Responses of Ecosystem Service to Land Use Change in Qinghai Province
Abstract
:1. Introduction
2. Study Area
3. Research Method and Data Sources
3.1. Analysis of Land Use Change
3.1.1. Single Land Use Dynamic Degree
3.1.2. Comprehensive Land Use Dynamic Degree
3.2. Method of Ecological Service Value Assessment
3.2.1. Unit Price of the Farmland’s Food Production Service
3.2.2. Unit Prices of Each Ecological Service Function
3.2.3. Regional Ecological Service Value
3.3. Sensitivity of Ecological Service Function to Land Use Change
3.4. Data Source
4. Results
4.1. Land Use Structure and Its Change in Qinghai Province
4.2. Changes in the Economic Value of Ecosystem Service in Qinghai Province
4.3. Sensitivity of Ecological Service Function to Land Use Change
5. Discussion
5.1. Driving Forces of Land Use Change in Qinghai Province
5.2. Main Factors Influencing Ecological Service Change in Qinghai Province
5.3. Response of Ecological Service Value to Land Conversion
5.4. Implications of Land Use Management According to the Sensitivity Analysis
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef]
- Carroll, M.; Wilson, W.H.M. Man’s Impact on the Global Environment; MIT Press: Cambridge, UK, 1970. [Google Scholar]
- Westman, W.E. How much are nature’s services worth? Science 1977, 197, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.R.; Ehrlich, A.H. Extinction: The Causes and Consequences of the Disappearance of Species; Random House: New York, NY, USA, 1981. [Google Scholar]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997; Volume 1, p. 392. [Google Scholar]
- Costanza, R.; d’Arge, R.; deGroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Assessment, M.E. Ecosystems and Human Well-Being: Biodiversity Synthesis; Island Press: Washington, DC, USA, 2005; p. 102. [Google Scholar]
- Metzger, M.J.; Rounsevell, M.D.A.; Acosta-Michlik, L.; Leemans, R.; Schrotere, D. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Nelson, G.C.; Bennett, E.; Berhe, A.A.; Cassman, K.; DeFries, R.; Dietz, T.; Dobermann, A.; Dobson, A.; Janetos, A.; Levy, M.; et al. Anthropogenic drivers of ecosystem change: An overview. Ecol. Soc. 2006, 11, 29. [Google Scholar]
- Foley, J.A.; Asner, G.P.; Costa, M.H.; Coe, M.T.; DeFries, R.; Gibbs, H.K.; Howard, E.A.; Olson, S.; Patz, J.; Ramankutty, N.; et al. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the amazon basin. Front. Ecol. Environ. 2007, 5, 25–32. [Google Scholar] [CrossRef]
- Zhao, B.; Kreuter, U.; Li, B.; Ma, Z.J.; Chen, J.K.; Nakagoshi, N. An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy 2004, 21, 139–148. [Google Scholar] [CrossRef]
- Lautenbach, S.; Kugel, C.; Lausch, A.; Seppelt, R. Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol. Indic. 2011, 11, 676–687. [Google Scholar] [CrossRef]
- Flynn, D.F.B.; Gogol-Prokurat, M.; Nogeire, T.; Molinari, N.; Richers, B.T.; Lin, B.B.; Simpson, N.; Mayfield, M.M.; DeClerck, F. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 2009, 12, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Priess, J.A.; Mimler, M.; Klein, A.M.; Schwarze, S.; Tscharntke, T.; Steffan-Dewenter, I. Linking deforestation scenarios to pollination services and economic returns in coffee agroforestry systems. Ecol. Appl. 2007, 17, 407–417. [Google Scholar] [CrossRef] [PubMed]
- O’Farrell, P.J.; Donaldson, J.S.; Hoffman, M.T. The influence of ecosystem goods and services on livestock management practices on the Bokkeveld plateau, South Africa. Agric. Ecosyst. Environ. 2007, 122, 312–324. [Google Scholar] [CrossRef]
- Yadav, V.; Malanson, G. Spatially explicit historical land use land cover and soil organic carbon transformations in Southern Illinois. Agric. Ecosyst. Environ. 2008, 123, 280–292. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, X.; Miao, H. China’s eco-environmental sensitivity and its spatial heterogeneity. Acta Ecol. Sin. 2000, 20, 9–12. (In Chinese) [Google Scholar]
- Cramer, W. Advanced terrestrial ecosystem analysis and modelling. Reg. Environ. Change 2008, 8, 89–90. [Google Scholar] [CrossRef]
- Hendrey, G.R.; Galloway, J.N.; Norton, S.A.; Schofield, C.L.; Shaffer, P.W. Geological and Hydrochemical Sensitivity of the Eastern United States to Acid Precipitation; EPA-600/3-80-024; Brookhaven National Lab.: Upton, NY, USA, 1980.
