Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture
Abstract
:1. Introduction
- (1)
- Highly uniform nanocrystalline Zeolite Socony Mobil–5(HUN-ZSM-5);
- (2)
- Conventional ZSM-5 (C-ZSM-5);
- (3)
- β-zeolite.
- (1)
- Highly hydrothermally stable Al-MCM-41 with accessible void defects (Al-MCM-41(hhs));
- (2)
- Kanemite-derived folded silica (KFS-16B);
- (3)
- Well-ordered Al-SBA-15 (Al-SBA-15(wo)).
2. Materials and Methods
2.1. Materials
2.2. Catalyst Preparation and Characterization
2.3. Elemental Analysis of Plastic Feedstock
2.4. Thermogravimetric Analysis
2.5. Pyrolysis Experiment and Analytical Techniques
3. Results and Discussion
3.1. Characterization of Plastic Feedstock
3.2. Characterization of Catalysts
3.3. Catalytic Pyrolysis
3.3.1. Pyrolysis Yields
3.3.2. Analysis of Pyrolysis Oil and Wax
3.3.3. Analysis of Pyrolysis Gas
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Keane, M.A. Catalytic transformation of waste polymers into fuel oil. ChemSusChem 2009, 2, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Gobin, K.; Manos, G. Polymer degradation to fuels over Microporous catalysts as a novel tertiary plastic recycling method. Polym. Degrad. Stab. 2004, 83, 267–279. [Google Scholar] [CrossRef]
- Keane, M.A. Catalytic conversion of waste plastics: Focus on waste PVC. J. Chem. Technol. Biotechnol. 2007, 82, 787–795. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals. ACS Catal. 2012, 2, 1924–1941. [Google Scholar] [CrossRef]
- Panda, A.K.; Singh, R.K.; Mishra, D.K. Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew. Sust. Energy Rev. 2010, 14, 233–248. [Google Scholar] [CrossRef]
- Ivanova, S.R.; Gumerova, E.F.; Minsker, K.S.; Zaikov, G.E.; Berlin, A.A. Selective catalytic degradation of polyolefins. Prog. Polym. Sci. 1990, 15, 193–215. [Google Scholar] [CrossRef]
- Adams, C.J.; Earle, M.J.; Seddon, K.R. Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids. Green Chem. 2000, 2, 21–24. [Google Scholar] [CrossRef]
- Satterfield, C.N. Heterogeneous Catalysis in Industrial Practice, 2nd ed.; Krieger Publishing: Malabar, FL, USA, 1996. [Google Scholar]
- Aguado, J.; Serrano, D.P.; Van Grieken, R.; Escola, J.M.; Garagorri, E. 24-P-13-Catalytic properties of micelle templated Microporous and Mesoporous materials for the conversion of low-density polyethylene. Stud. Surf. Sci. Catal. 2001, 135, 273. [Google Scholar]
- Garforth, A.; Fiddy, S.; Lin, Y.H.; Ghanbari-Siakhali, A.; Sharratt, P.; Dwyer, J. Catalytic degradation of high density polyethylene: an evaluation of mesoporous and microporous catalysts using thermal analysis. Thermochim. Acta 1997, 294, 65–69. [Google Scholar] [CrossRef]
