Sodium Tetraethylenepentamine Heptaacetate as Novel Draw Solute for Forward Osmosis—Synthesis, Application and Recovery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Draw Solution Synthesis and Structure Characterization
2.2. pH Optimization of Sodium Tetraethylenepentamine Heptaacetate (STPH) Soution
2.3. Concentration Effect of STPH Solution
2.4. Forward Osmosis (FO) Performance
Draw solution | Water flux (PRO-mode) (LMH) | Salt flux (PRO-mode) (gMH) | References |
---|---|---|---|
STPH, 0.5 g/mL | 28.57 (TFC) a | 0.45 (TFC) | This work |
Polyacrylamide, 0.04 g/mL | 4 (TFC) | ~0.04 (TFC) | [29] |
PAMAM-COONa (2.5G), 0.5 g/mL | 29.7 (TFC) | 8.86 (TFC) | [18] |
Thermoresponsive copolymer, 0.5 g/mL | 4 (TFC) | - | [32] |
Responsive ionic liquid (P4444DMBS) b | 4 (TFC) c | - | [31] |
Ferric complex (Fe-OA), 0.39 g/mL | 27.5 (TFC-PES1) | 0.28 (TFC-PES1) | [16] |
Ferric complex (Fe-CA), 2M | 40.5 (TFC-PES) d | 0.13 (TFC-PES) | [25] |
Cobaltous complex (Co2-CA), 2M | 24.6 (TFC-PES) | 0.13 (TFC-PES) | [25] |
NaCl, 1M | 36 (TFC) | - | [34] |
2.5. Draw Solution Recovery
2.5.1. Nanofiltration (NF) Recovery
2.5.2. Recovery by Freezing Concentration (FC)
3. Experimental Section
3.1. Materials and Chemicals
3.2. Synthesis of STPH
3.3. Structure Characterization of STPH
3.4. The Preparation and Characterization of STPH Draw Solution
3.5. FO Test
3.6. Draw Solution Recovery
3.6.1. Reconcentration by NF
3.6.2. Reconcentration by FC
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
FC | Freezing concentration |
FO | Forward osmosis |
FO mode | The active layer of FO membrane facing the feed solution |
MWCO | Molecular weight cut off, Da |
NF | Nanofiltration |
NMR | Nuclear magnetic resonance spectroscopy |
PRO | Pressure retarded osmosis |
PRO mode | The active layer of the FO membrane facing the draw solution |
RO | Reverse osmosis |
Rs | Solute rejection, % |
References
- Klaysom, C.; Cath, T.Y.; Depuydt, T.; Vankelecom, I.F.J. Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chem. Soc. Rev. 2013, 42, 6959–6989. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Zhang, S.; Li, X.; Chung, T.-S. Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation. Prog. Polym. Sci. 2015, 51, 1–27. [Google Scholar] [CrossRef]
- Loeb, S. Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations. J. Membr. Sci. 1976, 1, 49–63. [Google Scholar] [CrossRef]
- Energy sources. Available online: http://www.statkraft.com/globalassets/old-contains-the-old-folder-structure/documents/jostedal-official-assessment-final-10-may-2013_tcm9-27383.pdf (accessed on 10 May 2013).
