and the average number of neutrons per fission for all isotopes. To facilitate the presentation of the numerical results, the J n × J ν ( = 6 × 60 ) matrix S ( 2 ) N i , m , ν k g has been partitioned into J n × N f ( = 6 × 2 ) submatrices, each of dimensions 1 × G = 1 × 30 . The computational results have shown that the majority (358 out of 360) of the elements in the matrix S ( 2 ) N i , m , σ f , k g have positive values; only 2 elements have very small negative values, of the order of 10−4 and less. As shown in shaded cells in Table 22, 34 among the 360 components of S ( 2 ) N i , m , ν k g have very large relative sensitivities, with absolute values greater than 1.0. All of these large sensitivities involve the average number of neutrons per fission of isotope 239Pu and relate to the isotopic number densities of isotopes 239Pu, 240Pu, C or 1H, respectively. The overall largest relative value in the matrix S ( 2 ) N i , m , ν k g is S ( 2 ) N 1 , 1 , ν 1 12 = 16.06 . The computed results have also shown that the 2nd-order mixed relative sensitivities S ( 2 ) N i , m , ν k g involving the isotopic number densities of isotopes 69Ga and 71Ga or the average number of neutrons per fission of 240Pu have absolute values smaller than 1.0; the element with the largest value in the respective submatrix is related to the average number of neutrons per fission for the 12th energy group of isotopes 239Pu and 240Pu.

5.3.1. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , ν k = 1 g , g = 1 , , 30

The submatrix S ( 2 ) N 1 , 1 , ν k = 1 g , g = 1 , , 30 comprises the 2nd-order sensitivities of the leakage response with respect to the isotopic number density and the average number of neutrons per fission of 239Pu. Table 23 presents the 13 elements of this submatrix that have values greater than 1.0; these large 2nd-order mixed relative sensitivities are concentrated in energy groups g = 6 , , 17 of the average number of neutrons per fission of isotope 239Pu. The largest value in this submatrix is S ( 2 ) N 1 , 1 , ν 1 12 = 16.06 .

5.3.2. Second-Order Relative Sensitivities S ( 2 ) N 2 , 1 , ν k = 1 g , g = 1 , , 30

The submatrix S ( 2 ) N 2 , 1 , ν k = 1 g , g = 1 , , 30 , comprising the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of isotope 2 (240Pu) and the average number of neutrons per fission of isotope 1 (239Pu), contains 6 large elements that have values greater than 1.0, as listed in Table 24.

5.3.3. Second-Order Relative Sensitivities S ( 2 ) N 5 , 2 , ν k = 1 g , g = 1 , , 30

The submatrix S ( 2 ) N 5 , 2 , σ f , 1 g , g = 1 , , 30 comprises the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of isotope C and the average number of neutrons per fission of isotope 239Pu. Table 25 presents the 6 elements of this submatrix which have values greater than 1.0.

5.3.4. Second-Order Relative Sensitivities S ( 2 ) N 6 , 2 , ν k = 1 g , g = 1 , , 30

The submatrix S ( 2 ) N 6 , 2 , ν k = 1 g , g = 1 , , 30 , comprising the 2nd-order sensitivities of the leakage response with respect to the isotopic number density of 1H and to the average number of neutrons per fission of isotope 239Pu, includes 9 elements that have values greater than 1.0, as listed in Table 26. These 9 relative sensitivities are concentrated in the energy groups g = 7 , , 14 and g = 30 of the average number of neutrons per fission of isotope 239Pu.

6. Discussion and Conclusions

The following conclusions can be drawn from the results for the mixed 2nd-order sensitivities 2 L α / N σ t , 2 L α / N σ s , 2 L α / N σ f and 2 L α / N ν reported in this work:
The 2nd-order mixed sensitivities 2 L α / N σ t are mostly negative. Almost all, namely 1072 out of the J n × J σ t ( = 1080 ) elements in the matrix S ( 2 ) N i , m , σ t , k g , i , k = 1 , , 6 ; m = 1 , 2 ; g = 1 , , 30 of 2nd-order mixed sensitivities have negative values; only 8 elements have very small positive values (e.g., in the order of 10−4 or less). Among the 1080 elements in the matrix, 125 elements have very large relative sensitivities, with absolute values greater than 1.0. Majority of those large sensitivities involve the isotopic number densities of isotopes 239Pu or 1H (namely, N 1 , 1 and N 6 , 2 ) and/or the microscopic total cross sections of isotopes 239Pu or 1H (namely, σ t , 1 g and σ t , 6 g ). In the matrix S ( 2 ) N i , m , σ t , k g , the single largest relative value is S ( 2 ) N 1 , 1 , σ t , 6 30 = 94.91 . Moreover, the element with the most negative value in each of the submatrices mostly involves the microscopic total cross sections for the 12th energy group or the 30th energy group (i.e., σ t , k 12 , k = 1 , , 4 or σ t , k 30 , k = 5 , 6 ) of the respective isotopes.
The 2nd-order mixed relative sensitivities corresponding to the J n × J σ s = 6 × 21600 -dimensional matrix 2 L α / N σ s are generally very small, with a few exceptions. Specifically, 25 of the J n × J σ s = 6 × 21600 elements have relative sensitivities with absolute values greater than 1.0. These 25 large elements belong to the submatrices S ( 2 ) N 1 , 1 , σ s , l = 0 , 1 g g , S ( 2 ) N 1 , 1 , σ s , l = 0 , 6 g g , S ( 2 ) N 1 , 1 , σ s , l = 1 , 1 g g and S ( 2 ) N 1 , 1 , σ s , l = 1 , 6 g g , respectively, and involve the isotopic number density N 1 , 1 of 239Pu and the 0th-order or 1st-order scattering cross sections (namely, σ s , l = 0 , k = 1 g g , σ s , l = 0 , k = 6 g g , σ s , l = 1 , k = 1 g g , σ s , l = 1 , k = 6 g g ) of 239Pu or 1H. These large sensitivities are positive when involving even-order l = 0 , 2 scattering cross sections but are negative when involving odd-order l = 1 , 3 scattering cross sections. Furthermore, the larger the Legendre expansion order l = 0 , , 3 , the smaller the absolute values of the corresponding mixed 2nd-order relative sensitivities. Noteworthy for the 2nd-order mixed sensitivities 2 L α / N σ s is also the observation that for the scattering order l = 0 , most of the largest absolute values of the respective submatrix occur at the 0th-order self-scattering cross sections for the 12th energy group for isotopes 239Pu, 240Pu, 69Ga, 71Ga and C (i.e., σ s , l = 0 , k 12 12 , k = 1 , , 5 ), or the 0th-order out-scattering cross section between energy groups g = 12 g = 13 of isotope 1H (namely, σ s , l = 0 , 6 12 13 ). On the other hand, when the scattering order l = 1 , 2 , 3 , these large sensitivities mostly involve the l th-order self-scattering cross sections for the 7th energy group of isotopes 239Pu, 240Pu, 69Ga, 71Ga and C (namely, σ s , l , k 7 7 , l = 1 , 2 , 3 ; k = 1 , , 5 ), or 12th energy group of isotope 1H (namely, σ s , l , k = 6 12 12 , l = 1 , 2 , 3 ). The overall largest 2nd-order mixed relative sensitivity involving an isotopic number density and a scattering cross section is S ( 2 ) N 1 , 1 , σ s , l = 0 , k = 1 12 12 = 1.912 .
All values of the 2nd-order mixed relative sensitivities S ( 2 ) N i , m , σ f , k g , i = 1 , , 6 ; k , m = 1 , 2 ; g = 1 , , 30 corresponding to the J n × J σ f ( = 6 × 60 ) elements of the matrix 2 L α / N σ f are positive. The matrix S ( 2 ) N i , m , σ f , k g comprises 21 elements which have values greater than 1.0. Most of these elements belong to the submatrices S ( 2 ) N 1 , 1 , σ f , 1 g and S ( 2 ) N 6 , 2 , σ f , 1 g , involving the fission cross sections of 239Pu and the isotopic number densities of 239Pu or 1H. The 2nd-order mixed relative sensitivities involving the isotopic number densities of 240Pu, 69Ga, 71Ga and C (i.e., N 2 , 1 , N 3 , 1 , N 4 , 1 , N 5 , 2 ) or the microscopic fission cross sections σ f , 2 g , g = 1 , , 30 of 240Pu are generally smaller than 1.0. The largest element of the matrix S ( 2 ) N i , m , σ f , k g is S ( 2 ) N 1 , 1 , σ f , 1 12 = 11.735 .
The majority of the elements belonging to the J n × J ν ( = 6 × 60 ) -dimensional matrix S ( 2 ) N i , m , ν k g , i = 1 , , 6 ; k , m = 1 , 2 ; g = 1 , , 30 , of 2nd-order mixed relative sensitivities corresponding to the matrix 2 L α / N ν have positive values. The matrix S ( 2 ) N i , m , ν k g comprises 34 elements that have relative sensitivities greater than 1.0. These large sensitivities occur in the submatrices S ( 2 ) N 1 , 1 , ν k = 1 g , S ( 2 ) N 2 , 1 , ν k = 1 g , S ( 2 ) N 5 , 2 , ν k = 1 g and S ( 2 ) N 6 , 2 , ν k = 1 g , which involve the average number of neutrons per fission of isotope 239Pu (i.e., ν k = 1 g ) and the isotopic number densities of isotopes 239Pu, 240Pu, C or 1H (i.e., N 1 , 1 , N 2 , 1 , N 5 , 2 , N 6 , 2 ), respectively. The remaining 2nd-order mixed relative sensitivities in the matrix S ( 2 ) N i , m , ν k g are all smaller than 1.0. The largest values among these smaller sensitivities involve the average number of neutrons per fission, ν k 12 , k = 1 , 2 , for the 12th energy group of 239Pu and 240Pu. The overall largest 2nd-order mixed relative sensitivities comprised in the matrix S ( 2 ) N i , m , ν k g is S ( 2 ) N 1 , 1 , ν 1 12 = 16.06 .
Subsequent work will report the values and analyze the effects of the 1st-order and unmixed 2nd-order sensitivities of the PERP’s leakage response with respect to the imprecisely known isotopic number densities [13], and the 1st-order sensitivities of the leakage response with respect to the imprecisely known fission spectrum parameters [13]. The overall impact of 1st- and 2nd-order sensitivities on the response uncertainties will also be highlighted [13].