- Schirmer, J.; Kim, J.S.; Klemm, E. Catalytic degradation of polyethylene using thermal gravimetric analysis and a cycled-spheres-reactor. J. Anal. Appl. Pyrolysis 2001, 60, 205–217. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.; Rodríguez, J.; Morselli, L.; Orsi, R. Thermal and catalytic cracking of a LDPE–EVA copolymer mixture. J. Anal. Appl. Pyrolysis 2003, 68, 481–494. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M.; Garagorri, E. Conversion of low density polyethylene into petrochemical feedstocks using a continuous screw kiln reactor. J. Anal. Appl. Pyrolysis 2001, 58, 789–801. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M.; Garagorri, E.; Morselli, L.; Palazzi, G.; Orsi, R. Feedstock recycling of agriculture plastic film wastes by catalytic cracking. Appl. Catal. B Environ. 2004, 49, 257–265. [Google Scholar] [CrossRef]
- Yusaku, S.; Azhar Uddin, M.; Akinori, M.; Yasufumi, K.; Kazuo, K.; Katsuhide, M. Catalytic degradation of polyethylene into fuel oil over mesoporous silica (KFS-16) catalyst. J. Anal. Appl. Pyrolysis 1997, 43, 15–25. [Google Scholar]
- Renzinia, M.S.; Lerici, L.C.; Sedranb, U.; Pierella, L.B. Stability of ZSM-11 and BETA zeolites during the catalytic cracking of low-density polyethylene. J. Anal. Appl. Pyrolysis 2011, 92, 450–455. [Google Scholar] [CrossRef]
- Bhangea, P.; Bhangea, D.S.; Pradhana, S.; Ramaswamy, V. Direct synthesis of well-ordered Mesoporous Al-SBA-15 and its correlation with the catalytic activity. Appl. Catal. A Gen. 2011, 400, 176–184. [Google Scholar] [CrossRef]
- Song, C.M.; Jiang, J.; Yan, Z.F. Synthesis and characterization of MCM-41-type composite materials prepared from ZSM-5 zeolite. J. Porous Mater. 2008, 15, 205–211. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Morales, G.; Rodriguez, J.M.; Peral, A.; Thommes, M.; Epping, J.D.; Chmelka, B.F. Molecular and meso-and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chem. Mater. 2009, 21, 641–654. [Google Scholar] [CrossRef]
- Hidalgo, C.V.; Itoh, H.; Hattori, T.; Niwa, M.; Murakami, Y. Measurement of the acidity of various zeolites by temperature-programmed desorption of ammonia. J. Catal. 1984, 85, 362–369. [Google Scholar] [CrossRef]
- Resini, C.; Montanari, T.; Nappi, L.; Bagnasco, G.; Turco, M.; Busca, G.; Bregani, F.; Notaro, M.; Rocchini, G. Selective catalytic reduction of NOx by methane over Co-H-MFI and Co-H-FER zeolite catalysts: characterisation and catalytic activity. J. Catal. 2003, 214, 179–190. [Google Scholar] [CrossRef]
- Bockhorn, H.; Hornung, A.; Hornung, U.; Schawaller, D. Kinetic study on the thermal degradation of polypropylene and polyethylene. J. Anal. Appl. Pyrolysis 1999, 48, 93–109. [Google Scholar] [CrossRef]
- López, A.; De Marco, I.; Caballero, B.M.; Laresgoiti, M.F.; Adrados, A.; Aranzabal, A. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Appl. Catal. B Environ. 2011, 104, 211–219. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M.; Rodríguez, J.M.; Peral, Á. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds. Chem. Mater. 2006, 18, 2462–2464. [Google Scholar] [CrossRef]
- Cesteros, Y.; Haller, G.L. Several factors affecting Al-MCM-41 synthesis. Microporous Mesoporous Mater. 2001, 43, 171–179. [Google Scholar] [CrossRef]
- Aguado, J.; Serrano, D.P.; Escola, J.M. A sol–gel approach for the room temperature synthesis of Al-containing micelle-templated silica. Microporous Mesoporous Mater. 2000, 34, 43–54. [Google Scholar] [CrossRef]
