2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines
Abstract
:1. Introduction
2. Research
2.1. Energy Resource Assessment
2.1.1. Research on Theoretically Extractable Energy
2.1.2. Numerical Assessment
Year | Place | Model | Developer | Reference |
---|---|---|---|---|
2006 | Portland Bill, UK | TÉLÉMAC | Électricité de France | [43] |
2007 | Raz de Sein, Brittany, France | Matlab-Simulink | MathWorks | [19] |
2008 | Minas Passage, Bay of Fundy, Canada | 2-D finite-volume model (FVCOM) | C. S. Chen, Cowles G & Beardsley | [44] |
2009 | Ría de Muros, Spain | Delft 3D-FLOW | Delft Hydraulics | [45] |
Various sites in Norway | Bergen Ocean Model & High Resolution Tidal Model | University of Bergen & University of Oslo | [46] | |
Puget Sound, Washington, USA | 1-D time dependant model | University of Washington | [47] | |
2010 | Various sites in Ireland | 2-D depth-integrated numerical model | RPS Kirk McClure Morton | [48] |
South Wales coast, UK | Refined finite volume numerical model | Cardiff University | [49] | |
Various sites in Malaysia | Princeton Ocean Model (POM) | Princeton University | [50] | |
2011 | Georgia coast, USA | Regional Ocean Modelling System (ROMS) | Rutgers IMCS Ocean Modelling Group | [51] |
Verde Island Passage, Philippines | Delft 3D | Delft Hydraulics | [52] | |
2012 | Langyatai Strait, China | Delft 3D-FLOW | Delft Hydraulics | [53] |
South Carolina coast, USA | Regional Ocean Modelling System (ROMS) | Rutgers IMCS Ocean Modelling Group | [54] |
2.2. Performance of Marine Current Turbines
2.2.1. Design Consideration
2.2.2. Wake of Marine Current Turbine
- Higher thrust coefficient leads to higher velocity deficit in near wake region [69],
- Wake persists further downstream when the turbine is placed in deeper water, where the distance from the turbine to the seabed is considerably large with respect to the turbine diameter [70],
- Close proximity to the free water surface and seabed causes wake recovery to become slower [71].
2.2.3. Marine Current Turbine Generator
2.2.4. Novel Design
2.3. Environmental Aspects
3. Future Perspectives
4. Conclusions
Acknowledgements
References
- Rocks, L.; Runyon, R.P. The Energy Crisis; Crown Publishers: New York, NY, USA, 1972. [Google Scholar]
- Halacy, D.S. The Coming Age of Solar Energy; Harper & Row: New York, NY, USA, 1973. [Google Scholar]
- Warnick, C.C. Hydropower Engineering; Prentice-Hall Inc.: Englewood, NJ, USA, 1984. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained. Theory, Design and Application; John Wiley & Sons Ltd.: Chichester, UK, 2002. [Google Scholar]
- Klass, D.L. Biomass for Renewable Energy, Fuels and Chemicals; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Annual Report 2010: Implementing Agreement on Ocean Energy Systems; OES-IA: Lisbon, Portugal; Available online: http://www.ocean-energy-systems.org/library/annual_reports/ (accessed on 17 October 2012).
- Annual Report 2011: Implementing Agreement on Ocean Energy Systems; OES-IA: Lisbon, Portugal; Available online: http://www.ocean-energy-systems.org/library/annual_reports/ (accessed on 17 October 2012).
- Bedard, R.; Jacobson, P.T.; Previsic, M.; Musial, W.; Varley, R. An overview of ocean renewable energy technologies. Oceanography 2010, 23, 22–23. [Google Scholar] [CrossRef]
- Review and Analysis of Ocean Energy Systems Development and Supporting Policies; OES-IA: Ireland, June 2006; Available online: http://mhk.pnnl.gov/wiki/index.php/Review_and_analysis_of_ocean_energy_systems_development_and_supporting_policies (accessed on 17 October 2012).
- Bahaj, A.S.; Myers, L.E. Fundamentals applicable to the utilization of marine current turbines for energy production. Renew. Energy 2003, 28, 2205–2211. [Google Scholar] [CrossRef]
- Gross, R.; Leach, M.; Bauen, A. Progress in renewable energy. Environ. Int. 2003, 29, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Pelc, R.; Fujita, M. Renewable energy from the ocean. Marine Policy 2002, 26, 471–479. [Google Scholar] [CrossRef]
- Fraenkel, P.L. Marine Current Turbine: An Emerging Technology. Paper for Scottish Hydraulics Study Group Seminar in Glasgow on 19 March 2004. Available online: http://www.ifremer.fr/dtmsi/colloques/seatech04/mp/proceedings_pdf/article_abstract/4.%20courants%20marins/4.2.MCT.pdf (accessed on 17 October 2012).