Author Contributions

D.C. conceived and directed the research reported herein, developed the general theory of the second-order comprehensive adjoint sensitivity analysis methodology to compute 1st- and 2nd-order sensitivities of flux functionals in a multiplying system with source, and the uncertainty equations for response moments. R.F. has derived the expressions of the various derivatives with respect to the model parameters to the PERP benchmark and performed all the numerical calculations. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

This work was partially funded by the United States National Nuclear Security Administration’s Office of Defense Nuclear Nonproliferation Research & Development.

Conflicts of Interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Appendix A. Definitions of PERP Model Parameters

As presented in Part I [1], the components of the vector of 1st-order sensitivities of the leakage response with respect to the model parameters, denoted as S ( 1 ) α , was defined as follows:
S ( 1 ) α L α σ t ; L α σ s ; L α σ f ; L α ν ; L α p ; L α q ; L α N .
The symmetric matrix of 2nd-order sensitivities of the leakage response with respect to the model parameters, denoted as S ( 2 ) α , was defined as follows:
S ( 2 ) α [ 2 L α σ t σ t * * * * * * 2 L α σ s σ t 2 L α σ s σ s * * * * * 2 L α σ f σ t 2 L α σ f σ s 2 L α σ f σ f * * * * 2 L α ν σ t 2 L α ν σ s 2 L α ν σ f 2 L α ν ν * * * 2 L α p σ t 2 L α p σ s 2 L α p σ f 2 L α p ν 2 L α p p * * 2 L α q σ t 2 L α q σ s 2 L α q σ f 2 L α q ν 2 L α q p 2 L α q q * 2 L α N σ t 2 L α N σ s 2 L α N σ f 2 L α N ν 2 L α N p 2 L α N q 2 L α N N ] .
As defined in Equation (1), the vector α σ t ; σ s ; σ f ; ν ; p ; q ; N denotes the “vector of imprecisely known model parameters”, with vector-components σ t , σ s , σ f , ν , p , q and N , comprising the various model parameters for the microscopic total cross sections, scattering cross sections, fission cross sections, average number of neutrons per fission, fission spectra, sources, and isotopic number densities, which have been described in Part I [1]. For easy referencing, the definitions of these model parameters will be recalled in the remainder of this Appendix A.
The total cross section Σ t g for energy group g , g = 1 , , G , is computed for the PERP benchmark using the following expression:
Σ t g = m = 1 M = 2 Σ t , m g ; Σ t , m g = i I N i , m σ t , i g = i I N i , m σ f , i g + σ c , i g + g = 1 G σ s , l = 0 , i g g , m = 1 , 2 ,
where m denotes the materials in the PERP benchmark; σ f , i g and σ c , i g denote, respectively, the tabulated group microscopic fission and neutron capture cross sections for group g , g = 1 , , G . Other nuclear reactions are negligible in the PERP benchmark. As discussed in Part I [1], the total cross section Σ t g Σ t g t will depend on the vector of parameters t , which is defined as follows:
t t 1 , , t J t t 1 , , t J σ t ; n 1 , , n J n σ t ; N , J t = J σ t + J n ,
where
N n 1 , , n J n N 1 , 1 , N 2 , 1 , N 3 , 1 , N 4 , 1 , N 5 , 2 , N 6 , 2 , J n = 6 ,
σ t t 1 , , t J σ t σ t , i = 1 1 , σ t , i = 1 2 , , σ t , i = 1 G , , σ t , i g , , σ t , i = I 1 , , σ t , i = I G , i = 1 , , I = 6 ; g = 1 , , G = 30 ; J σ t = I × G .
In Equations (A4) through (A6), the dagger denotes “transposition,” σ t , i g denotes the microscopic total cross section for isotope i and energy group g , N i , m denotes the respective isotopic number density, and J n denotes the total number of isotopic number densities in the model. Thus, the vector t comprises a total of J t = J σ t + J n = 30 × 6 + 6 = 186 imprecisely known “model parameters” as its components.
The scattering transfer cross section Σ s g g Ω Ω from energy group g , g = 1 , , G into energy group g , g = 1 , , G , is computed using the finite Legendre polynomial expansion of order I S C T = 3 :
Σ s g g Ω Ω = m = 1 M = 2 Σ s , m g g Ω Ω , Σ s , m g g Ω Ω i = 1 I = 6 N i , m l = 0 I S C T = 3 2 l + 1 σ s , l , i g g P l Ω Ω , m = 1 , 2 ,
where σ s , l , i g g denotes the l -th order Legendre-expanded microscopic scattering cross section from energy group g into energy group g for isotope i . In view of Equation (A7), the scattering cross section Σ s g g Ω Ω Σ s g g s ; Ω Ω depends on the vector of parameters s , which is defined as follows:
s s 1 , , s J s s 1 , , s J σ s ; n 1 , , n J n σ s ; N , J s = J σ s + J n ,
σ s s 1 , , s J σ s σ s , l = 0 , i = 1 g = 1 g = 1 , σ s , l = 0 , i = 1 g = 2 g = 1 , , σ s , l = 0 , i = 1 g = G g = 1 , σ s , l = 0 , i = 1 g = 1 g = 2 , σ s , l = 0 , i = 1 g = 2 g = 2 , , σ s , l , i g g , , σ s , I S C T , i = I G G , f o r l = 0 , , I S C T ; i = 1 , , I ; g , g = 1 , , G ; J σ s = G × G × I × I S C T + 1 .
The expressions in Equations (A7) and (A3) indicate that the zeroth order (i.e., l = 0 ) scattering cross sections must be considered separately from the higher order (i.e., l 1 ) scattering cross sections, since the former contribute to the total cross sections, while the latter do not. Therefore, the total number of zeroth-order scattering cross section comprise in σ s is denoted as J σ s , l = 0 , where J σ s , l = 0 = G × G × I ; and the total number of higher order (i.e., l 1 ) scattering cross sections comprised in σ s is denoted as J σ s , l 1 , where J σ s , l 1 = G × G × I × I S C T , with J σ s , l = 0 + J σ s , l 1 = J σ s . Thus, the vector s comprises a total of J σ s + J n = 30 × 30 × 6 × 3 + 1 + 6 = 21606 imprecisely known components (“model parameters”).
The transport code PARTISN [9] computes the quantity ν Σ f g using directly the quantities ν σ f , i g , which are provided in data files for each isotope i , and energy group g , as follows
ν Σ f g = m = 1 M = 2 ν Σ f m g ; ν Σ f m g = i = 1 I = 6 N i , m ν σ f i g , m = 1 , 2.
In view of Equation (A10), the quantity ν Σ f g ν Σ f g f ; r depends on the vector of parameters f , which is defined as follows:
f f 1 , , f J σ f ; f J σ f + 1 , , f J σ f + J ν ; f J σ f + J ν + 1 , , f J f σ f ; ν ; N , J f = J σ f + J ν + J n ,
where
σ f σ f , i = 1 1 , σ f , i = 1 2 , , σ f , i = 1 G , , σ f , i g , , σ f , i = N f 1 , , σ f , i = N f G f 1 , , f J σ f , i = 1 , , N f ; g = 1 , , G ; J σ f = G × N f ,
ν ν i = 1 1 , ν i = 1 2 , , ν i = 1 G , , ν i g , , ν i = N f 1 , , ν i = N f G f J σ f + 1 , , f J σ f + J ν , i = 1 , , N f ; g = 1 , , G ; J ν = G × N f ,
and where σ f , i g denotes the microscopic fission cross section for isotope i and energy group g , ν i g denotes the average number of neutrons per fission for isotope i and energy group g , and N f denotes the total number of fissionable isotopes. For the purposes of sensitivity analysis, the quantity ν i g , can be obtained by using the relation ν f , i g = ν σ f , i g / σ f , i g , where the isotopic fission cross sections σ f , i g are available in data files for computing reaction rates.
The quantity χ g in Equation (3) quantifies the material fission spectrum in energy group g , and is defined in PARTISN [9] as follows:
χ g i = 1 N f χ i g N i , m g = 1 G ν σ f i g f i g i = 1 N f N i , m g = 1 G ν σ f i g f i g , w i t h g = 1 G χ i g = 1 ,
where the quantity χ i g denotes the isotopic fission spectrum in energy group g , while the quantity f i g denotes the corresponding spectrum weighting function.