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H. Climate Change, 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Jagtap, T.; Komarpant, D.; Rodrigues, R. Status of a seagrass ecosystem: An ecologically sensitive wetland habitat from India. Wetlands 2003, 23, 161–170. [Google Scholar] [CrossRef]
- Bergengren, J.C.; Waliser, D.E.; Yung, Y.L. Ecological sensitivity: A biospheric view of climate change. Clim. Chang. 2011, 107, 433–457. [Google Scholar] [CrossRef]
- Xiao, Y.; Xie, G.; An, K. Economic value of ecosystem services in mangcuo lake drainage basin. J. Appl. Ecol. 2003, 14, 676–680. [Google Scholar]
- Zhang, Y.; Su, F.; Hao, Z.; Xu, C.; Yu, Z.; Wang, L.; Tong, K. Impact of projected climate change on the hydrology in the headwaters of the yellow river basin. Hydrol. Process. 2015, 29, 4379–4397. [Google Scholar] [CrossRef]
- Ren, G.; Conti, E.; Salamin, N. Phylogeny and biogeography of Primula sect. Armerina: Implications for plant evolution under climate change and the uplift of the Qinghai-Tibet Plateau. BMC Evol. Biol. 2015, 15. [Google Scholar] [CrossRef]
- Xu, X.; Keller, G.R.; Gao, R.; Guo, X.; Zhu, X. Uplift of the longmen shan area in the eastern tibetan plateau: An integrated geophysical and geodynamic analysis. Int. Geol. Rev. 2016, 58, 14–31. [Google Scholar] [CrossRef]
- Lei, L.P.; Zeng, Z.C.; Zhang, B. Method for detecting snow lines from MODIS data and assessment of changes in the Nianqingtanglha mountains of the Tibet plateau. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 769–776. [Google Scholar]
- Liu, S.; Ding, Y.; Li, J.; Shangguan, D.; Zhang, Y. Glaciers in response to recent climate warming in Western China. Quat. Sci. 2006, 26, 762–771. (In Chinese) [Google Scholar]
- Wang, W.; Yao, T.; Yang, X. Variations of glacial lakes and glaciers in the Boshula mountain range, southeast Tibet, from the 1970s to 2009. Ann. Glaciol. 2011, 52, 9–17. [Google Scholar] [CrossRef]
- Wu, S.-S.; Yao, Z.-J.; Huang, H.-Q.; Liu, Z.-F.; Liu, G.-H. Responses of glaciers and glacial lakes to climate variation between 1975 and 2005 in the Rongxer basin of Tibet, China and Nepal. Reg. Environ. Chang. 2012, 12, 887–898. [Google Scholar] [CrossRef]
- Li, J.; He, N.; Wei, X.; Gao, Y.; Zuo, Y. Changes in temperature sensitivity and activation energy of soil organic matter decomposition in different Qinghai-Tibet Plateau grasslands. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Zhao, L.; Wu, X.-D.; Li, Y.-Q.; Yue, G.-Y.; Zhao, Y.-H.; Qiao, Y.-P. Soil organic matter fractions under different vegetation types in permafrost regions along the Qinghai-Tibet Highway, north of Kunlun Mountains, China. J. Mt. Sci. 2015, 12, 1010–1024. [Google Scholar] [CrossRef]
- Li, Q.; Jia, Z.; Zhu, Y.; Wang, Y.; Li, H.; Yang, D.; Zhao, X. Spatial heterogeneity of soil nutrients after the establishment of Caragana intermedia plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, W.; Lang, L.; Hua, T. Controls on desertification during the early twenty-first century in the Water Tower region of China. Reg. Environ. Chang. 2015, 15, 735–746. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y.; Shen, Z.; Wang, J.; Yu, C.; Zhang, Y.; Shi, P.; Fu, G.; Zhu, J. Frontier of the ecological construction support the sustainable development in Tibet Autonomous Region. Bull. Chin. Acad. Sci. 2015, 30, 306–312. [Google Scholar]
- Wen, L.; Dong, S.; Li, Y.; Wang, X.; Li, X.; Shi, J.; Dong, Q. The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant Soil 2013, 368, 329–340. [Google Scholar] [CrossRef]