- Liu, W.-W.; Hu, C.-W.; Yang, Y.; Tong, D.-M.; Zhu, L.-F.; Zhang, R.-N.; Zhao, B.-H. Study on the effect of metal types in (Me)-Al-MCM-41 on the Mesoporous structure and catalytic behavior during the vapor-catalyzed co-pyrolysis of pubescens and LDPE. Appl. Catal. B Environ. 2013, 129, 202–213. [Google Scholar] [CrossRef]
- Hernández, M.R.; Gómez, A.; García, Á.N.; Agulló, J.; Marcilla, A. Effect of the temperature in the nature and extension of the primary and secondary reactions in the thermal and HZSM-5 catalytic pyrolysis of HDPE. Appl. Catal. A Gen. 2007, 317, 183–194. [Google Scholar] [CrossRef]
- Elordi, G.; Olazar, M.; Lopez, G.; Amutio, M.; Artetxe, M.; Aguado, R.; Bilbao, J. Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. J. Anal. Appl. Pyrolysis 2009, 85, 345–351. [Google Scholar] [CrossRef]
- González-Velasco, J.R.; López-Fonseca, R.; Aranzabal, A.; Gutiérrez-Ortiz, J.I.; Steltenpohl, P. Evaluation of H-type zeolites in the destructive oxidation of chlorinated volatile organic compounds. Appl. Catal. B Environ. 2000, 24, 233–242. [Google Scholar] [CrossRef]
- Aguado, J.; Serrano, D.P.; San Miguel, G.; Escola, J.M.; Rodriguez, J.M. Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins. J. Anal. Appl. Pyrolysis 2007, 78, 153–161. [Google Scholar] [CrossRef]
- Angyal, A.; Miskolczi, N.; Bartha, L.; Valkai, I. Catalytic cracking of polyethylene waste in horizontal tube reactor. Polym. Degrad. Stab. 2009, 94, 1678–1683. [Google Scholar] [CrossRef]
- Mastral, J.F.; Berrueco, C.; Gea, M.; Ceamanos, J. Catalytic degradation of high density polyethylene over nanocrystalline HZSM-5 zeolite. Polym. Degrad. Stab. 2006, 91, 3330–3338. [Google Scholar] [CrossRef]
- Aguado, J.; Serrano, D.P.; San Miguel, G.; Castro, M.C.; Madrid, S. Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system. J. Anal. Appl. Pyrolysis 2007, 79, 415–423. [Google Scholar] [CrossRef]
- Chaianansutcharit, S.; Katsutath, R.; Chaisuwan, A.; Bhaskar, T.; Nigo, A.; Muto, A.; Sakata, Y. Catalytic degradation of polyolefins over hexagonal Mesoporous silica: Effect of aluminum addition. J. Anal. Appl. Pyrolysis 2007, 80, 360–368. [Google Scholar] [CrossRef]
- Miskolczi, N.; Bartha, L.; Deák, G. Thermal degradation of polyethylene and polystyrene from the packaging industry over different catalysts into fuel-like feed stocks. Polym. Degrad. Stab. 2006, 91, 517–526. [Google Scholar] [CrossRef]
- Marcilla, A.; Beltrán, M.; Navarro, R. Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Appl. Catal. B Environ. 2009, 86, 78–86. [Google Scholar] [CrossRef]
- Park, D.W.; Hwang, E.Y.; Kim, J.R.; Choi, J.K.; Kim, Y.A.; Woo, H.C. Catalytic degradation of polyethylene over solid acid catalysts. Polym. Degrad. Stab. 1999, 65, 193–198. [Google Scholar] [CrossRef]
- Wei, T.T.; Wu, K.J.; Lee, S.L.; Lin, Y.H. Chemical recycling of post-consumer polymer waste over fluidizing cracking catalysts for producing chemicals and hydrocarbon fuels. Resour. Conserv. Recycl. 2010, 54, 952–961. [Google Scholar] [CrossRef]
Plastic Feedstock | Na | Al | Fe | Mg | O | Cl | S |
---|---|---|---|---|---|---|---|
PE | n.d. | n.d. | n.d. | n.d. | 1.68 | 0.04 | 0.35 |
PP | 0.14 | 0.49 | 0.03 | 0.93 | 2.36 | 0.11 | 0.20 |
Experiment | Textural Properties 1 | Acidity (mmol NH3·g−1) | |||
---|---|---|---|---|---|
Catalyst | BET Surface area 2 (m2·g−1) | Total Pore Volume (cm3·g−1) | Mesopore Diameter (Ǻ) | Weak Acid Site (100–280 °C) | Strong Acid Site (300–550 °C) |
C-ZSM-5 | 393.9 | 0.258 | n.a. | 0.238 | 0.269 |
B-Zeolite | 474.9 | 0.304 | n.a. | 0.215 | 0.098 |
HUN-ZSM-5 | 617.2 | 0.398 | n.a. | 0.505 | n.d. |
KFS-16B | 866.2 | 1.072 | 45.09 | 0.097 | 0.05 |
Al-MCM-41(hhs) | 1005 | 1.003 | 33.94 | 0.108 | 0.115 |
Al-SBA-15(wo) | 742.1 | 1.106 | 52.74 | 0.049 | n.d. |
Experiment | Light Hydrocarbons (≤C13) | Heavy Hydrocarbons (>C13) | ||||||
---|---|---|---|---|---|---|---|---|
Catalyst | Alkane | Alkene | Cycloparaffin | Aromatics | Alkane | Alkene | Cycloparaffin | Aromatics |
No catalyst | 9.5 | 22.3 | 7.1 | 1.5 | 27.2 | 20.7 | 0.8 | n.d. |
C-ZSM-5 | 13.0 | 16.9 | 13.4 | 42.8 | 12.4 | n.d. | n.d. | n.d. |
HUN-ZSM-5 | 0.7 | 78.4 | 9.1 | 7.2 | n.d. | n.d. | n.d. | n.d. |
B-Zeolite | 7.0 | 47.3 | 15.1 | 13.2 | 7.1 | 4.3 | n.d. | n.d. |
KFS-16B | 7.3 | 46.2 | 6.0 | 1.0 | 10.6 | 17.4 | n.d. | n.d. |
Al-MCM-41(hhs) | 5.5 | 59.7 | 9.8 | n.d. | 16.0 | 4.2 | n.d. | n.d. |
Al-SBA-15(wo) | 6.3 | 11.4 | 5.6 | n.d. | 37.2 | 18.0 | 0.9 | n.d. |
Catalyst | H2 | CH4 | C2H4 | C2H6 | C3H6 | C3H8 | C4H8 | C4H10 | C5H10 | C5H12 |
---|---|---|---|---|---|---|---|---|---|---|
No catalyst | n.d. | 12.0 | 12.1 | 17.2 | 23.5 | 8.0 | 22.8 | 3.7 | n.d. | 0.7 |
C-ZSM-5 | 10.0 | 1.4 | 1.9 | 1.9 | 45.9 | 9.0 | 21.1 | 6.5 | 0.7 | 0.8 |
B-Zeolite | 2.5 | 1.6 | 1.7 | 1.1 | 32.2 | 2.0 | 38.6 | 8.6 | 5.1 | 1.3 |
HUN-ZSM-5 | 6.1 | 2.3 | 1.7 | 2.1 | 25.8 | 3.3 | 24.0 | 12.3 | 4.2 | 4.7 |
KFS-16B | 7.4 | 7.6 | 5.4 | 7.1 | 27.5 | 5.5 | 23.3 | 5.3 | 3.9 | 2.3 |
Al-MCM-41(hhs) | 5.3 | 0.8 | 1.0 | 0.4 | 33.9 | 1.0 | 29.0 | 2.3 | 6.3 | 0.9 |
Al-SBA-15(wo) | 5.1 | 18.8 | 17.6 | 14.4 | 21.0 | 6.8 | 7.9 | 2.1 | 1.7 | 1.6 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Lee, S.W.; Yuan, G.; Lei, J.; Lin, S.; Weerachanchai, P.; Yang, Y.; Wang, J.-Y. Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture. Energies 2016, 9, 431. https://doi.org/10.3390/en9060431
Li K, Lee SW, Yuan G, Lei J, Lin S, Weerachanchai P, Yang Y, Wang J-Y. Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture. Energies. 2016; 9(6):431. https://doi.org/10.3390/en9060431
Chicago/Turabian StyleLi, Kaixin, Shao Wee Lee, Guoan Yuan, Junxi Lei, Shengxuan Lin, Piyarat Weerachanchai, Yanhui Yang, and Jing-Yuan Wang. 2016. "Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture" Energies 9, no. 6: 431. https://doi.org/10.3390/en9060431
APA StyleLi, K., Lee, S. W., Yuan, G., Lei, J., Lin, S., Weerachanchai, P., Yang, Y., & Wang, J.-Y. (2016). Investigation into the Catalytic Activity of Microporous and Mesoporous Catalysts in the Pyrolysis of Waste Polyethylene and Polypropylene Mixture. Energies, 9(6), 431. https://doi.org/10.3390/en9060431