References

  1. Cacuci, D.G.; Fang, R.; Favorite, J.A. Comprehensive second-order adjoint sensitivity analysis methodology (2nd-ASAM) applied to a subcritical experimental reactor physics benchmark: I. Effects of imprecisely known microscopic total and capture cross sections. Energies 2019, 12, 4219. [Google Scholar]
  2. Fang, R.; Cacuci, D.G. Comprehensive second-order adjoint sensitivity analysis methodology (2nd-ASAM) applied to a subcritical experimental reactor physics benchmark: II. Effects of imprecisely known microscopic scattering cross sections. Energies 2019, 12, 4114. [Google Scholar]
  3. Cacuci, D.G.; Fang, R.; Favorite, J.A.; Badea, M.C.; di Rocco, F. Comprehensive second-order adjoint sensitivity analysis methodology (2nd-ASAM) applied to a subcritical experimental reactor physics benchmark: III. Effects of imprecisely known microscopic fission cross sections and average number of neutrons per fission. Energies 2019, 12, 4100. [Google Scholar]
  4. Fang, R.; Cacuci, D.G. Comprehensive second-order adjoint sensitivity analysis methodology (2nd-ASAM) applied to a subcritical experimental reactor physics benchmark: IV. Effects of imprecisely known source parameters. Energies 2020, 13, 1431. [Google Scholar]
  5. Cacuci, D.G. Application of the second-order comprehensive adjoint sensitivity analysis methodology to compute 1st-and 2nd-order sensitivities of flux functionals in a multiplying system with source. Nucl. Sci. Eng. 2019, 193, 555–600. [Google Scholar] [CrossRef] [Green Version]
  6. Cacuci, D.G. Second-order sensitivities of a general functional of the forward and adjoint flues in a multiplying nuclear system with source. Nucl. Eng. Des. 2019, 344, 83–106. [Google Scholar] [CrossRef]
  7. Cacuci, D.G. Second-order adjoint sensitivity analysis of a general ratio of functionals of the forward and adjoint fluxes in a multiplying nuclear system with source. Ann. Nucl. Energy 2020, 135, 106956. [Google Scholar] [CrossRef]
  8. Valentine, T.E. Polyethylene-Reflected Plutonium Metal Sphere Subcritical Noise Measurements, SUB-PU-METMIXED-001. In International Handbook of Evaluated Criticality Safety Benchmark Experiments; NEA/NSC/DOC(95)03/I-IX; report NEA/NSC/DOC(95)03/I, OECD-NEA (2008); Organization for Economic Co-operation and Development, Nuclear Energy Agency: Paris, France, 2008. [Google Scholar]
  9. Alcouffe, R.E.; Baker, R.S.; Dahl, J.A.; Turner, S.A.; Ward, R. PARTISN: A Time-Dependent, Parallel Neutral Particle Transport Code System; LA-UR-08-07258 (2008); Los Alamos National Laboratory: Los Alamos, NM, USA, 2008.
  10. Wilson, W.B.; Perry, R.T.; Shores, E.F.; Charlton, W.S.; Parish, T.A.; Estes, G.P.; Brown, T.H.; Arthur, E.D.; Bozoian, M.; England, T.R.; et al. SOURCES4C: A Code for Calculating (α,n), Spontaneous Fission, and Delayed Neutron Sources and Spectra. In Proceedings of the 12th Biennial Topical Meeting of the Radiation Protection and Shielding Division of the American Nuclear Society, Santa Fe, NM, USA, 14–18 April 2002. [Google Scholar]
  11. Conlin, J.L.; Parsons, D.K.; Gardiner, S.J.; Gray, M.G.; Lee, M.B.; White, M. MENDF71X: Multigroup Neutron Cross-Section Data Tables Based upon ENDF/B-VII.1X. In Los Alamos National Laboratory Report; LA-UR-15-29571 (October 7, 2013); Los Alamos National Laboratory: Los Alamos, NM, USA, 2013. [Google Scholar]
  12. Chadwick, M.B.; Herman, M.; Obložinský, P.; Dunn, M.; Danon, Y.; Kahler, A.; Smith, D.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; et al. ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nucl. Data Sheets 2011, 112, 2887–2996. [Google Scholar] [CrossRef]
  13. Cacuci, D.G.; Fang, R.; Favorite, J.A. Comprehensive second-order adjoint sensitivity analysis methodology (2nd-ASAM) applied to a subcritical experimental reactor physics benchmark: VI. Overall impact of 1st-and 2nd-order sensitivities on response uncertainties. Energies 2020, 13, 1674. [Google Scholar]
Table 1. Dimensions and material composition of the PERP benchmark.
Table 1. Dimensions and material composition of the PERP benchmark.
MaterialsIsotopesWeight FractionDensity (g/cm3)Zones
Material 1
(plutonium metal)
Isotope 1 (239Pu)9.3804 × 10−119.6Material 1 is assigned to zone 1, which has a radius of 3.794 cm.
Isotope 2 (240Pu)5.9411 × 10−2
Isotope 3 (69Ga)1.5152 × 10−3
Isotope 4 (71Ga)1.0346 × 10−3
Material 2
(polyethylene)