- Wang, J. The moving tendency of holdridge life zone with its dry and wet climate changes of Gannan meadow in recent 40 years. J. Appl. Meteorol. Sci. 2012, 23, 604–608. (In Chinese) [Google Scholar]
- Ren, G.; Shang, Z.; Long, R.; Hou, Y.; Deng, B. The relationship of vegetation and soil differentiation during the formation of black-soil-type degraded meadows in the headwater of the Qinghai-Tibetan Plateau, China. Environ. Earth Sci. 2013, 69, 235–245. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. (In Chinese) [Google Scholar]
- Lu, C.-X.; Yu, G.; Xiao, Y.; Xie, G.-D. Wind tunnel simulation and evaluation of soil conservation function of alpine grassland in Qinghai-Tibet Plateau. Ecol. Econ. 2013, 86, 16–20. [Google Scholar] [CrossRef]
- Wang, J.; Tian, J.; Li, X.; Ma, Y.; Yi, W. Evaluation of concordance between environment and economy in Qinghai Lake Watershed, Qinghai-Tibet Plateau. J. Geogr. Sci. 2011, 21, 949–960. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Wang, Z.; Bai, W. Changes of wetland ecosystem service value in the Lhasa River Basin of Tibetan Plateau. Resour. Sci. 2010, 32, 2038–2044. [Google Scholar]
- Li, Y.; Liu, Y. Evaluation of ecosystem service function value in Qinghai. J. Arid Land Resour. Environ. 2010, 5, 1–10. (In Chinese) [Google Scholar]
- Wang, X.; Bao, Y. Study on the methods of landuse dynamic change research. Prog. Geogr. 1999, 18, 81–87. (In Chinese) [Google Scholar]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. (In Chinese) [Google Scholar]
- Zheng, J.; Yu, X.; Jia, G.; Xia, B. Dynamic evolution of the ecological service value based on LUCC in Miyun Reservoir Catchment. Trans. Chin. Soc. Agric. Eng. 2010, 9, 315–320. [Google Scholar]
- Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences. Available online: http://www.resdc.cn (accessed on 19 October 2015).
- Liu, J. Study on national resources & environment survey and dynamic monitoring using remote sensing. J. Remote Sens. 1997, 1, 225–230. [Google Scholar]
- Liu, J. Macro-Scale Survey and Dynamic Study of Natural Resources and Environment of China by Remote Sensing; China Science and Technology Press: Beijing, China, 1996. [Google Scholar]
- Qinghai Bureau of Statistics. Qinghai Statistical Yearbooks (1989–2009). Available online: http://tongji.cnki.net/kns55/navi/HomePage.aspx?id=N2014110019&name=YQHTJ&floor=1 (accessed on 20 October 2015).
- National Bureau of Statistics of China. China Rural Statistical Yearbooks (2000–2009). Available online: http://tongji.cnki.net/kns55/navi/HomePage.aspx?id=N2014120439&name=YMCTJ&floor=1 (accessed on 21 October 2015).
- Qinghai Peoples Government. General Land Use Planning of Qinghai Province (2006–2020). 2010. Available online: http://www.guotuzy.cn/html/1312/n-163433.html (accessed on 19 October 2015).
- Zhang, T.; Yan, L.; Zhang, F.; Li, C.; Dong, Z.; Chai, X.; Li, Z. The impacts of climate change on the natural pasture grass in Qinghai Province. Plateau Meteorol. 2007, 4, 724–731. (In Chinese) [Google Scholar]
Primary Type | Secondary Type | Forest | Grassland | Farmland | River/Lake | Desert |
---|---|---|---|---|---|---|
Provision | Food production | 0.33 | 0.43 | 1.00 | 0.53 | 0.02 |
Raw material production | 2.98 | 0.36 | 0.39 | 0.35 | 0.04 | |
Regulation | Gas regulation | 4.32 | 1.50 | 0.72 | 0.51 | 0.06 |
Climate regulation | 4.07 | 1.56 | 0.97 | 2.06 | 0.13 | |
Hydrology regulation | 4.09 | 1.52 | 0.77 | 18.77 | 0.07 | |
Waste regulation | 1.72 | 1.32 | 1.39 | 14.85 | 0.26 | |
Support | Soil conservation | 4.02 | 2.24 | 1.47 | 0.41 | 0.17 |
Biodiversity maintenance | 4.51 | 1.87 | 1.02 | 3.43 | 0.40 | |
Culture | Aesthetic landscape provision | 2.08 | 0.87 | 0.17 | 4.44 | 0.24 |
Total | 28.12 | 11.67 | 7.90 | 45.35 | 1.39 |
Primary Type | Secondary Type | Forest | Grassland | Farmland | River/Lake | Desert |
---|---|---|---|---|---|---|
Provision | Food production | 75.08 | 97.84 | 227.53 | 120.59 | 4.55 |
Raw material production | 678.04 | 81.91 | 88.74 | 79.64 | 9.10 | |
Regulation | Gas regulation | 982.93 | 341.30 | 163.82 | 116.04 | 13.65 |
Climate regulation | 926.05 | 354.95 | 220.71 | 468.71 | 29.58 | |
Hydrology regulation | 930.60 | 345.84 | 175.20 | 4270.74 | 15.93 | |
Waste regulation | 391.35 | 300.34 | 316.27 | 3378.82 | 59.16 | |
Support | Soil conservation | 914.67 | 509.67 | 334.47 | 93.29 | 38.68 |
Biodiversity maintenance | 1026.16 | 425.48 | 232.08 | 780.43 | 91.01 | |
Culture | Aesthetic landscape provision | 473.26 | 197.95 | 38.68 | 1010.23 | 54.61 |
Total | 6398.14 | 2655.28 | 1797.49 | 10,318.49 | 316.27 |
Land Use Type | 1988–2000 | 2000–2008 | 1988–2008 |
---|---|---|---|
Cultivated land | 0.27 | 0.02 | 0.17 |
Forestry areas | −0.01 | −0.01 | −0.01 |
Grassland | −0.01 | −0.03 | −0.02 |
Water areas | −0.04 | 0.36 | 0.12 |
Construction land | 0.77 | 4.64 | 2.49 |
Unused land | 0.01 | −0.01 | 0.00 |
Comprehensive dynamic degree | 0.02 | 0.04 | 0.03 |
Ecosystem | 1988 | Change of ESVj | |||
---|---|---|---|---|---|
ESVj | Proportion | 1988–2000 | 2000–2008 | 1988–2008 | |
Farmland | 14.35 | 0.91 | 0.47 | 0.03 | 0.50 |
Forest | 181.66 | 11.54 | −0.12 | −0.11 | −0.23 |
Grassland | 1003.09 | 63.74 | −1.18 | −2.23 | −3.41 |
River/lake | 288.03 | 18.30 | −1.44 | 8.17 | 6.73 |
Desert | 86.56 | 5.50 | 0.08 | −0.1 | −0.02 |
Total | 1573.68 | 100.00 | −2.19 | 5.77 | 3.58 |
Primary Type | Secondary Type | 1988 | Change of ESVi | |||
---|---|---|---|---|---|---|
ESVi | Proportion | 1988–2000 | 2008–2000 | 1988–2000 | ||
Provision | Food production | 45.52 | 2.89 | 0.00 | 0.01 | 0.01 |
Raw material production | 55.62 | 3.53 | −0.04 | −0.02 | −0.06 | |
Regulation | Gas regulation | 165.12 | 10.49 | −0.14 | −0.21 | −0.35 |
Climate regulation | 183.32 | 11.65 | −0.17 | 0.05 | −0.12 | |
Hydrology regulation | 282.04 | 17.92 | −0.72 | 3.08 | 2.36 | |
Waste regulation | 237.60 | 15.10 | −0.51 | 2.40 | 1.89 | |
Support | Soil conservation | 234.37 | 14.89 | −0.16 | −0.38 | −0.54 |
Biodiversity maintenance | 238.42 | 15.15 | −0.24 | 0.22 | −0.02 | |
Culture | Aesthetic landscape provision | 131.67 | 8.37 | −0.21 | 0.61 | 0.40 |
Total | 1573.68 | 100.00 | −2.91 | 5.77 | 3.58 |
Regions | Increase in Sensitivity | Decrease in Sensitivity | ||
---|---|---|---|---|
Area | Proportion | Area | Proportion | |
Eastern Region | 1.87 | 54.96 | 1.54 | 45.04 |
Qinghai Lake Region | 2.53 | 40.35 | 3.74 | 59.65 |
Qaidam Region | 25.45 | 100.00 | 0.00 | 0.00 |
Three Rivers Source Region | 26.03 | 91.77 | 2.34 | 8.23 |
Total | 55.88 | 88.02 | 7.61 | 11.98 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Song, W.; Deng, X. Responses of Ecosystem Service to Land Use Change in Qinghai Province. Energies 2016, 9, 303. https://doi.org/10.3390/en9040303
Han Z, Song W, Deng X. Responses of Ecosystem Service to Land Use Change in Qinghai Province. Energies. 2016; 9(4):303. https://doi.org/10.3390/en9040303
Chicago/Turabian StyleHan, Ze, Wei Song, and Xiangzheng Deng. 2016. "Responses of Ecosystem Service to Land Use Change in Qinghai Province" Energies 9, no. 4: 303. https://doi.org/10.3390/en9040303
APA StyleHan, Z., Song, W., & Deng, X. (2016). Responses of Ecosystem Service to Land Use Change in Qinghai Province. Energies, 9(4), 303. https://doi.org/10.3390/en9040303