- King, J.; Tryfonas, T. Tidal Stream Power Technology—State of the Art. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009; pp. 1–8.
- Rourke, F.O.; Boyle, F.; Reynolds, A. Tidal energy update 2009. Appl. Energy 2010, 87, 398–409. [Google Scholar] [CrossRef]
- Khan, M.J.; Bhuyan, G.; Iqbal, M.T.; Quaicoe, J.E. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy 2009, 86, 1823–1835. [Google Scholar] [CrossRef]
- Güney, M.S.; Kaygusuz, K. Hydrokinetic energy conversion systems: A technology status review. Renew. Sustain. Energy Rev. 2010, 14, 2996–3004. [Google Scholar] [CrossRef]
- Blunden, L.S.; Bahaj, A.S. Tidal energy resources assessment for tidal generators. Proc. Inst. Mech. Eng. A J. Power Energy 2007, 221, 137–146. [Google Scholar] [CrossRef]
- Ben Elghali, S.E.; Balme, R.; Le Saux, K.; Benbouzid, M.E.H.; Charpentier, J.F.; Hauville, F. A simulation model for the evaluation of the electrical power potential harnessed by a marine current turbine. IEEE J. Ocean. Eng. 2007, 32, 786–797. [Google Scholar] [CrossRef] [Green Version]
- Bryden, I.G.; Melville, G.T. Choosing and evaluating sites for tidal current development. Proc. Inst. Mech. Eng. A J. Power Energy 2004, 218, 567–577. [Google Scholar] [CrossRef]
- Bryden, I.G.; Grinsted, T.; Melville, G.T. Assessing the potential of a simple tidal channel to deliver useful energy. Appl. Ocean Res. 2004, 26, 198–204. [Google Scholar] [CrossRef]
- Couch, S.J.; Bryden, I.G. The Impact of Energy Extraction on Tidal Flow Development. In Proceedings of the 3rd International Conference on Marine Renewable Energy, Blyth, UK, 7–9 July 2004.
- Bryden, I.G.; Couch, S.J. ME1-marine energy extraction: tidal resource analysis. Renew. Energy 2006, 31, 133–139. [Google Scholar] [CrossRef]
- Couch, S.J.; Bryden, I.G. Tidal current energy extraction: Hydrodynamic resource characteristics. Proc. Inst. Mech. Eng. M J. Eng. Marit. Environ. 2006, 220, 185–194. [Google Scholar]
- Couch, S.J.; Bryden, I.G. Large-Scale Physical Response of the Tidal System to Energy Extraction and Its Significance for Informing Environmental and Ecological Impact Assessment. In Proceedings of the OCEANS 2007-Europe, Aberdeen, UK, 18–21 June 2007; pp. 1–5.
- Bryden, I.G.; Couch, S.J. How much energy can be extracted from moving water with a free surface: A question of importance in the field of tidal current energy? Renew. Energy 2007, 32, 1961–1966. [Google Scholar] [CrossRef]
- Bryden, I.G.; Couch, S.J.; Owen, A.; Melville, G. Tidal current resource assessment. Proc. Inst. Mech. Eng. A J. Power Energy 2007, 221, 125–135. [Google Scholar] [CrossRef]
- Garrett, C.; Cummins, P. Generating power from tidal current. J. Waterw. Port. C-ASCE 2004, 130, 114–118. [Google Scholar] [CrossRef]
- Garrett, C.; Cummins, P. The power potential of tidal currents in channels. Proc. R. Soc. A 2005, 461, 2563–2572. [Google Scholar] [CrossRef]
- Garrett, C.; Cummins, P. The efficiency of a turbine in a tidal channel. J. Fluid. Mech. 2007, 588, 243–251. [Google Scholar] [CrossRef]
- Sutherland, G.; Foreman, M.; Garrett, C. Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proc. Inst. Mech. Eng. A J. Power Energy 2007, 221, 145–157. [Google Scholar] [CrossRef]
- Blanchfield, J.; Garrett, C.; Wild, P.; Rowe, A. The extractable power from a channel linking a bay to the open ocean. Proc. Inst. Mech. Eng. A J. Power Energy 2008, 222, 289–297. [Google Scholar] [CrossRef]
- Blanchfield, J.; Garrett, C.; Rowe, A.; Wild, P. Tidal stream power resource assessment for Masset Sound, Haida Gwaii. Proc. Inst. Mech. Eng. A J. Power Energy 2008, 222, 485–492. [Google Scholar] [CrossRef]