Isotope 5 (C)8.5630 × 10−10.95Material 2 is assigned to zone 2, which has an inner radius of 3.794 cm and an outer radius of 7.604 cm.
Isotope 6 (1H)1.4370 × 10−1
Table 2. Summary presentation of the matrix S ( 2 ) N i , m , σ t , k g , i , k = 1 , , 6 ; m = 1 , 2 ; g = 1 , , 30
Table 2. Summary presentation of the matrix S ( 2 ) N i , m , σ t , k g , i , k = 1 , , 6 ; m = 1 , 2 ; g = 1 , , 30
k = 1 ( 239 Pu ) k = 2 ( 240 Pu ) k = 3 ( 69 Ga ) k = 4 ( 71 Ga ) k = 5 ( C ) k = 6 ( 1 H )
i = 1
(239Pu)
S ( 2 ) N 1 , 1 , σ t , 1 g
18 elements
with absolute values >1.0
S ( 2 ) N 1 , 1 , σ t , 2 g
1 element
with absolute value >1.0
S ( 2 ) N 1 , 1 , σ t , 3 g
Min. value
= −4.51 × 10−2
at g = 12
S ( 2 ) N 1 , 1 , σ t , 4 g
Min. value
= −3.06 × 10−2
at g = 12
S ( 2 ) N 1 , 1 , σ t , 5 g
12 elements
with absolute value >1.0
S ( 2 ) N 1 , 1 , σ t , 6 g
22 elements
with absolute values >1.0
i = 2
(240Pu)
S ( 2 ) N 2 , 1 , σ t , 1 g
10 elements
with absolute values >1.0
S ( 2 ) N 2 , 1 , σ t , 2 g
Min. value
= −2.05 × 10−1
at g = 12
S ( 2 ) N 2 , 1 , σ t , 3 g
Min. value
= −5.45 × 10−3
at g = 12
S ( 2 ) N 2 , 1 , σ t , 4 g
Min. value
= −3.70 × 10−3
at g = 12
S ( 2 ) N 2 , 1 , σ t , 5 g
1 element
with absolute value >1.0
S ( 2 ) N 2 , 1 , σ t , 6 g
9 elements
with absolute values >1.0
i = 3
(69Ga)
S ( 2 ) N 3 , 1 , σ t , 1 g
Min. value
= −7.14 × 10−3
at g = 12
S ( 2 ) N 3 , 1 , σ t , 2 g
Min. value
= −4.52 × 10−4
at g = 12
S ( 2 ) N 3 , 1 , σ t , 3 g
Min. value
= −3.78 × 10−3
at g = 12
S ( 2 ) N 3 , 1 , σ t , 4 g
Min. value
= −1.40 × 10−5
at g = 13
S ( 2 ) N 3 , 1 , σ t , 5 g
Min. value
= −3.06 × 10−3
at g = 30
S ( 2 ) N 3 , 1 , σ t , 6 g
Min. value
= −3.66 × 10−2
at g = 30
i = 4
(71Ga)
S ( 2 ) N 4 , 1 , σ t , 1 g
Min. value
= −4.51 × 10−3
at g = 12
S ( 2 ) N 4 , 1 , σ t , 2 g
Min. value
= −2.85 × 10−4
at g = 12
S ( 2 ) N 4 , 1 , σ t , 3 g
Min. value
= −1.32 × 10−5
at g = 13
S ( 2 ) N 4 , 1 , σ t , 4 g
Min. value
= −2.56 × 10−3
at g = 12
S ( 2 ) N 4 , 1 , σ t , 5 g
Min. value
= −1.95 × 10−3
at g = 30
S ( 2 ) N 4 , 1 , σ t , 6 g
Min. value
= −2.33 × 10−2
at g = 30
i = 5
(C)
S ( 2 ) N 5 , 2 , σ t , 1 g
9 elements
with absolute values >1.0
S ( 2 ) N 5 , 2 , σ t , 2 g
Min. value
= −1.14 × 10−1
at g = 12
S ( 2 ) N 5 , 2 , σ t , 3 g
Min. value
= −5.13 × 10−3
at g = 12
S ( 2 ) N 5 , 2 , σ t , 4 g
Min. value
= −3.51 × 10−3
at g = 22
S ( 2 ) N 5 , 2 , σ t , 5 g
1 element
with absolute value >1.0
S ( 2 ) N 5 , 2 , σ t , 6 g
11 elements
with absolute values >1.0
i = 6
(1H)
S ( 2 ) N 6 , 2 , σ t , 1 g
11 elements
with absolute values >1.0
S ( 2 ) N 6 , 2 , σ t , 2 g
Min. value
= −1.83 × 10−1
at g = 12
S ( 2 ) N 6 , 2 , σ t , 3 g
Min. value
= −8.21 × 10−3
at g = 12
S ( 2 ) N 6 , 2 , σ t , 4 g
Min. value
= −6.23 × 10−3
at g = 22
S ( 2 ) N 6 , 2 , σ t , 5 g
1 element
with absolute value >1.0
S ( 2 ) N 6 , 2 , σ t , 6 g
19 elements
with absolute values >1.0
Table 3. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ t , 1 g , g = 1 , , 30 .
Table 3. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ t , 1 g , g = 1 , , 30 .
gRelative SensitivitiesgRelative Sensitivities
1−0.00516−10.430
2−0.00917−4.783
3−0.02618−2.885
4−0.12219−2.242
5−0.62120−1.883
6−1.79521−1.631
7−10.30722−1.168
8−9.44023−0.934
9−10.95124−0.597
10−10.97825−0.687
11−10.06426−0.732
12−17.17227−0.219
13−15.13828−0.044
14−12.62729−0.392
15−9.21730−5.241
Table 4. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ t , 5 g , g = 1 , , 30 .
Table 4. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ t , 5 g , g = 1 , , 30 .
gRelative SensitivitiesgRelative Sensitivities
1−4.720 × 10−616−2.034
2−2.276 × 10−517−1.657
3−1.017 × 10−418−1.441
4−6.664 × 10−419−1.315
5−7.945 × 10−320−1.219
6−0.01921−1.136
7−0.21822−1.040
8−0.32823 −0.962
9 −0.332 24 −0.870
10 −0.387 25 −0.824
11 −0.439 26 −0.758
12−1.11827 −0.674
13−1.36328 −0.623
14−1.40229 −0.605
15−1.24530−7.952
Table 5. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ t , 6 g , g = 1 , , 30 .
Table 5. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ t , 6 g , g = 1 , , 30 .
gRelative SensitivitiesgRelative Sensitivities
1−4.001 × 10−616−11.421
2−2.325 × 10−517−11.674
3−1.087 × 10−418−11.427
4−8.747 × 10−419−10.979
5−7.585 × 10−320−10.380
6−0.04021−9.744
7−0.44722−8.947
8−0.64623−8.287
9−1.00124−7.499
10−1.25025−7.115
11−1.47826−6.559
12−3.69627−5.860
13−4.69328−5.479
14−5.37929−5.490
15−5.57730−94.909
