Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas
Abstract
:1. Introduction
2. Model Development
- (1)
- The model is 2D, neglecting the 3D effect;
- (2)
- Heat radiation is assumed to be negligible;
- (3)
- The flow in the gas channels is laminar due to low velocity and small dimension;
- (4)
- Electrochemical reactions are assumed to take place at the electrode-electrolyte interface only.
2.1. Electrochemical Model
2.2. Chemical Model
2.3. Computational Fluid Dynamic (CFD) Model
CO | CO2 | H2 | O2 | N2 | H2O | |
---|---|---|---|---|---|---|
σi (A) | 3.69 | 3.941 | 2.827 | 3.467 | 3.798 | 2.641 |
εi/k (K2·J−1) | 91.7 | 195.2 | 59.7 | 106.7 | 71.4 | 809.1 |
3. Numerical Methodologies
4. Results and Analysis
Parameter | Value |
---|---|
Operating temperature, T (K) | 1073 |
Operating pressure, P (bar) | 1.0 |
Electrode porosity, ε | 0.4 |
Electrode tortuosity, ξ | 3.0 |
Average pore radius, rp (μm) | 0.5 |
Anode-supported electrolyte: | - |
Anode thickness da (μm) | 500 |
Electrolyte thickness, L (μm) | 100 |
Cathode thickness, dc (μm) | 100 |
Height of gas flow channel (mm) | 1.0 |
Length of the planar SOFC (mm) | 40 |
Thickness of interconnector (mm) | 0.5 |
Inlet velocity at anode: U0 (m·s−1) | 1.0 |
Cathode inlet gas molar ratio: O2/N2/ | 0.18/0.79/0.03 |
Anode inlet gas molar ratio: H2/CO (Syngas) | 3/1 |
SOFC operating potential (V) | 0.7 |
Thermal conductivity of SOFC component (W·m−1·K−1) | - |
Anode | 11.0 |
Electrolyte | 2.7 |
Cathode | 6.0 |
Interconnect | 1.1 |
4.1. Effect of Syngas Composition
4.2. Effect of Operating Temperature
4.3. Effect of Steam Addition
5. Conclusions
Acknowledgments
Author Contributions
Nomenclature
Bg | Permeability of the porous electrode (m2) |
cp | Heat capactity (J·kg−1·K−1) |
da | Thickness of anode (µm) |
dc | Thickness of cathode (µm) |
Effective diffusion coefficient of species i in gas mixture (cm2·s−1) | |
Di,k | Knudsen diffusion coefficient of i (cm2·s−1) |
Di,j | Binary diffusion coefficient of i and j (cm2·s−1) |
E | Equilibrium potential (V) |
E0 | Reversible potential at standard condition (V) |
F | Faraday constant (9.6485 × 104 C·mol−1) |
HWGS | Heat generation from water gas shift reaction (J·mol−1) |
J | Current density (A·m−2) |
k | Thermal conductivity (W·m−1·K−1) |
L | Thickness of the electrolyte (m) |
Mi | Molecular weight of species i (kg·mol-1) |
n | Number of electrons transferred |
P | Operating pressure (bar) |
Partial pressure (bar) of species i at electrode-electrolyte interface | |
RWGSR | Rate of water gas shift reaction (mol·m−3·s−1) |
rp | Mean pore radius of electrode (µm) |
R | Universal gas constant (8.3145 J·mol−1·K−1) |
∆S | Entropy change of electrochitalicical reactions (kJ·kg−1·K−1) |
Sm | Source term in continuity equation (kg·m−3·s−1) |
Sx, Sy | Source terms in momentum equations (kg·m−2·s−2) |
ST | Source terms in energy equations (W·m−3) |
Ssp | Source terms in species equations (kg·m−3·s−1) |
T | Operating titalicperature (K) |
U | Velocity in x direction (m·s−1) |
U0 | Gas velocity at the SOFC inlet (m·s−1) |
V | SOFC operating potential (V); Velocity in y direction (m·s−1) |
X | Molar fraction of species i |
Y | Mass fraction of species i |
ε | Electrode porosity |
ξ | Electrode tortuosity |
σi,j | Mean characteristic length of species i and j (Å) |
σionic | Ionic conductivity of the electrolyte (Ω−1·m−1) |
ΩD | Dimensionless diffusion collision integral |
ρ | Density of the gas mixture (kg·m−3) |
µ | Viscosity of gas mixture (kg·m−1·s−1) |
ηact,a | Activation overpotential at anode (V) |
ηact,c | Activation overpotential at cathode (V) |
ηohmic | Ohmic overpotential of the electrolyte (V) |
Conflicts of Interest
References
- Wachsman, E.D.; Lee, K.T. Lowering the temperature of solid oxide fuel cells. Science 2011, 334, 935–939. [Google Scholar] [CrossRef]
- Lee, K.T.; Yoon, H.S.; Wachsman, E.D. The evolution of low temperature solid oxide fuel cells. J. Mater. Res. 2012, 27, 2063–2078. [Google Scholar] [CrossRef]
- Wang, Z.R.; Qian, J.; Cao, J.; Wang, S.R.; Wen, T.L. A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs). J. Alloys Compd. 2007, 437, 264–268. [Google Scholar] [CrossRef]
- Iwahara, H. High temperature protonic conductors and their applications. Solid State Ion. 1992, 575–586. [Google Scholar]
- Liu, H.; Akhtar, Z.; Li, P.W.; Wang, K. Mathematical modeling analysis and optimization of key design parameters of proton-conductive solid oxide fuel cells. Energies 2014, 7, 173–190. [Google Scholar] [CrossRef]
- Ni, M.; Leung, D.Y.C.; Leung, M.K.H. An improved electrochemical model for the NH3 fed proton conducting solid oxide fuel cells at intermediate temperatures. J. Power Sources 2008, 185, 233–240. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.H.; Leung, D.Y.C. Mathematical modeling of proton-conducting solid oxide fuel cells and comparison with oxygen ion conducting counterpart. Fuel Cells 2007, 7, 269–278. [Google Scholar] [CrossRef]
- Ni, M. The effect of electrolyte type on performance of solid oxide fuel cells running on hydrocarbon fuels. Int. J. Hydrog. Energy 2013, 38, 2846–2858. [Google Scholar] [CrossRef]
- Andersson, M.; Yuan, J.L.; Sunden, B. SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants. J. Power Sources 2013, 232, 42–54. [Google Scholar] [CrossRef]
- Pieratti, E.; Baratieri, M.; Ceschini, S.; Tognana, L.; Baggio, P. Syngas suitability for solid oxide fuel cells applications produced via biomass steam gasification process: Experimental and modeling analysis. J. Power Sources 2011, 196, 10038–10049. [Google Scholar] [CrossRef]
- Lorente, E.; Millan, M.; Brandon, N.P. Use of gasification syngas in SOFC: Impact of real tar on anode materials. Int. J. Hydrog. Energy 2012, 37, 7271–7281. [Google Scholar] [CrossRef]
- Ni, M. Modeling of SOFC running on partially pre-reformed gas mixture. Int. J. Hydrog. Energy 2012, 37, 1731–1745. [Google Scholar] [CrossRef]
- Matsumoto, H. Proton-conducting Perovskite—Properties and Experiences for Hydrogen Transport and Energy Applications. In Proceedings of the Prospects Protonic Ceramic Cells 2011—International Workshop on Protonic Ceramic Fuel Cell and Steam Electrolysis: Status and Prospects, Botanical Institute, Montpellier, France, 3–4 November 2011.
- Sohal, M.S.; Idaho National Laboratory, Idaho Falls, ID, USA. Personal communication at ASME 2010 8th International Fuel Cell Science, Engineering & Technology Conference, Brooklyn, NY, USA, 14–16 June 2010.
- Ni, M.; Leung, M.K.H.; Leung, D.Y.C. Parametric study of solid oxide fuel cell performance. Energy Convers. Manag. 2007, 48, 1525–1535. [Google Scholar] [CrossRef]
- Haberman, B.A.; Young, J.B. Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. Int. J. Heat Mass Transf. 2004, 47, 3617–3629. [Google Scholar] [CrossRef]
- Chase, M.W. NIST-JANAF Thermochemical Tables, 4th ed.; American Chemical Society, American Institute of Physics for the National Institute of Standards and Technology: Washington, DC, USA, 1998. [Google Scholar]
- Zheng, K.Q.; Sun, Q.; Ni, M. On the local thermal non-equilibrium in SOFCs considering internal reforming and ammonia thermal cracking reaction. Energy Technol. 2013, 1, 35–41. [Google Scholar] [CrossRef]
- Wang, C.Y. Fundamental models for fuel cell engineering. Chem. Rev. 2004, 104, 4727–4765. [Google Scholar] [CrossRef]
- Reid, R.C.; Prausnitz, J.M.; Poling, B.E. The Properties of Gases & Liquids, 4th ed.; McGraw-Hill Book Company: New York, NY, USA, 1987. [Google Scholar]
- Yuan, J.L.; Lv, X.R.; Sunden, B.; Yue, D.T. Analysis of parameter effects on transport phenomena in conjunction with chemical reactions in ducts relevant for methane reformers. Int. J. Hydrog. Energy 2007, 32, 3887–3898. [Google Scholar] [CrossRef]
- Ni, M. 2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell. Energy Convers. Manag. 2010, 51, 714–721. [Google Scholar] [CrossRef]
- Ni, M. Thermo-electrochemical modeling of ammonia-fueled solid oxide fuel cells considering ammonia thermal decomposition in the anode. Int. J. Hydrog. Energy 2011, 36, 3153–3166. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ni, M.; Shao, Z.; Chan, K.Y. Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas. Energies 2014, 7, 4381-4396. https://doi.org/10.3390/en7074381
Ni M, Shao Z, Chan KY. Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas. Energies. 2014; 7(7):4381-4396. https://doi.org/10.3390/en7074381
Chicago/Turabian StyleNi, Meng, Zongping Shao, and Kwong Yu Chan. 2014. "Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas" Energies 7, no. 7: 4381-4396. https://doi.org/10.3390/en7074381
APA StyleNi, M., Shao, Z., & Chan, K. Y. (2014). Modeling of Proton-Conducting Solid Oxide Fuel Cells Fueled with Syngas. Energies, 7(7), 4381-4396. https://doi.org/10.3390/en7074381