- Garrett, C.; Cummins, P. Limits to tidal current power. Renew. Energy 2008, 33, 2485–2490. [Google Scholar] [CrossRef]
- Gorban, A.N.; Gorlov, A.M.; Silantyev, V.M. Limits of the turbine efficiency for free fluid flow. J. Energy Resour. Technol. 2001, 123, 311–317. [Google Scholar] [CrossRef]
- Vennell, R. Tuning turbines in a tidal channel. J. Fluid. Mech. 2010, 663, 253–267. [Google Scholar] [CrossRef]
- Vennell, R. Tuning tidal turbines in-concert to maximise farm efficiency. J. Fluid Mech. 2011, 671, 587–604. [Google Scholar] [CrossRef]
- Vennell, R. Estimating the power potential of tidal current and the impact of power extraction on flow speeds. Renew. Energy 2011, 36, 3558–3565. [Google Scholar] [CrossRef]
- Vennell, R. Realizing the potential of tidal currents and the efficiency of turbine farms in a channel. Renew. Energy 2012, 47, 95–102. [Google Scholar] [CrossRef]
- Atwater, J.F.; Lawrence, G.A. Power potential of a split tidal channel. Renew. Energy 2010, 35, 329–332. [Google Scholar] [CrossRef]
- Whelan, J.I.; Graham, J.M.R.; Peiró, J. A free-surface and blockage correction for tidal turbines. J. Fluid Mech. 2009, 624, 281–291. [Google Scholar] [CrossRef]
- Whelan, J.; Thomson, M.; Graham, J.M.R.; Peiró, J. Modelling of Free Surface Proximity and Wave Induced Velocities around a Horizontal Axis Tidal Stream Turbine. In Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal, 11–14 September 2007.
- Blunden, L.S.; Bahaj, A.S. Initial evaluation of tidal stream energy resources at Portland Bill, UK. Renew. Energy 2006, 31, 121–132. [Google Scholar] [CrossRef]
- Karsten, R.H.; McMillan, J.M.; Lickley, M.J. Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proc. Inst. Mech. Eng. A J. Power Energy 2008, 222, 493–507. [Google Scholar] [CrossRef]
- Carballo, R.; Iglesias, G.; Castro, A. Numerical model evaluation of tidal stream energy resources in the Ría de Muros (NW Spain). Renew. Energy 2009, 34, 1517–1524. [Google Scholar] [CrossRef]
- Grabbe, M.; Lalander, E.; Lundin, S.; Leijon, M. A review of the tidal current energy resource in Norway. Renew. Sustain. Energy Rev. 2009, 13, 1898–1909. [Google Scholar] [CrossRef]
- Polagye, B.; Kawase, M.; Malte, P. In-stream tidal energy potential of Puget Sound, Washinton. Proc. Inst. Mech. Eng. A J. Power Energy 2009, 223, 571–587. [Google Scholar] [CrossRef]
- O’Rourke, F.; Boyle, F.; Reynolds, A. Tidal current energy resource assessment in Ireland: Current status and future update. Renew. Sustain. Energy Rev. 2010, 14, 3206–3212. [Google Scholar] [CrossRef]
- Xia, J.; Falconer, R.A.; Lin, B. Numerical model assessment of tidal stream energy resources in the Severn Estuary, UK. Proc. Inst. Mech. Eng. A J. Power Energy 2010, 224, 969–983. [Google Scholar] [CrossRef]
- Limm, Y.S.; Kohm, S.L. Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia. Renew. Energy 2010, 35, 1024–1032. [Google Scholar] [CrossRef]
- Defne, Z.; Haas, K.A.; Fritz, H.M. Numerical modelling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast, USA. Renew. Energy 2011, 36, 3461–3471. [Google Scholar] [CrossRef]
- Abundo, M.L.S.; Nerves, A.C.; Ang, M.R.C.O.; Paringit, E.C.; Bernardo, L.P.C. Energy Potential Metric for Rapid Marco-Level Resources Assessment of Tidal In-Stream Energy in the Philippines. In Proceedings of the 10th International Conference on Environmental and Electrical Engineering (EEEIC), Rome, Italy, 8–11 May 2011; pp. 1–4.
- Li, H.J.; Wu, G.X.; Liang, B.C.; Fei, F. Numerical Assessment of Tidal Stream Energy Resource in Langyatai Strait. In Proceedings of the OCEANS 2012-Yeosu, Yeosu, Korea, 21–24 May 2012; pp. 1–5.