Table 6. Second-Order Relative Sensitivities S ( 2 ) N 2 , 1 , σ t , 1 g , g = 1 , , 30 .
Table 6. Second-Order Relative Sensitivities S ( 2 ) N 2 , 1 , σ t , 1 g , g = 1 , , 30 .
gRelative SensitivitiesgRelative Sensitivities
1−4.881 × 10−416−1.136
2−9.701 × 10−417−0.525
3−2.796 × 10−318−0.320
4−0.01319−0.254
5−0.06820−0.216
6−0.19821−0.190
7−1.14822−0.137
8−1.05223−0.106
9−1.22124−0.067
10−1.22325−0.084
11−1.12126−0.090
12−1.91427−0.005
13−1.676280.0002
14−1.38629−0.049
15−1.00730−0.639
Table 7. Second-Order Relative Sensitivities S ( 2 ) N 2 , 1 , σ t , 6 g , g = 1 , , 30 .
Table 7. Second-Order Relative Sensitivities S ( 2 ) N 2 , 1 , σ t , 6 g , g = 1 , , 30 .
gRelative SensitivitiesgRelative Sensitivities
1−4.446 × 10−616−1.553
2−1.222 × 10−517−1.568
3−4.406 × 10−518−1.526
4−2.817 × 10−419−1.463
5−1.977 × 10−320−1.381
6−8.680 × 10−321−1.295
7−0.08322−1.189
8−0.10723−1.099
9−0.16224−0.996
10−0.20125−0.944
11−0.23426−0.868
12−0.56327−0.763
13−0.68528−0.730
14−0.76229−0.740
15−0.77330−12.741
Table 8. Second-Order Relative Sensitivities S ( 2 ) N 5 , 2 , σ t , 1 g , g = 1 , , 30 .
Table 8. Second-Order Relative Sensitivities S ( 2 ) N 5 , 2 , σ t , 1 g , g = 1 , , 30 .
gRelative SensitivitiesgRelative Sensitivities
1−4.471 × 10−416−1.177
2−8.863 × 10−417−0.593
3−2.548 × 10−318−0.385
4−0.01219−0.306
5−0.06120−0.257
6−0.17821−0.223
7−1.04422−0.161
8−0.98223−0.129
9−1.14624−0.082
10−1.14325−0.096
11−1.04726−0.100
12−1.80327−0.027
13−1.61328−0.005
14−1.36029−0.055
15−1.00430−0.761
Table 9. Second-Order Relative Sensitivities S ( 2 ) N 5 , 2 , σ t , 6 g , g = 1 , , 30 .
Table 9. Second-Order Relative Sensitivities S ( 2 ) N 5 , 2 , σ t , 6 g , g = 1 , , 30 .
gRelative SensitivitiesgRelative Sensitivities
1−3.183 × 10−616−1.665
2−8.920 × 10−617−1.676
3−3.198 × 10−518−1.626
4−2.007 × 10−419−1.557
5−1.438 × 10−320−1.471
6−6.575 × 10−321−1.383
7−0.07022−1.273
8−0.10223−1.183
9−0.16124−1.076
10−0.20025−1.024
11−0.23226−0.947
12−0.56727−0.850
13−0.71528−0.801
14−0.81229−0.804
15−0.82730−14.695
Table 10. Second-Order Relative Sensitivities S ( 2 ) N 6 , 2 , σ t , 1 g , g = 1 , , 30 .
Table 10. Second-Order Relative Sensitivities S ( 2 ) N 6 , 2 , σ t , 1 g , g = 1 , , 30 .
gRelative SensitivitiesgRelative Sensitivities
1−7.340 × 10−416−1.787
2−1.456 × 10−317 −0.892
3−4.186 × 10−318 −0.597
4−0.02019 −0.496
5−0.10120 −0.431
6−0.29321 −0.386
7−1.69722 −0.286
8−1.55423 −0.235
9−1.80824 −0.153
10−1.82125−0.183
11−1.68026 −0.196
12−2.88427 −0.055
13−2.54228 −0.011
14−2.11429 −0.114
15−1.54630−1.933
Table 11. Second-Order Relative Sensitivities S ( 2 ) N 6 , 2 , σ t , 6 g , g = 1 , , 30 .
Table 11. Second-Order Relative Sensitivities S ( 2 ) N 6 , 2 , σ t , 6 g , g = 1 , , 30 .
gRelative SensitivitiesgRelative Sensitivities
1−9.518 × 10−616−3.558
2−2.606 × 10−517−3.679
3−9.353 × 10−518−3.656
4−5.963 × 10−419−3.574
5−4.196 × 10−420−3.440
6−0.01821−3.296
7−0.16922−3.102
8−0.22023−2.937
9−0.33224−2.730
10−0.41525−2.630
11−0.48926−2.476
12−1.19027−2.272
13−1.46528−2.170
14−1.65929−2.176
15−1.72430−47.398
Table 12. Summary presentation of the matrix S ( 2 ) N i , m , σ s , l = 0 , k g g , for 2nd-order relative sensitivities of the leakage response with respect to the isotopic number densities and the 0th-order l = 0 scattering cross sections for all isotopes.
Table 12. Summary presentation of the matrix S ( 2 ) N i , m , σ s , l = 0 , k g g , for 2nd-order relative sensitivities of the leakage response with respect to the isotopic number densities and the 0th-order l = 0 scattering cross sections for all isotopes.
k = 1 ( 239 Pu ) k = 2 ( 240 Pu ) k = 3 ( 69 Ga ) k = 4 ( 71 Ga ) k = 5 ( C ) k = 6 ( 1 H )
i = 1
(239Pu)
S ( 2 ) N 1 , 1 , σ s , l = 0 , 1 g g
8 elements
with absolute values >1.0
S ( 2 ) N 1 , 1 , σ s , l = 0 , 2 g g
Max. value
= 1.18 × 10−1
g’ = 12, g = 12
S ( 2 ) N 1 , 1 , σ s , l = 0 , 3 g g
Max. value
= 6.80 × 10−3
g’ = 12, g = 12
S ( 2 ) N 1 , 1 , σ s , l = 0 , 4 g g
Max. value
= 4.36 × 10−3
g’ = 12, g = 12
S ( 2 ) N 1 , 1 , σ s , l = 0 , 5 g g
Max. value
= 8.70 × 10−1
g’ = 12, g = 12
S ( 2 ) N 1 , 1 , σ s , l = 0 , 6 g g
7 elements
with absolute values >1.0
i = 2
(240Pu)
S ( 2 ) N 2 , 1 , σ s , l = 0 , 1 g g
Max. value
= 2.02 × 10−1
g’ = 12, g = 12
S ( 2 ) N 2 , 1 , σ s , l = 0 , 2 g g
Max. value
= 2.23 × 10−2
g’ = 12, g = 12
S ( 2 ) N 2 , 1 , σ s , l = 0 , 3 g g
Max. value
= 7.74 × 10−4
g’ = 12, g = 12
S ( 2 ) N 2 , 1 , σ s , l = 0 , 4 g g
Max. value