- Achilli, A.; Childress, A.E. Pressure retarded osmosis: From the vision of Sidney Loeb to the first prototype installation—Review. Desalination 2010, 261, 205–211. [Google Scholar] [CrossRef]
- Post, J.W.; Veerman, J.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Nymeijer, K.; Buisman, C.J.N. Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. J. Membr. Sci. 2007, 288, 218–230. [Google Scholar] [CrossRef]
- Achilli, A.; Cath, T.Y.; Childress, A.E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation. J. Membr. Sci. 2009, 343, 42–52. [Google Scholar] [CrossRef]
- Kim, Y.C.; Elimelech, M. Potential of osmotic power generation by pressure retarded osmosis using seawater as feed solution: Analysis and experiments. J. Membr. Sci. 2013, 429, 330–337. [Google Scholar] [CrossRef]
- Shaffer, D.L.; Werber, J.R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward osmosis: Where are we now? Desalination 2015, 356, 271–284. [Google Scholar] [CrossRef]
- Chung, T.-S.; Zhang, S.; Wang, K.Y.; Su, J.; Ling, M.M. Forward osmosis processes: Yesterday, today and tomorrow. Desalination 2012, 287, 78–81. [Google Scholar] [CrossRef]
- Zhou, A.; Luo, H.; Wang, Q.; Chen, L.; Zhang, T.C.; Tao, T. Magnetic thermoresponsive ionic nanogels as novel draw agents in forward osmosis. RSC Adv. 2015, 5, 15359–15365. [Google Scholar] [CrossRef]
- Ling, M.M.; Wang, K.Y.; Chung, T.-S. Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind. Eng. Chem. Res. 2010, 49, 5869–5876. [Google Scholar] [CrossRef]
- Na, Y.; Yang, S.; Lee, S. Evaluation of citrate-coated magnetic nanoparticles as draw solute for forward osmosis. Desalination 2014, 347, 34–42. [Google Scholar] [CrossRef]
- Boo, C.; Khalil, Y.F.; Elimelech, M. Performance evaluation of trimethylamine–carbon dioxide thermolytic draw solution for engineered osmosis. J. Membr. Sci. 2015, 473, 302–309. [Google Scholar] [CrossRef]
- Orme, C.J.; Wilson, A.D. 1-Cyclohexylpiperidine as a thermolytic draw solute for osmotically driven membrane processes. Desalination 2015, 371, 126–133. [Google Scholar] [CrossRef]
- Ge, Q.; Chung, T.-S. Oxalic acid complexes: Promising draw solutes for forward osmosis (FO) in protein enrichment. Chem. Commun. 2015, 51, 4854–4857. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Su, J.; Amy, G.L.; Chung, T.-S. Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water Res. 2012, 46, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Chen, S.; Wang, P.; Zhao, Q.; Lu, X. A Dendrimer-Based Forward Osmosis Draw Solute for Seawater Desalination. Ind. Eng. Chem. Res. 2014, 53, 16170–16175. [Google Scholar] [CrossRef]
- Long, Q.; Qi, G.; Wang, Y. Synthesis and application of ethylenediamine tetrapropionic salt as a novel draw solute for forward osmosis application. AIChE J. 2015, 61, 1309–1321. [Google Scholar] [CrossRef]
- Shao, L.; Cheng, X.Q.; Liu, Y.; Quan, S.; Ma, J.; Zhao, S.Z.; Wang, K.Y. Newly developed nanofiltration (NF) composite membranes by interfacial polymerization for Safranin O and Aniline blue removal. J. Membr. Sci. 2013, 430, 96–105. [Google Scholar] [CrossRef]
- Beaudry, E.; Herron, J.; Lampi, K. Forward osmosis pressurized device and process for generating potable water. U.S. Patent 6,849,184, 4 December 2007. [Google Scholar]
- Hau, N.T.; Chen, S.-S.; Nguyen, N.C.; Huang, K.Z.; Ngo, H.H.; Guo, W. Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge. J. Membr. Sci. 2014, 455, 305–311. [Google Scholar] [CrossRef]
- Ge, Q.; Wang, P.; Wan, C.; Chung, T.-S. Polyelectrolyte-Promoted Forward Osmosis-Membrane Distillation (FO-MD) Hybrid Process for Dye Wastewater Treatment. Environ. Sci. Technol. 2012, 46, 6236–6243. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.X.; Zhao, D.; Zhao, Q.; Wang, P.; Lu, X. Na+-functionalized carbon quantum dots: A new draw solute in forward osmosis for seawater desalination. Chem. Commun. 2014, 50, 7318–7321. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Fu, F.; Chung, T.-S. Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes. Water Res. 2014, 58, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Chen, N.; Zhao, D.; Lu, X. Thermoresponsive Magnetic Nanoparticles for Seawater Desalination. ACS Appl. Mater. Interfaces 2013, 5, 11453–11461. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Shen, W.; Wang, R.; Krantz, W.B.; Fane, A.G.; Hu, X. CO2 switchable dual responsive polymers as draw solutes for forward osmosis desalination. Chem. Commun. 2013, 49, 8377–8379. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Chung, T.-S. Hydroacid complexes: A new class of draw solutes to promote forward osmosis (FO) processes. Chem. Commun. 2013, 49, 8471–8473. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Gao, B.; Xu, S.; Kong, J.; Ma, D.; Shon, H.K.; Yue, Q.; Liu, P. Polyelectrolyte-promoted forward osmosis process for dye wastewater treatment—Exploring the feasibility of using polyacrylamide as draw solute. Chem. Eng. J. 2015, 264, 32–38. [Google Scholar] [CrossRef]
- Ou, R.; Wang, Y.; Wang, H.; Xu, T. Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process. Desalination 2013, 318, 48–55. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, W.; Wei, J.; Chong, T.H.; Wang, R.; Krantz, W.B.; Fane, A.G.; Hu, X. Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes. Environ. Sci. Water Res. Technol. 2015, 1, 341–347. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, P.; Zhao, Q.; Chen, N.; Lu, X. Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation. Desalination 2014, 348, 26–32. [Google Scholar] [CrossRef]
- Li, D.; Wang, H. Smart draw agents for emerging forward osmosis application. J. Mater. Chem. A 2013, 1, 14049–14060. [Google Scholar] [CrossRef]
- The membrane technical data sheet. Available online: http://www.htiwater.com/shop/research/form.php (accessed on 12 Decemeber 2012).
- Shao, L.; Cheng, X.; Wang, Z.; Ma, J.; Guo, Z. Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide. J. Membr. Sci. 2014, 452, 82–89. [Google Scholar] [CrossRef]
- Fang, Y.; Bian, L.; Wang, X. Understanding membrane parameters of a forward osmosis membrane based on nonequilibrium thermodynamics. J. Membr. Sci. 2013, 437, 72–81. [Google Scholar] [CrossRef]
- Khosa, M.A.; Shah, S.S.; Feng, X. Metal sericin complexation and ultrafiltration of heavy metals from aqueous solution. Chem. Eng. J. 2014, 244, 446–456. [Google Scholar] [CrossRef]
- Fujioka, R.; Wang, L.P.; Dodbiba, G.; Fujita, T. Application of progressive freeze-concentration for desalination. Desalination 2013, 319, 33–37. [Google Scholar] [CrossRef]
- Williams, P.M.; Ahmad, M.; Connolly, B.S.; Oatley-Radcliffe, D.L. Technology for freeze concentration in the desalination industry. Desalination 2015, 356, 314–327. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Q.W.; Wang, Y. Sodium Tetraethylenepentamine Heptaacetate as Novel Draw Solute for Forward Osmosis—Synthesis, Application and Recovery. Energies 2015, 8, 12917-12928. https://doi.org/10.3390/en81112344
Long QW, Wang Y. Sodium Tetraethylenepentamine Heptaacetate as Novel Draw Solute for Forward Osmosis—Synthesis, Application and Recovery. Energies. 2015; 8(11):12917-12928. https://doi.org/10.3390/en81112344
Chicago/Turabian StyleLong, Qing Wu, and Yan Wang. 2015. "Sodium Tetraethylenepentamine Heptaacetate as Novel Draw Solute for Forward Osmosis—Synthesis, Application and Recovery" Energies 8, no. 11: 12917-12928. https://doi.org/10.3390/en81112344
APA StyleLong, Q. W., & Wang, Y. (2015). Sodium Tetraethylenepentamine Heptaacetate as Novel Draw Solute for Forward Osmosis—Synthesis, Application and Recovery. Energies, 8(11), 12917-12928. https://doi.org/10.3390/en81112344