- Work, P.A.; Haas, K.A.; Defna, Z.; Gay, T. Tidal stream energy site assessment via three-dimensional model and measurements. Appl. Energy 2012, in press. [Google Scholar]
- Bahaj, A.S.; Myers, L. Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands) using marine current energy converters. Renew. Energy 2004, 29, 1931–1945. [Google Scholar] [CrossRef]
- Marais, E.; Chowdhury, S.; Chowdhury, S.P. Theoretical Resource Assessment of Marine Current Energy in the Agulhas Current along South Africa’s East Coast. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 24–29 July 2011; pp. 1–8.
- Rashid, A. Status and potentials of tidal in-stream energy resources in the southern coasts of Iran: A case study. Renew. Sustain. Energy Rev. 2012, 16, 6668–6677. [Google Scholar] [CrossRef]
- Legrand, C. Assessment of Tidal Energy Resource: Marine Renewable Energy Guides; BPR Publishers: London, UK, 2009. [Google Scholar]
- Hagerman, G.; Polagye, B.; Bedard, R.; Previsic, M. Methodology for Estimating Tidal Current Energy Resources and Power Production by Tidal in-Stream Energy Conversion (TISEC) Devices; Technical Report for Electric Power Research Institute (EPRI): Palo Alto, CA, USA, June 2006. [Google Scholar]
- Winter, A.I. Differences in Fundamental Design Drivers for Wind and Tidal Turbines. In Proceedings of the OCEANS 2011 IEEE-Spain, Santander, Spain, 6–9 June 2011; pp. 1–10.
- Bahaj, A.S.; Myers, L. Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race. Renew. Energy 2005, 30, 1713–1731. [Google Scholar] [CrossRef]
- Molland, A.F.; Bahaj, A.S.; Chaplin, J.R.; Batten, W.M.J. Measurements and predictions of force, pressures and cavitation on 2-D sections suitable for marine current turbines. Proc. Inst. Mech. Eng. M J. Eng. Marit. Environ. 2004, 218, 127–138. [Google Scholar] [CrossRef]
- Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R. Hydrodynamics of marine current turbines. Renew. Energy 2006, 31, 249–256. [Google Scholar] [CrossRef]
- Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.; Batten, W.M.J. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energy 2007, 32, 407–426. [Google Scholar] [CrossRef]
- Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R. Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Eng. 2007, 34, 1013–1020. [Google Scholar] [CrossRef]
- Bahaj, A.S.; Batten, W.M.J.; McCann, G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renew. Energy 2007, 32, 2479–2490. [Google Scholar] [CrossRef]
- Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R. The prediction of the hydrodynamic performance of marine current turbines. Renew. Energy 2008, 33, 1085–1096. [Google Scholar] [CrossRef]
- Myers, L.; Bahaj, A.S. Wake studies of a 1/30th scale horizontal axis marine current turbine. Ocean Eng. 2007, 34, 758–762. [Google Scholar] [CrossRef]
- Bahaj, A.S.; Myers, L.E.; Thompson, G. Characterizing the Wake of Horizontal Axis Marine Current Turbines. In Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal, 11–14 September 2007.
- Myers, L.E.; Bahaj, A.S.; Germain, G. Flow Boundary Interaction Effects for Marine Current Energy Conversion Devices. In Proceedings of the 10th World Renewable Energy Congress, Glasglow, UK, 19–25 July 2008.
- Myers, L.E.; Bahaj, A.S.; Rawlinson-Smith, R.I.; Thomson, M. The Effect of Boundary Proximity upon the Wake Structure of Horizontal Axis Marine Current Turbines. In Proceedings of 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 15–20 June, 2008; pp. 709–719.
- Myers, L.E.; Bahaj, A.S. Near Wake Properties of Horizontal Axis Marine Current Turbine. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009.
- Blunden, L.S.; Batten, W.M.J.; Harrison, M.E.; Bahaj, A.S. Comparison of Boundary-Layer and Field Models for Simulation of Flow through Multiple-Row Tidal Fences. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009.
- Myers, L.E.; Bahaj, A.S. Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocean Eng. 2010, 37, 218–227. [Google Scholar] [CrossRef]
- Harrison, M.E.; Batten, W.M.J.; Myers, L.E.; Bahaj, A.S. Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renew. Power Gen. 2010, 4, 613–627. [Google Scholar] [CrossRef]
- Myers, L.E.; Keogh, B.; Bahaj, A.S. Experimental investigation of inter-array wake properties in early tidal turbine arrays. In Proceedings of the OCEANS 2011, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–8.
- Myers, L.E.; Bahaj, A.S. An experimental investigation simulating flow effects in first generation marine current energy converter arrays. Renew. Energy 2012, 37, 28–36. [Google Scholar] [CrossRef]
- Coiro, D.P.; Maisto, U.; Scherillo, F.; Melone, S.; Grasso, F. Horizontal Axis Tidal Current Turbine: Numerical and Experimental Investigations. In Proceeding of the Offshore Wind and Other Marine Renewable Energies in Mediterranean and European Seas, European Seminar, Rome, Italy, April 2006; pp. 1–7.
- Jo, C.H.; Yim, J.Y.; Lee, K.H.; Rho, Y.H. Performance of horizontal axis tidal current turbine by blade configuration. Renew. Energy 2012, 42, 195–206. [Google Scholar] [CrossRef]
- Galloway, P.W.; Myers, L.E.; Bahaj, A.S. Experimental and Numerical Results of Rotor Power and Thrust of a Tidal Turbine Operating at Yaw and in Waves. In Proceedings of the Renewable Energy Congress, Marine and Ocean Technology, Linköping, Sweden, 8–13 May 2011; Volume 9, pp. 2246–2253.
- CBC News (8 July 2011). Failed Tidal Turbine Explained at Symposium. Available online: http://www.cbc.ca/news/canada/nova-scotia/story/2011/07/08/ns-tidal-energy-symposium.html (accessed on 10 November 2012).
- Goodall, C. Tidal Energy—The UK’s Best Kept Secret. Available online: http://www.guardian.co.uk/environment/2011/may/18/tidal-energy-uk-best-secret (accessed on 10 November 2012).
- Bir, G.S.; Lawson, M.J.; Li, Y. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade. In Proceedings of the ASME 30th International Conference on Ocean, Offshore, and Arctic Engineering, Rotterdam, The Netherlands, 19–24 June 2011.
- Barltrop, N.; Varyani, K.S.; Grant, A.; Clelland, D.; Pham, X.P. Investigation into wave-current interactions in marine current turbines. Proc. Inst. Mech. Eng. A J. Power Energy 2007, 221, 233–242. [Google Scholar] [CrossRef]
- McCann, G.N. Tidal Current Turbine Fatigue Loading Sensitivity to Waves and Turbulence—A Parametric Study. In Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal, 11–14 September 2007.
- Nicholls-Lee, R.F.; Turnock, S.R. Enhancing Performance of a Horizontal Axis Tidal Turbine Using Adaptive Blades. In Proceedings of the OCEANS 2007-Europe, Aberdeen, UK, 18–21 June 2007; pp. 1–6.
- Nicholls-Lee, R.F.; Turnock, S.R.; Boyd, S.W. Performance Prediction of a Free Stream Tidal Turbine with Composite Bend-Twist Coupled Blades. In Proceedings of the 2nd International Conference on Ocean Energy, Brest, France, 15–17 October 2008.
- Faudot, C.; Dahlaug, G. Prediction of wave loads on tidal turbine blades. Energy Procedia 2012, 20, 116–133. [Google Scholar] [CrossRef]
- Milne, I.A.; Day, A.H.; Sharma, R.N.; Flay, R.G.J.; Bickerton, S. Tidal Turbine Blade Load Experiments for Oscillatory Motion. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011.
- McSherry, R.; Grimwade, J.; Jones, I.; Mathis, S.; Wells, A.; Mateus, A. 3D CFD Modelling of Tidal Turbine Performance with Validation against Laboratory Experiments. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011.
- MacLeod, A.J.; Barnes, S.; Rados, K.G.; Bryden, I.G. Wake Effects in Tidal Current Turbine Farms. In Proceedings of the Marine Renewable Energy Conference, Newcastle, UK, 27–78 March 2001; pp. 49–53.
- Fabrice, M.; Gregory, G.; Grégory, P.; Elie, R. Numerical Characterisation of the Wake Generated by Marine Current Turbines Farm. In Proceedings of the 2nd International Conference on Ocean Energy, Brest, France, 15–17 October 2008.
- Maganga, F.; Pinon, G.; Germain, G.; Rivoalen, E. Numerical Simulation of the Wake of Marine Current Turbine with a Particle Method. In Proceedings of the 10th World Renewable Energy Congress, Glasglow, UK, 19–25 July 2008.
- Maganga, F.; Germain, G.; King, J.; Pinon, G.; Rivoalen, E. Experimental Study to Determine Flow Characteristic Effects on Marine Current Turbine Behaviour. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009.
- Maganga, F.; Germain, G.; King, J.; Pinon, G.; Rivoalen, E. Experimental characterisation of flow effects on marine current turbine behaviour and on its wake properties. IET Renew. Power Gen. 2010, 4, 498–509. [Google Scholar] [CrossRef]
- Maganga, F.; Pinon, G.; Germain, G.; Rivoalen, E. Wake Properties Characterisation of Marine Current Turbines. In Proceedings of the 3rd International Conference on Ocean Energy, Bilbao, Spain, 6–8 October 2010.
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Numerical and Experimental Study of the Interaction between Two Marine Current Turbines. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011.
- Jo, C.H.; Lee, K.H.; Yim, J.Y.; Rho, Y.H. Interaction Effect Analysis for Tidal Current Power Farm Feasibility Study Applied to Projects in Korea. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011.
- Jo, C.H.; Lee, K.H.; Lee, J.H.; Nichita, C. Wake effect on HAT tidal current power device performance. Int. J. Ocean Syst. Eng. 2011, 1, 144–147. [Google Scholar] [CrossRef]
- Stallard, T.; Collings, R.; Feng, T.; Whelan, J.I. Interactions between Tidal Turbine Wakes: Experimental Study of a Group of 3-Bladed Rotors. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011.
- Whelan, J.I.; Stallard, T. Arguments for Modifying the Geometry of A Scale Model Rotor. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011.
- Chen, H.; Ait-Ahmed, N.; Zaim, E.H.; Machmoum, M. Marine Tidal Current Systems: State of the Art. In Proceedings of the 2012 IEEE International Symposium on Industrial Electronics (ISIE), Hangzhou, China, 28–31 May 2012; pp. 1431–1437.
- Ben Elghali, S.E.; Benbouzid, M.E.H.; Charpentier, J.F.; Ahmed-Ali, T.; Gahery, J.M.; Denis, A. Modelling and MPPT Sensorless Control of a DFIG-Based Marine Current Turbine. In Proceedings of the18th International Conference on Electrical Machines, Vilamoura, Portugal, 6–9 September 2008; pp. 1–6.
- Ben Elghali, S.E.; Benbouzid, M.E.H.; Ahmed-Ali, T.; Charpentier, J.F.; Mekri, F. High-Order Sliding Mode Control of DFIG-Based Marine Current Turbine. In Proceedings of the 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008; pp. 1228–1233.
- Ben Elghali, S.E.; Benbouzid, M.E.H.; Charpentier, J.F. Modelling and control of a marine current turbine-driven doubly fed induction generator. IET Renew. Power. Gen. 2009, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ben Elghali, S.E.; Benbouzid, M.E.H.; Charpentier, J.F. Comparison of PMSG and DFIG for Marine Current Turbine Applications. In Proceedings of the XIX International Conference on Electrical Machines, Roma, Italy, 6–8 September 2010; pp. 1–6.
- Ben Elghali, S.E.; Benbouzid, M.E.H.; Ahmed-Ali, T.; Charpentier, J.F. High-order sliding mode control of a marine current turbine driven doubly-fed induction generator. IEEE J. Ocean. Eng. 2010, 35, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Ben Elghali, S.E.; Benbouzid, M.E.H.; Charpentier, J.F.; Ahmed-Ali, T.; Munteanu, I. Experimental validation of a marine current turbine simulator: Application to a permanent magnet synchronous generator-based system second-order sliding mode control. IEEE Trans. Ind. Electron. 2011, 58, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Ben Elghali, S.E.; Benbouzid, M.E.H.; Charpentier, J.F. Performance Comparison of Three- and Five-Phase Permanent Magnet Generators for Marine Current Turbine Applications under Open-Circuit Faults. In Proceedings of the International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Istanbul, Turkey, 13–17 May 2011; pp. 1–6.
- Mekri, F.; Ben Elghali, S.E.; Benbouzid, M.E.H.; Charpentier, J.F. A Fault-Tolerant Multiphase Permanent Magnet Generator for Marine Current Turbine Applications. In Proceedings of the 20th IEEE International Symposium on Industrial Electronics (ISIE), Gdansk, Poland, 27–30 June 2011; pp. 2079–2084.
- Ben Elghali, S.E.; Benbouzid, M.E.H.; Charpentier, J.F. Generator systems for marine current turbine applications: A comparative study. IEEE J. Ocean. Eng. 2012, 37, 554–563. [Google Scholar] [CrossRef] [Green Version]
- Drouen, L.; Charpentier, J.F.; Semail, E.; Clent, S. Study of an Innovative Electrical Machine Fitted to Marine Current Turbines. In Proceedings of the OCEANS 2007-Europe, Aberdeen, UK, 18–21 June 2007; pp. 1–6.
- Keysan, O.; McDonald, A.; Mueller, M. Integrated Design and Optimization of A Direct Drive Axial Flux Permanent Magnet Generator for A Tidal Turbine. In Proceedings of the International Conference on Renewable Energies and Power Quality-ICREPQ, Granada, Spain, 23–25 March 2010.
- Lawn, C.J. Optimization of the power output from ducted turbines. Proc. Inst. Mech. Eng. A J. Power Energy 2003, 217, 107–117. [Google Scholar] [CrossRef]
- Setoguchi, T.; Shiomi, N.; Kaneko, K. Development of two-way diffuser for fluid energy conversion system. Renew. Energy 2004, 29, 1757–1771. [Google Scholar] [CrossRef]
- Münch, C.; Vonlanthen, M.; Gomes, J.; Luquet, R.; Guinard, P.; Avellan, F. Design and Performance Assessment of A Tidal Ducted Turbine. In Proceedings of the 3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Brno, Czech Republic, 14–16 October 2009; pp. 571–581.
- Shives, M.; Crawford, C. Overall Efficiency of Ducted Tidal Current Turbines. In Proceedings of the OCEANS 2010, Seattle, WA, USA, 20–23 September 2010; pp. 1–6.
- Shives, M.; Crawford, C. Developing an empirical model for ducted tidal turbine performance using numerical simulation results. Proc. Inst. Mech. Eng. A J. Power Energy 2012, 226, 112–125. [Google Scholar] [CrossRef]
- Mehmood, N.; Liang, Z.; Khan, J. Diffuser augmented axis tidal current turbines. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 3522–3532. [Google Scholar]
- Clarke, J.A.; Connor, G.; Grant, A.D.; Johnstone, C.M. Design and testing of a contra-rotating tidal current turbine. Proc. Inst. Mech. Eng. A J. Power Energy 2007, 221, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.A.; Connor, G.; Grant, A.D.; Johnstone, C.M.; MacKenzie, D. Development of a Contra-Rotating Tidal Current Turbine And Analysis of Performance. In Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal, 11–14 September 2007.
- Clarke, J.A.; Connor, G.; Grant, A.D.; Johnstone, C.M.; Ordonez-Sanchez, S. Contra-Rotating Marine Current Turbines: Performance in Field Trials and Power Train Developments. In Proceedings of the 10th World Renewable Energy Congress, Glasglow, UK, 19–25 July 2008.
- Clarke, J.A.; Connor, G.; Grant, A.D.; Johnstone, C.M. Development and in-Sea Performance Testing of a Single Point Mooring Supported Contra-Rotating Tidal Turbine. In Proceedings of the 28th International Conference on Ocean, Offshore and Artic Engineering, Shanghai, China, 6–11 June 2009.
- Clarke, J.A.; Connor, G.; Grant, A.D.; Johnstone, C.M.; Ordonez-Sanchez, S. Contra-Rotating Marine Current Turbines: Single Point Tethered Floating System-Stability and Performance. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009.
- Clarke, J.A.; Connor, G.; Grant, A.D.; Johnstone, C.M.; Ordonez-Sanchez, S. Analysis of a single point tensioned mooring system for station keeping of a contra-rotating marine current turbines. IET Renew. Power Gen. 2010, 4, 473–487. [Google Scholar] [CrossRef]
- Polagye, B.; Copping, A.; Kirkendall, K.; Boehlert, G.; Walker, S.; Wainstein, M.; van Cleve, B. Environmental Effects of Tidal Energy Development: A Scientific Workshop. Seattle, WA, USA, 22–24 March 2010. Available online: http://depts.washington.edu/nnmrec/workshop/docs/Tidal_energy_briefing_paper.pdf (accessed on 23 November 2012).
- Gill, A.B.; Bartlett, M.; Thomsen, F. Potential interactions between diadromous fishes of U.K. conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments. J. Fish Biol. 2012, 81, 664–695. [Google Scholar] [CrossRef] [PubMed]
- Neill, S.P.; Litt, E.J.; Couch, S.J.; Davies, A.G. The impact of tidal stream turbines on large-scale sediment dynamics. Renew. Energy 2009, 34, 2803–2812. [Google Scholar] [CrossRef]
- Neill, S.P.; Couch, S.J. Impact of Tidal Energy Converter (TEC) Array Operation on Sediment Dynamics. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011.
- Shields, M.A.; Woolf, D.K.; Grist, E.P. M.; Kerr, S.A.; Jackson, A.C.; Harris, R.E.; Bell, M.C.; Beharie, R.; Want, A.; Osalusi, E.; et al. Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment. Ocean. Coast. Manag. 2011, 54, 2–9. [Google Scholar] [CrossRef]
- Broudic, M.; Croft, T.N.; Willis, M.R.; Masters, I.; Cheong, S-H. Long Term Monitoring of Underwater Noise at a Proposed Deployment Site of a Tidal Stream Device. In Proceedings of the 4th International Conference on Ocean Energy, Dublin, Ireland, 17–19 October 2012.
- Lloyd, T.P.; Humphrey, V.F.; Turnock, S.R. Noise Modelling of Tidal Turbine Arrays for Environmental Impact Assessment. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011.