= 4.96 × 10−4
g’ = 12, g = 12
S ( 2 ) N 2 , 1 , σ s , l = 0 , 5 g g
Max. value
= 9.89 × 10−2
g’ = 12, g = 12
S ( 2 ) N 2 , 1 , σ s , l = 0 , 6 g g
Max. value
= 1.78 × 10−1
g’ = 16, g = 17
i = 3
(69Ga)
S ( 2 ) N 3 , 1 , σ s , l = 0 , 1 g g
Max. value
= 6.82 × 10−4
g’ = 12, g = 12
S ( 2 ) N 3 , 1 , σ s , l = 0 , 2 g g
Max. value
= 4.52 × 10−5
g’ = 12, g = 12
S ( 2 ) N 3 , 1 , σ s , l = 0 , 3 g g
Max. value
= 5.17 × 10−4
g’ = 12, g = 12
S ( 2 ) N 3 , 1 , σ s , l = 0 , 4 g g
Max. value
= 1.67 × 10−6
g’ = 12, g = 12
S ( 2 ) N 3 , 1 , σ s , l = 0 , 5 g g
Max. value
= 3.01 × 10−4
g’ = 12, g = 12
S ( 2 ) N 3 , 1 , σ s , l = 0 , 6 g g
Max. value
= 5.47 × 10−4
g’ = 16, g = 17
i = 4
(71Ga)
S ( 2 ) N 4 , 1 , σ s , l = 0 , 1 g g
Max. value
= 4.25 × 10−4
g’ = 12, g = 12
S ( 2 ) N 4 , 1 , σ s , l = 0 , 2 g g
Max. value
= 2.82 × 10−5
g′ = 13, g = 13
S ( 2 ) N 4 , 1 , σ s , l = 0 , 3 g g
Max. value
= 1.62 × 10−6
g’ = 12, g = 12
S ( 2 ) N 4 , 1 , σ s , l = 0 , 4 g g
Max. value
= 3.31 × 10−4
g’ = 12, g = 12
S ( 2 ) N 4 , 1 , σ s , l = 0 , 5 g g
Max. value
= 1.77 × 10−4
g’ = 12, g = 12
S ( 2 ) N 4 , 1 , σ s , l = 0 , 6 g g
Max. value
= 2.93 × 10−4
g’ = 16, g = 17
i = 5
(C)
S ( 2 ) N 5 , 2 , σ s , l = 0 , 1 g g
Max. value
= 1.70 × 10−1
g’ = 12, g = 12
S ( 2 ) N 5 , 2 , σ s , l = 0 , 2 g g
Max. value
= 1.13 × 10−2
g’ = 12, g = 12
S ( 2 ) N 5 , 2 , σ s , l = 0 , 3 g g
Max. value
= 6.52 × 10−4
g’ = 12, g = 12
S ( 2 ) N 5 , 2 , σ s , l = 0 , 4 g g
Max. value
= 4.19 × 10−4
g’ = 12, g = 12
S ( 2 ) N 5 , 2 , σ s , l = 0 , 5 g g
Max. value
= 1.59 × 10−1
g’ = 12, g = 12
S ( 2 ) N 5 , 2 , σ s , l = 0 , 6 g g
Max. value
= 1.55 × 10−1
g’ = 16, g = 17
i = 6
(1H)
S ( 2 ) N 6 , 2 , σ s , l = 0 , 1 g g
Max. value
= 2.72 × 10−1
g’ = 12, g = 12
S ( 2 ) N 6 , 2 , σ s , l = 0 , 2 g g
Max. value
= 1.80 × 10−2
g’ = 12, g = 12
S ( 2 ) N 6 , 2 , σ s , l = 0 , 3 g g
Max. value
= 1.04 × 10−3
g’ = 12, g = 12
S ( 2 ) N 6 , 2 , σ s , l = 0 , 4 g g
Max. value
= 6.68 × 10−4
g’ = 12, g = 12
S ( 2 ) N 6 , 2 , σ s , l = 0 , 5 g g
Max. value
= 1.48 × 10−1
g’ = 12, g = 12
S ( 2 ) N 6 , 2 , σ s , l = 0 , 6 g g
Max. value
= 3.81 × 10−1
g’ = 16, g = 17
Table 13. Elements of S ( 2 ) N 1 , 1 , σ s , l = 0 , k = 1 g g , g , g = 1 , , 30 with absolute values greater than 1.0.
Table 13. Elements of S ( 2 ) N 1 , 1 , σ s , l = 0 , k = 1 g g , g , g = 1 , , 30 with absolute values greater than 1.0.
Group g g 7 7 g g 8 8 g g 9 9 g g 10 10 g g 11 11 g g 12 12 g g 13 13 g g 14 14
values1.4611.1551.2061.1471.0361.9121.6601.235
Table 14. Elements of S ( 2 ) N 1 , 1 , σ s , l = 0 , k = 6 g g , g , g = 1 , , 30 with absolute values greater than 1.0.
Table 14. Elements of S ( 2 ) N 1 , 1 , σ s , l = 0 , k = 6 g g , g , g = 1 , , 30 with absolute values greater than 1.0.
Group g g 12 13 g g 13 14 g g 14 15 g g 14 16 g g 15 16 g g 16 16 g g 16 17
values1.3861.3001.1101.1461.4301.2891.585
Table 15. Summary presentation of the matrix S ( 2 ) N i , m , σ s , l = 1 , k g g , comprising the 2nd-order relative sensitivities of the leakage response with respect to the isotopic number densities and the 1st-order l = 1 scattering cross sections for all isotopes.
Table 15. Summary presentation of the matrix S ( 2 ) N i , m , σ s , l = 1 , k g g , comprising the 2nd-order relative sensitivities of the leakage response with respect to the isotopic number densities and the 1st-order l = 1 scattering cross sections for all isotopes.
k = 1 ( 239 Pu ) k = 2 ( 240 Pu ) k = 3 ( 69 Ga ) k = 4 ( 71 Ga ) k = 5 ( C ) k = 6 ( 1 H )
i = 1
(239Pu)
S ( 2 ) N 1 , 1 , σ s , l = 1 , 1 g g 1 element
with absolute value >1.0
S ( 2 ) N 1 , 1 , σ s , l = 1 , 2 g g
Min. value
= −6.96 × 10−2
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 1 , 3 g g
Min. value
= −2.34 × 10−3
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 1 , 4 g g
Min. value
= −1.42 × 10−3
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 1 , 5 g g
Min. value
= −3.51 × 10−1
g’ = 12, g = 12
S ( 2 ) N 1 , 1 , σ s , l = 1 , 6 g g
6 elements with
absolute values >1.0
i = 2
(240Pu)
S ( 2 ) N 2 , 1 , σ s , l = 1 , 1 g g
Min. value
= −1.30 × 10−1
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 1 , 2 g g
Min. value
= −1.32 × 10−2
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 1 , 3 g g
Min. value
= −2.65 × 10−4
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 1 , 4 g g
Min. value
= −1.61 × 10−4
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 1 , 5 g g
Min. value
= −4.00 × 10−2
g’ = 12, g = 12
S ( 2 ) N 2 , 1 , σ s , l = 1 , 6 g g
Min. value
= −1.50 × 10−1
g’ = 12, g = 13
i = 3
(69Ga)
S ( 2 ) N 3 , 1 , σ s , l = 1 , 1 g g
Min. value
= −3.42 × 10−4
g’ = 12, g = 12
S ( 2 ) N 3 , 1 , σ s , l = 1 , 2 g g
Min. value
= −2.14 × 10−5
g’ = 12, g = 12
S ( 2 ) N 3 , 1 , σ s , l = 1 , 3 g g
Min. value
= −1.77 × 10−4
g’ = 7, g = 7
S ( 2 ) N 3 , 1 , σ s , l = 1 , 4 g g
Min. value
= −4.06 × 10−7
g’ = 7, g = 7
S ( 2 ) N 3 , 1 , σ s , l = 1 , 5 g g
Min. value
= −1.22 × 10−4
g’ = 12, g = 12
S ( 2 ) N 3 , 1 , σ s , l = 1 , 6 g g
Min. value
= −4.56 × 10−4
g’ = 12, g = 13
i = 4
(71Ga)
S ( 2 ) N 4 , 1 , σ s , l = 1 , 1 g g
Min. value
= −2.13 × 10−4
g’ = 12, g = 12
S ( 2 ) N 4 , 1 , σ s , l = 1 , 2 g g
Min. value
= −1.33 × 10−5
g’ = 12, g = 12
S ( 2 ) N 4 , 1 , σ s , l = 1 , 3 g g
Min. value
= −4.40 × 10−7
g’ = 12, g = 12
S ( 2 ) N 4 , 1 , σ s , l = 1 , 4 g g
Min. value
= −1.07 × 10−4
g’ = 7, g = 7
S ( 2 ) N 4 , 1 , σ s , l = 1 , 5 g g
Min. value
= −7.23 × 10−5
g’ = 12, g = 12
S ( 2 ) N 4 , 1 , σ s , l = 1 , 6 g g
Min. value
= −2.68 × 10−4
g’ = 12, g = 13
i = 5
(C)
S ( 2 ) N 5 , 2 , σ s , l = 1 , 1 g g
Min. value
= −1.12 × 10−1
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 1 , 2 g g
Min. value
= −6.76 × 10−3
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 1 , 3 g g
Min. value
= −2.27 × 10−4
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 1 , 4 g g
Min. value
= −1.38 × 10−4
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 1 , 5 g g
Min. value
= −6.24 × 10−2
g’ = 12, g = 12
S ( 2 ) N 5 , 2 , σ s , l = 1 , 6 g g
Min. value
= −1.31 × 10−1
g’ = 12, g = 13
i = 6
(1H)
S ( 2 ) N 6 , 2 , σ s , l = 1 , 1 g g
Min. value
= −1.77 × 10−1
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 1 , 2 g g
Min. value
= −1.06 × 10−2
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 1 , 3 g g
Min. value
= −3.57 × 10−4
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 1 , 4 g g
Min. value
= −2.17 × 10−4
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 1 , 5 g g
Min. value
= −5.73 × 10−2
g’ = 12, g = 12
S ( 2 ) N 6 , 2 , σ s , l = 1 , 6 g g
Min. value
= −3.19 × 10−1
g’ = 12, g = 13
Table 16. Elements of S ( 2 ) N 1 , 1 , σ s , l = 1 , k = 6 g g , g , g = 1 , , 30 with absolute values greater than 1.0.
Table 16. Elements of S ( 2 ) N 1 , 1 , σ s , l = 1 , k = 6 g g , g , g = 1 , , 30 with absolute values greater than 1.0.
Groups g g 12 12 g g 12 13 g g 13 13 g g 13 14 g g 15 16 g g 16 16
values−1.103−1.327−1.014−1.162−1.027−1.210
Table 17. Summary presentation of the matrix S ( 2 ) N i , m , σ s , l = 2 , k g g , for 2nd-order relative sensitivities of the leakage response with respect to the isotopic number densities and the 2nd-order l = 2 scattering cross sections for all isotopes.
Table 17. Summary presentation of the matrix S ( 2 ) N i , m , σ s , l = 2 , k g g , for 2nd-order relative sensitivities of the leakage response with respect to the isotopic number densities and the 2nd-order l = 2 scattering cross sections for all isotopes.
k = 1
(239Pu)
k = 2
(240Pu)
k = 3
(69Ga)
k = 4
(71Pu)
k = 5
(C)
k = 6
(1H)
i = 1
(239Pu)
S ( 2 ) N 1 , 1 , σ s , l = 2 , 1 g g
Max. value
= 7.13 × 10−2
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 2 , 2 g g
Max. value
= 4.07 × 10−3
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 2 , 3 g g
Max. value
= 1.22 × 10−4
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 2 , 4 g g
Max. value
= 7.57 × 10−5
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 2 , 5 g g
Max. value
= 9.48 × 10−2
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 2 , 6 g g
Max. value
= 3.50 × 10−1
g’ = 12, g = 12
i = 2
(240Pu)
S ( 2 ) N 2 , 1 , σ s , l = 2 , 1 g g
Max. value
= 7.43 × 10−3
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 2 , 2 g g
Max. value
= 7.52 × 10−4
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 2 , 3 g g
Max. value
= 1.36 × 10−5
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 2 , 4 g g
Max. value
= 8.46 × 10−6
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 2 , 5 g g
Max. value
= 1.08 × 10−2
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 2 , 6 g g
Max. value
= 4.02 × 10−2
g’ = 12, g = 12
i = 3
(69Ga)
S ( 2 ) N 3 , 1 , σ s , l = 2 , 1 g g
Max. value
= 1.34 × 10−5
g’ = 7, g = 7
S ( 2 ) N 3 , 1 , σ s , l = 2 , 2 g g
Max. value
= 8.17 × 10−7
g’ = 7, g = 7
S ( 2 ) N 3 , 1 , σ s , l = 2 , 3 g g
Max. value
= 8.93 × 10−6
g’ = 7, g = 7
S ( 2 ) N 3 , 1 , σ s , l = 2 , 4 g g
Max. value
= 1.52 × 10−8
g’ = 7, g = 7
S ( 2 ) N 3 , 1 , σ s , l = 2 , 5 g g
Max. value
= 2.60 × 10−5
g’ = 7, g = 7
S ( 2 ) N 3 , 1 , σ s , l = 2 , 6 g g
Max. value
= 1.24 × 10−4
g’ = 12, g = 12
i = 4
(71Ga)
S ( 2 ) N 4 , 1 , σ s , l = 2 , 1 g g
Max. value
= 7.50 × 10−6
g’ = 7, g = 7
S ( 2 ) N 4 , 1 , σ s , l = 2 , 2 g g
Max. value
= 4.59 × 10−7
g’ = 7, g = 7
S ( 2 ) N 4 , 1 , σ s , l = 2 , 3 g g
Max. value
= 1.38 × 10−8
g’ = 7, g = 7
S ( 2 ) N 4 , 1 , σ s , l = 2 , 4 g g
Max. value
= 5.54 × 10−6
g’ = 7, g = 7
S ( 2 ) N 4 , 1 , σ s , l = 2 , 5 g g
Max. value
= 1.51 × 10−5
g’ = 7, g = 7
S ( 2 ) N 4 , 1 , σ s , l = 2 , 6 g g
Max. value
= 7.58 × 10−5
g’ = 12, g = 12
i = 5
(C)
S ( 2 ) N 5 , 2 , σ s , l = 2 , 1 g g
Max. value
= 5.70 × 10−3
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 2 , 2 g g
Max. value
= 3.49 × 10−4
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 2 , 3 g g
Max. value
= 1.05 × 10−5
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 2 , 4 g g
Max. value
= 6.50 × 10−6
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 2 , 5 g g
Max. value
= 1.60 × 10−2
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 2 , 6 g g
Max. value
= 2.80 × 10−2
g’ = 12, g = 12
i = 6
(1H)
S ( 2 ) N 6 , 2 , σ s , l = 2 , 1 g g
Max. value
= 7.72 × 10−3
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 2 , 2 g g
Max. value
= 4.72 × 10−4
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 2 , 3 g g
Max. value
= 1.42 × 10−5
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 2 , 4 g g
Max. value
= 8.79 × 10−6
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 2 , 5 g g
Max. value
= 1.41 × 10−2
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 2 , 6 g g
Max. value
= 6.98 × 10−2
g’ = 12, g = 12
Table 18. Summary presentation of the matrix S ( 2 ) N i , m , σ s , l = 3 , k g g , comprising the 2nd-order relative sensitivities of the leakage response with respect to the isotopic number densities and the 3rd-order l = 3 scattering cross sections for all isotopes.
Table 18. Summary presentation of the matrix S ( 2 ) N i , m , σ s , l = 3 , k g g , comprising the 2nd-order relative sensitivities of the leakage response with respect to the isotopic number densities and the 3rd-order l = 3 scattering cross sections for all isotopes.
k = 1
(239Pu)
k = 2
(240Pu)
k = 3
(69Ga)
k = 4
(71Ga)
k = 5
(C)
k = 6
(1H)
i = 1
(239Pu)
S ( 2 ) N 1 , 1 , σ s , l = 3 , 1 g g
Min. value
= −8.98 × 10−5
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 3 , 2 g g
Min. value
= −5.43 × 10−6
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 3 , 3 g g
Min. value
= −1.54 × 10−7
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 3 , 4 g g
Min. value
= −9.66 × 10−8
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 3 , 5 g g
Min. value
= −2.38 × 10−2
g’ = 7, g = 7
S ( 2 ) N 1 , 1 , σ s , l = 3 , 6 g g
Min. value
= −7.00 × 10−2
g’ = 12, g = 12
i = 2
(240Pu)
S ( 2 ) N 2 , 1 , σ s , l = 3 , 1 g g
Min. value
= −6.38 × 10−6
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 3 , 2 g g
Min. value
= −4.90 × 10−7
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 3 , 3 g g
Min. value
= −1.11 × 10−8
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 3 , 4 g g
Min. value
= −7.62 × 10−9
g’ = 6, g=6
S ( 2 ) N 2 , 1 , σ s , l = 3 , 5 g g
Min. value
= −2.72 × 10−3
g’ = 7, g = 7
S ( 2 ) N 2 , 1 , σ s , l = 3 , 6 g g
Min. value
= −8.07 × 10−3
g’ = 12, g = 12
i = 3
(69Ga)
S ( 2 ) N 3 , 1 , σ s , l = 3 , 1 g g
Max. value
= 1.24 × 10−8
g’ = 7, g = 7
S ( 2 ) N 3 , 1 , σ s , l = 3 , 2 g g
Max. value