- Keenan, G.; Sparling, C.; Williams, H.; Fortune, F. SeaGen Environmental Monitoring Programme Final Report. Royal Haskoning: Edinburgh, UK, January 2011. Available online: http://www.seageneration.co.uk/environmentalaspects.php (accessed on 2 January 2013).
- Marine Current Turbines Ltd. (September 5 2012). World-Leading Tidal Energy System Achieves 5 GWh Milestone. Available online: http://www.marineturbines.com/News/2012/09/05/world-leading-tidal-energy-system-achieves-5gwh-milestone (accessed on January 5 2013).
- Prickett, P.; Grosvenor, R.; Byrne, C.; Jones, A.M.; Morris, C. Consideration of the condition based maintenance of marine tidal tuebines. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011; Available online: http://www.see.ed.ac.uk (accessed on 5 January 2012).
- Harding, S.; Thomson, J.; Polagye, B.; Richmond, M.; Durgesh, V.; Bryden, I. Extreme Value Analysis of Tidal Stream Velocity Perturbations. In Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK, 5–9 September 2011; Available online: http://www.see.ed.ac.uk (accessed on 5 January 2012).
- Orme, J.A.C.; Masters, I.; Griffiths, R.T. Investigation of the Effect of Biofouling on the Efficiency of the Marine Current Turbines. In Proceedings of the Marine Renewable Energy Conference, Newcastle, UK, 27–78 March 2001; Available online: http://swanturbines.co.uk (accessed on 23 November 2012).
- Polagye, B.; Thomson, J. Screening for Biofouling and Corrosion of Tidal Energy Device Materials: In-situ Results for Admiralty Inlet, Puget Sound, Washington. University of Washington: Seattle, WA, USA, 8 April 2010. Available online: http://depts.washington.edu/nnmrec/docs/20100408_PolagyeB_report_BiofoulingCorrosion.pdf (accessed on 5 January 2013).
- Project Management Support Services Ltd. The Skerries Tidal Stream Array Environmental Impact Assessment Scoping Report; Marine Current Turbines Ltd.: Bristol, UK, July 2006; Available online: http://www.marineenergypembrokeshire.co.uk/wp-content/uploads/2012/10/060710SkerriesScopingReportandOpinion.pdf (accessed 5 January 2013).
- Lloyd, T.P.; Turnock, S.R.; Humphrey, V.F. Modelling Techniques for Underwater Noise Generated by Tidal Turbines in Shallow Waters. In Proceedings of the ASME 30th International Conference on Ocean, Rotterdam, The Netherlands, 19–24 June 2011; Available online: http://core.kmi.open.ac.uk/display/1494698 (accessed on 5 January 2013).
- Polagye, B.; Cleve, B.V.; Copping, A.; Kirkendall, K. Environmental Effects of Tidal Energy Development. In Presented at a Scientific Workshop, 22–25 March 2010; U.S. National Oceanographic and Atmospheric Administration: Seattle, WA, USA, April 2010. Available online: http://depts.washington.edu/nnmrec/workshop/docs/workshop_report_low_res.pdf (accessed on 5 January 2013). [Google Scholar]
- Xue, K.; Zhao, J.; Song, Y.; Liu, W.; Lam, W.; Zhu, Y.; Liu, Y.; Cheng, C.; Liu, D. Direct observation of THF hydrate formation in porous microstructure using magnetic resonance imaging. Energies 2012, 5, 898–910. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, K.; Song, Y.; Liu, W.; Lam, W.; Liu, Y.; Xue, K.; Zhu, Y.; Yu, X.; Li, Q. A review on research on replacement of CH4 in natural gas hydrates by use of CO2. Energies 2012, 5, 399–419. [Google Scholar] [CrossRef]
- Kwon, T.H.; Cho, G.C. Submarine slope failure primed and triggered by bottom water warming in oceanic hydrate-bearing deposits. Energies 2012, 5, 2849–2873. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ng, K.-W.; Lam, W.-H.; Ng, K.-C. 2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines. Energies 2013, 6, 1497-1526. https://doi.org/10.3390/en6031497
Ng K-W, Lam W-H, Ng K-C. 2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines. Energies. 2013; 6(3):1497-1526. https://doi.org/10.3390/en6031497
Chicago/Turabian StyleNg, Kai-Wern, Wei-Haur Lam, and Khai-Ching Ng. 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines" Energies 6, no. 3: 1497-1526. https://doi.org/10.3390/en6031497
APA StyleNg, K.-W., Lam, W.-H., & Ng, K.-C. (2013). 2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines. Energies, 6(3), 1497-1526. https://doi.org/10.3390/en6031497