= 7.65 × 10−10
g’ = 7, g = 7
S ( 2 ) N 3 , 1 , σ s , l = 3 , 3 g g
Min. value
= −5.25 × 10−9
g’ = 6, g = 6
S ( 2 ) N 3 , 1 , σ s , l = 3 , 4 g g
Max. value
= 1.36 × 10−11
g’ = 7, g = 7
S ( 2 ) N 3 , 1 , σ s , l = 3 , 5 g g
Min. value
= −6.36 × 10−6
g’ = 7, g = 7
S ( 2 ) N 3 , 1 , σ s , l = 3 , 6 g g
Min. value
= −2.51 × 10−5
g’ = 12, g = 12
i = 4
(71Ga)
S ( 2 ) N 4 , 1 , σ s , l = 3 , 1 g g
Min. value
= −8.45 × 10−9
g’ = 7, g = 7
S ( 2 ) N 4 , 1 , σ s , l = 3 , 2 g g
Min. value
= −5.20 × 10−10
g’ = 7, g = 7
S ( 2 ) N 4 , 1 , σ s , l = 3 , 3 g g
Min. value
= −1.48 × 10−11
g’ = 7, g = 7
S ( 2 ) N 4 , 1 , σ s , l = 3 , 4 g g
Min. value
= −3.61 × 10−9
g’ = 6, g = 6
S ( 2 ) N 4 , 1 , σ s , l = 3 , 5 g g
Min. value
= −3.69 × 10−6
g’ = 7, g = 7
S ( 2 ) N 4 , 1 , σ s , l = 3 , 6 g g
Min. value
= −1.58 × 10−5
g’ = 12, g = 12
i = 5
(C)
S ( 2 ) N 5 , 2 , σ s , l = 3 , 1 g g
Max. value
= 6.63 × 10−6
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 3 , 2 g g
Max. value
= 4.08 × 10−7
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 3 , 3 g g
Max. value
= 1.16 × 10−8
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 3 , 4 g g
Max. value
= 7.27 × 10−9
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 3 , 5 g g
Min. value
= −3.63 × 10−3
g’ = 7, g = 7
S ( 2 ) N 5 , 2 , σ s , l = 3 , 6 g g
Min. value
= −4.15 × 10−3
g’ = 12, g = 12
i = 6
(1H)
S ( 2 ) N 6 , 2 , σ s , l = 3 , 1 g g
Max. value
= 1.41 × 10−5
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 3 , 2 g g
Max. value
= 8.65 × 10−7
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 3 , 3 g g
Max. value
= 2.46 × 10−8
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 3 , 4 g g
Max. value
= 1.54 × 10−8
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 3 , 5 g g
Min. value
= −2.73 × 10−3
g’ = 7, g = 7
S ( 2 ) N 6 , 2 , σ s , l = 3 , 6 g g
Min. value
= −9.49 × 10−3
g’ = 12, g = 12
Table 19. Summary presentation of the matrix S ( 2 ) N i , m , σ f , k g , i = 1 , , 6 ; k , m = 1 , 2 ; g = 1 , , 30
Table 19. Summary presentation of the matrix S ( 2 ) N i , m , σ f , k g , i = 1 , , 6 ; k , m = 1 , 2 ; g = 1 , , 30
k = 1 ( 239 Pu ) k = 2 ( 240 Pu )
i = 1
(239Pu)
S ( 2 ) N 1 , 1 , σ f , 1 g
12 elements with
absolute values >1.0
S ( 2 ) N 1 , 1 , σ f , 2 g
Max. value = 5.62 × 10−1
at g = 12
i = 2
(240Pu)
S ( 2 ) N 2 , 1 , σ f , 1 g 1 element with
absolute value >1.0
S ( 2 ) N 2 , 1 , σ f , 2 g
Max. value = 1.12 × 10−1
at g = 12
i = 3
(69Ga)
S ( 2 ) N 3 , 1 , σ f , 1 g
Max. value = 4.72 × 10−3
at g = 12
S ( 2 ) N 3 , 1 , σ f , 2 g
Max. value = 2.44 × 10−4
at g = 12
i = 4
(71Ga)
S ( 2 ) N 4 , 1 , σ f , 1 g
Max. value = 2.98 × 10−3
at g = 12
S ( 2 ) N 4 , 1 , σ f , 2 g
Max. value = 1.54 × 10−4
at g = 12
i = 5
(C)
S ( 2 ) N 5 , 2 , σ f , 1 g 1 element with
absolute value >1.0
S ( 2 ) N 5 , 2 , σ f , 2 g
Max. value = 6.13 × 10−2
at g = 12
i = 6
(1H)
S ( 2 ) N 6 , 2 , σ f , 1 g
7 elements with
absolute values >1.0
S ( 2 ) N 6 , 2 , σ f , 2 g
Max. value = 9.73 × 10−2
at g = 12
Table 20. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ f , 1 g , g = 1 , , 30 .
Table 20. Second-Order Relative Sensitivities S ( 2 ) N 1 , 1 , σ f , 1 g , g = 1 , , 30 .
gRelative SensitivitiesgRelative Sensitivities
10.005162.654
20.011170.979
30.032180.536
40.144190.443
50.683200.424
61.735210.380
77.787220.335
86.470230.286
97.761240.267
108.073250.228
117.521260.212
1211.735270.194
138.197280.115
145.313290.154
153.007301.467
Table 21. Elements of S ( 2 ) N 6 , 2 , σ f , 1 g , g = 1 , , 30 with absolute values greater than 1.0.
Table 21. Elements of S ( 2 ) N 6 , 2 , σ f , 1 g , g = 1 , , 30 with absolute values greater than 1.0.
Groupg = 7g = 8g = 9g = 10g = 11g = 12g = 13
values1.2791.0611.2661.3121.2171.8791.294
Table 22. Summary presentation of the matrix S ( 2 ) N i , m , ν k g , i = 1 , , 6 ; k , m = 1 , 2 ; g = 1 , , 30 .
Table 22. Summary presentation of the matrix S ( 2 ) N i , m , ν k g , i = 1 , , 6 ; k , m = 1 , 2 ; g = 1 , , 30 .
k = 1 ( 239 Pu ) k = 2 ( 240 Pu )
i = 1
(239Pu)
S ( 2 ) N 1 , 1 , ν k = 1 g
13 elements with
absolute values >1.0
S ( 2 ) N 1 , 1 , ν k = 2 g
Max. value = 7.72 × 10−1
at g = 12
i = 2
(240Pu)
S ( 2 ) N 2 , 1 , ν k = 1 g
6 elements with
absolute values >1.0
S ( 2 ) N 2 , 1 , ν k = 2 g
Max. value = 1.55 × 10−1
at g = 12
i = 3
(69Ga)
S ( 2 ) N 3 , 1 , ν k = 1 g
Max. value = 6.52 × 10−3
at g = 12
S ( 2 ) N 3 , 1 , ν k = 2 g
Max. value = 3.39 × 10−4
at g = 12
i = 4
(71Ga)
S ( 2 ) N 4 , 1 , ν k = 1 g
Max. value = 4.11 × 10−3
at g = 12
S ( 2 ) N 4 , 1 , ν k = 2 g
Max. value = 2.14 × 10−4
at g = 12
i = 5
(C)
S ( 2 ) N 5 , 2 , ν k = 1 g
6 elements with
absolute values >1.0
S ( 2 ) N 5 , 2 , ν k = 2 g
Max. value = 8.52 × 10−2
at g = 12
i = 6
(1H)
S ( 2 ) N 6 , 2 , ν k = 1 g
9 elements with
absolute values >1.0
S ( 2 ) N 6 , 2 , ν k = 2 g
Max. value = 1.35 × 10−1
at g = 12
Table 23. Elements of S ( 2 ) N 1 , 1 , ν k = 1 g , g = 1 , , 30 , having absolute values greater than 1.0.
Table 23. Elements of S ( 2 ) N 1 , 1 , ν k = 1 g , g = 1 , , 30 , having absolute values greater than 1.0.
Groupg = 6789101112131415161730
values2.26710.108.67510.5311.0710.3416.0611.307.4584.3303.9871.5355.217
Table 24. Elements of S ( 2 ) N 2 , 1 , ν k = 1 g , g = 1 , , 30 with absolute values greater than 1.0.
Table 24. Elements of S ( 2 ) N 2 , 1 , ν k = 1 g , g = 1 , , 30 with absolute values greater than 1.0.
Groupg = 7g = 9g = 10g = 11g = 12g = 13
values1.1071.1621.2211.1421.7721.248
Table 25. Elements of S ( 2 ) N 5 , 2 , ν k = 1 g , g = 1 , , 30 with absolute values greater than 1.0.
Table 25. Elements of S ( 2 ) N 5 , 2 , ν k = 1 g , g = 1 , , 30 with absolute values greater than 1.0.
Groupg = 7g = 9g = 10g = 11g = 12g = 13
values1.0161.0831.1351.0561.6381.159
Table 26. Elements of S ( 2 ) N 6 , 2 , ν k = 1 g , g = 1 , , 30 with absolute values greater than 1.0.
Table 26. Elements of S ( 2 ) N 6 , 2 , ν k = 1 g , g = 1 , , 30 with absolute values greater than 1.0.
Groupg = 7g = 8g = 9g = 10g = 11g = 12g = 13g = 14g = 30
values1.6601.4241.7231.8091.6872.6051.8151.1881.930

Share and Cite

MDPI and ACS Style

Fang, R.; Cacuci, D.G. Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involving Isotopic Number Densities. Energies 2020, 13, 2580. https://doi.org/10.3390/en13102580

AMA Style

Fang R, Cacuci DG. Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involving Isotopic Number Densities. Energies. 2020; 13(10):2580. https://doi.org/10.3390/en13102580

Chicago/Turabian Style

Fang, Ruixian, and Dan G. Cacuci. 2020. "Comprehensive Second-Order Adjoint Sensitivity Analysis Methodology (2nd-ASAM) Applied to a Subcritical Experimental Reactor Physics Benchmark: V. Computation of Mixed 2nd-Order Sensitivities Involving Isotopic Number Densities" Energies 13, no. 10: 2580. https://doi.org/10.3390/en13102580

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop