Sequence Analysis of Plum pox virus Strain C Isolates from Russia Revealed Prevalence of the D96E Mutation in the Universal Epitope and Interstrain Recombination Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cherry Plants and Virus Isolates
2.2. Enzyme-Linked Immunosorbent Assay (ELISA)
2.3. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
2.4. Sequencing of the 3’-Terminal Genomic Region
2.5. Whole Genome Sequencing
2.6. Sequence Analyses
2.7. Western Blot Analysis
2.8. Study on PPV-C Seed Transmission
3. Results
3.1. Detection and 3’-Terminal Sequence Analyses of the New PPV-C Isolates
3.2. Serological Analysis
3.3. Analysis of Complete Genomes and Polyproteins
3.4. Recombination Analysis of the Complete Genome Sequences
3.5. The PPV-C Isolates Are Not Seed Transmitted
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cambra, M.; Capote, N.; Myrta, A.; Llacer, G. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull. 2006, 36, 202–204. [Google Scholar] [CrossRef]
- Garcia, J.A.; Glasa, M.; Cambra, M.; Candresse, T. Plum pox virus and sharka: A model potyvirus and a major disease. Mol. Plant Pathol. 2014, 15, 226–241. [Google Scholar] [CrossRef] [PubMed]
- Rimbaud, L.; Dallot, S.; Gottwald, T.; Decroocq, V.; Jacquot, E.; Soubeyrand, S.; Thebaud, G. Sharka epidemiology and worldwide management strategies: Learning lessons to optimize disease control in perennial plants. Annu. Rev. Phytopathol. 2015, 53, 357–378. [Google Scholar] [CrossRef] [PubMed]
- James, D.; Varga, A.; Sanderson, D. Genetic diversity of Plum pox virus: Strains, diseases and related challenges for control. Can. J. Plant Pathol. 2013, 35, 431–441. [Google Scholar] [CrossRef]
- Chirkov, S.; Sheveleva, A.; Ivanov, P.; Zakubanskiy, A. Analysis of genetic diversity of Russian sour cherry Plum pox virus isolates provides evidence of a new strain. Plant Dis. 2018, 102, 569–575. [Google Scholar] [CrossRef]
- Sihelska, N.; Glasa, M.; Šubr, Z. Host preference of the major strains of Plum pox virus—Opinions based on regional and world-wide sequence data. J. Integr. Agric. 2017, 16, 510–515. [Google Scholar] [CrossRef]
- Chirkov, S.; Ivanov, P.; Sheveleva, A. Detection and partial molecular characterization of atypical Plum pox virus isolates from naturally infected sour cherry. Arch. Virol. 2013, 158, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Glasa, M.; Prikhodko, Y.; Predajna, L.; Nagyova, A.; Shneyder, Y.; Zhivaeva, T.; Šubr, Z.; Cambra, M.; Candresse, T. Characterization of sour cherry isolates of Plum pox virus from the Volga basin in Russia reveals a new cherry strain of the virus. Phytopathology 2013, 103, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Kalashyan, J.A.; Bilkej, N.D.; Verderevskaya, T.D.; Rubina, E.V. Plum pox virus on sour cherry in Moldova. EPPO Bull. 1994, 24, 645–649. [Google Scholar] [CrossRef]
- Nemchinov, L.; Hadidi, A. Characterization of the sour chery strain of Plum pox virus. Phytopathology 1996, 86, 575–580. [Google Scholar] [CrossRef]
- Nemchinov, L.; Hadidi, A.; Maiss, E.; Cambra, M.; Candresse, T.; Damsteegt, V. Sour cherry strain of Plum pox potyvirus (PPV): Molecular and serological evidence for a new subgroup of PPV strains. Phytopathology 1996, 86, 1215–1221. [Google Scholar] [CrossRef]
- Malinowski, T.; Sowik, I.; Salavei, A.V.; Kukharchyk, N.V. Partial characterization of biological properties of PPV-C isolates found in Belarus and establishment of in vitro cultures of infected L2 and OWP-C rootstocks. In Proceedings of the 22nd International Conference on Virus and Other Transmissible Diseases of Fruit Crops, Rome, Italy, 3‒8 June 2012. [Google Scholar]
- Prikhodko, Y.; Shneyder, Y.; Zhivaeva, T.; Morozova, O. PPV in Russia: Distribution and strains. In Proceedings of the 2nd International Symposium on Plum Pox Virus, Olomouc, Czech Republic, 3–6 September 2013. [Google Scholar]
- Chirkov, S.; Kudryavtseva, A.; Ivanov, P.; Sheveleva, A.; Melnikova, N. Molecular analysis of Russian Plum pox virus isolates naturally infecting sour cherry. In Proceedings of the 2nd International Symposium on Plum Pox Virus, Olomouc, Czech Republic, 3–6 September 2013. [Google Scholar]
- Glasa, M.; Shneyder, Y.; Predajňa, L.; Zhivaeva, T.; Prikhodko, Y. Characterization of Russian Plum pox virus isolates provides further evidence of a low molecular heterogeneity within the PPV-C strain. J. Plant Pathol. 2014, 96, 597–601. [Google Scholar] [CrossRef]
- Chirkov, S.; Prikhodko, Y.; Ivanov, P.; Sheveleva, A. Population of Plum pox virus in European Russia seems to be the most diverse in the world. In Proceedings of the XVIII International Plant Protection Congress, Berlin, Germany, 24–27 August 2015. [Google Scholar]
- Shneyder, Y.; Tikhomirova, M.; Morozova, O.; Zhivaeva, T.; Prikhodko, Y. The first detection of Plum pox virus in Western Siberia. In Proceedings of the 24th International Conference on Virus and Other Graft Transmissible Diseases of Fruit Crops, Thessaloniki, Greece, 5‒9 June 2017. [Google Scholar]
- Crescenzi, A.; d’Aquino, L.; Comes, S.; Nuzzaci, M.; Piazzolla, P.; Boscia, D.; Hadidi, A. Characterization of the sweet cherry isolate of plum pox potyvirus. Plant Dis. 1997, 81, 711–714. [Google Scholar] [CrossRef]
- Zagrai, L.; Zagrai, I.; Levy, L.; Mavrodieva, V.; Festila, A.; Baias, I. A preliminary survey on Plum pox virus on cherry in Romania. Bull. UASMV Hortic. 2011, 68, 517. [Google Scholar]
- Nemchinov, L.; Hadidi, A.; Kolber, M.; Nemeth, M. Molecular evidence for the occurrence of plum pox virus—Cherry subgroup in Hungary. Acta Hortic. 2008, 472, 503–510. [Google Scholar] [CrossRef]
- Kajić, V.; Černi, S.; Škorić, D. Plum pox virus on sour cherry in Croatia. In Proceedings of the 22nd International Conference on Virus and Other Transmissible Diseases of Fruit Crops, Rome, Italy, 3‒8 June 2012. [Google Scholar]
- Jelkmann, W.; Sanderson, D.; Berwarth, C.; James, D. First detection and complete genome characterization of a Cherry (C) strain isolate of plum pox virus from sour cherry (Prunus cerasus) in Germany. J. Plant Dis. Prot. 2018, 125, 267–272. [Google Scholar] [CrossRef]
- Fanigliulo, A.; Comes, S.; Maiss, E.; Piazzolla, P.; Crescenzi, A. The complete nucleotide sequence of Plum pox virus isolates from sweet (PPV-SwC) and sour (PPV-SoC) cherry and their taxonomic relationships within the species. Arch. Virol. 2003, 148, 2137–2153. [Google Scholar] [CrossRef] [PubMed]
- Bujdoso, G.; Hrotko, K. Cherry production. In Cherries: Botany, Production and Uses; Quero-Garcia, J., Iezzoni, A., Pulawska, J., Lang, G., Eds.; CABI: Boston, MA, USA, 2017; pp. 1–13. [Google Scholar]
- Nemchinov, L.; Crescenzi, A.; Hadidi, A.; Piazzolla, P.; Verderevskaya, T. Present status of the new cherry subgroup of plum pox virus (PPV-C). In Plant Virus Disease Control; Hadidi, A., Khetarpal, R.K., Kogazenawa, H., Eds.; APS Press: St. Paul, MN, USA, 1998; pp. 629–638. [Google Scholar]
- Bodin, M.; Glasa, M.; Verger, D.; Costes, E.; Dosba, F. Distribution of the sour cherry isolate of Plum pox virus in infected Prunus rootstocks. J. Phytopathol. 2003, 151, 625–630. [Google Scholar] [CrossRef]
- Boeglin, M.; Quiot, J.B.; Labonne, G. Risk assessment of contamination of cherry trees by Plum pox virus in France. Acta Hortic. 2004, 657, 221–224. [Google Scholar] [CrossRef]
- Cambra, M.; Asensio, M.; Gorris, M.T.; Perez, E.; Camarasa, E.; Garcia, J.A.; Moya, J.J.; Lopez-Abella, D.; Vela, C.; Sanz, A. Detection of plum pox potyvirus using monoclonal antibodies to structural and non-structural proteins. EPPO Bull. 1994, 24, 569–577. [Google Scholar] [CrossRef]
- Candresse, T.; Saenz, P.; Garcia, J.A.; Boscia, D.; Navratil, M.; Gorris, M.T.; Cambra, M. Analysis of the epitope structure of Plum pox virus coat protein. Phytopathology 2011, 101, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Chirkov, S.; Ivanov, P.; Sheveleva, A.; Zakubanskiy, A.; Osipov, G. New highly divergent Plum pox virus isolates infecting sour cherry in Russia. Virology 2017, 502, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, T.; Candresse, T.; Macquaire, G.; Ravelonandro, M.; Dunez, J. A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection. J. Virol. Methods 1992, 39, 27–37. [Google Scholar] [CrossRef]
- Wetzel, T.; Candresse, T.; Ravelonandro, M.; Dunez, J. A polymerase chain reaction assay adapted to plum pox potyvirus detection. J. Virol. Methods 1991, 33, 355–365. [Google Scholar] [CrossRef]
- Nemchinov, L.; Hadidi, A. Specific oligonucleotide primers for the direct detection of plum pox potyvirus-cherry subgroup. J. Virol. Methods 1998, 70, 231–234. [Google Scholar] [CrossRef]
- Szemes, M.; Kalman, M.; Myrta, A.; Boscia, D.; Nemeth, M.; Kolber, M.; Dorgai, L. Integrated RT-PCR/nested PCR diagnosis for differentiating between subgroup of plum pox virus. J. Virol. Methods 2001, 92, 165–175. [Google Scholar] [CrossRef]
- Olmos, A.; Cambra, M.; Dasi, M.A.; Candresse, T.; Esteban, O.; Gorris, M.T.; Asensio, M. Simultaneous detection and typing of Plum pox potyvirus (PPV) isolates by hemi-nested PCR and PCR-ELISA. J. Virol. Methods 1997, 68, 127–137. [Google Scholar] [CrossRef]
- Glasa, M.; Malinowski, T.; Predajňa, L.; Pupola, N.; Dekena, D.; Michalczuk, L.; Candresse, T. Sequence variability, recombination analysis and specific detection of the W strain of Plum pox virus. Phytopathology 2011, 101, 980–985. [Google Scholar] [CrossRef] [PubMed]
- Sheveleva, A.; Ivanov, P.; Prihodko, Y.; James, D.; Chirkov, S. Occurrence and genetic diversity of Winona-like Plum pox virus isolates in Russia. Plant Dis. 2012, 96, 1135–1142. [Google Scholar] [CrossRef]
- Chirkov, S.; Ivanov, P.; Sheveleva, A.; Kudryavtseva, A.; Prikhodko, Y.; Mitrofanova, I. Occurrence and characterization of plum pox virus strain D isolates from European Russia and Crimea. Arch. Virol. 2016, 161, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Matic, S.; Elmaghraby, I.; Law, V.; Varga, A.; Reed, C.; Myrta, A.; James, D. Serological and molecular characterization of isolates of Plum pox virus strain El Amar to better understand its diversity, evolution and unique geographical distribution. J. Plant Pathol. 2011, 93, 303–310. [Google Scholar] [CrossRef]
- Sheveleva, A.; Kudryavtseva, A.; Speranskaya, A.; Belenikin, M.; Melnikova, N.; Chirkov, S. Complete genome sequence of a novel Plum pox virus strain W isolate determined by 454 pyrosequencing. Virus Genes 2013, 47, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, A.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assemble algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1. [Google Scholar] [CrossRef] [PubMed]
- Kollerova, E.; Glasa, M.; Subr, Z.W. Western blotting analysis of the Plum pox virus capsid protein. J. Plant Pathol. 2008, 90, 19–22. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, M.R.; Camafieta, E.; Bonay, P.; Mendez, E.; Albar, J.P.; Garcia, J.A. The capsid protein of a single-stranded RNA virus is modified by O-linked N-acetyl glucosamine. J. Biol. Chem. 2002, 277, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.J.; Udeshi, N.D.; Shabanowitz, J.; Giordia, S.; Juarez, S.; Scott, C.L.; Olszewski, N.E.; Hunt, D.F.; Garcia, J.A. O-ClcNAc modification of the coat protein of the potyvirus Plum pox virus enhances viral infection. Virology 2013, 442, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Moya, J.J.; Canto, T.; Lopez-Abella, D.; Diaz-Ruiz, J.R. Differentiation of Mediterranean plum pox virus isolates by coat protein analysis. Plant Pathol. 1994, 43, 161–171. [Google Scholar] [CrossRef]
- Chung, B.Y.M.; Miller, W.A.; Atkins, J.F.; Firth, A.E. An overlapping essential gene in the Potyviridae. Proc. Natl. Acad. Sci. USA 2008, 105, 5897–5902. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, D.; Fu, J.; James, D. Identification of possible evolutionary pathways of Plum pox virus and predicting amino acid residues of importance to host adaptation. Acta Hortic. 2017, 1163, 107–116. [Google Scholar] [CrossRef]
- James, D.; Sanderson, D.; Varga, A.; Sheveleva, A.; Chirkov, S. Analysis of the complete genome sequences of new isolates of the genetically diverse Winona strain of Plum pox virus (PPV W) and the first definitive evidence of intra-strain recombination events. Phytopathology 2016, 106, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Damsteegt, V.D.; Waterworth, H.E.; Mink, G.I.; Howell, W.E. Prunus tomentosa as a diagnostic host for detection of Plum pox virus and other Prunus viruses. Plant Dis. 1997, 81, 329–332. [Google Scholar] [CrossRef]
- Karasev, A.V.; Hu, X.; Brown, C.J.; Kerlan, C.; Nikolaeva, O.; Crosslin, J.M.; Gray, S.M. Genetic diversity of the ordinary strain of Potato virus Y (PVY) and origin of the recombinant PVY strains. Phytopathology 2011, 101, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Glasa, M.; Hricovsky, I.; Kudela, O. Evidence for non-transmission of plum pox virus by seeds in infected plum and myrobalan. Biol. Bratisl. 1999, 54, 481–484. [Google Scholar]
- Pasquini, G.; Simeone, A.M.; Conte, L.; Barba, M. RT-PCR evidence of the non-transmission through seed of Plum pox virus strain D and M. J. Plant Pathol. 2000, 82, 221–226. [Google Scholar] [CrossRef]
- Pasquini, G.; Barba, M. The question of seed transmissibility of Plum pox virus. EPPO Bull. 2006, 36, 287–292. [Google Scholar] [CrossRef]
- Milusheva, S.; Gercheva, P.; Bozhkova, V.; Kamenova, I. Experiments on transmission of Plum pox virus through Prunus seeds. J. Plant Pathol. 2008, 90, 23–26. [Google Scholar] [CrossRef]
- Kamenova, I. Non-transmission of Plum pox virus through seeds of myrobalan and apricot. Bulg. J. Agric. Sci. 2016, 22, 267–271. [Google Scholar]
- Zakubanskiy, A.V.; Sheveleva, A.A.; Chirkov, S.N. Molecular biological properties of new isolates of Plum pox virus strain Winona. Mosc. Univ. Biol. Sci. Bull. 2016, 71, 71–75. [Google Scholar] [CrossRef]
- Labonne, G.; Yvon, M.; Quiot, J.B.; Avinent, L.; Llacer, G. Aphids as potential vectors of plum pox virus: Comparison of methods of testing and epidemiological consequences. Acta Hortic. 1995, 386, 207–218. [Google Scholar] [CrossRef]
Isolate | Prunus cerasus Cultivar/Hybrid | Type of Planting | Sampling Locality | Genomic Region Sequenced | GenBank Accession Number |
---|---|---|---|---|---|
Bg6 | Lubskaya | Cultivar collection | Moscow | Complete genome | MH311853 |
Bg10 | Saniya | Cultivar collection | Moscow | Coat protein | MH346284 |
Bg26 | Tchereshnevaya | Cultivar collection | Moscow | Complete genome | MH311854 |
Bg60 | Apukhtinskaya | Cultivar collection | Moscow | Coat protein | MH346285 |
Bg66 | Bagryanaya | Cultivar collection | Moscow | Complete genome | MH311855 |
Ka1 | Unknown | Abandoned cultivar collection 1 | Tatarstan | Coat protein | MH346286 |
Ka5 | Hybrid 12a-7-8 | Cultivar test plot 1 | Tatarstan | Coat protein | MH346287 |
Ka7 | Truzhenitsa Tatarii × Rannyaya Sladkaya | Cultivar test plot 2 | Tatarstan | Complete genome | MH311857 |
Ka10 | Hybrid 34-86 | Cultivar test plot 1 | Tatarstan | Coat protein | MH346288 |
Ka11 | Hybrid 98-19 | Cultivar test plot 1 | Tatarstan | Coat protein | MH346289 |
Ka12 | Amorel Ten’kovskaya | Cultivar test plot 1 | Tatarstan | Coat protein | MH346290 |
Ka13 | Nizhnekamskaya | Cultivar test plot 1 | Tatarstan | Coat protein | MH346291 |
Ka16 | Tchereshnevaya | Cultivar test plot 1 | Tatarstan | Coat protein | MH346292 |
Ka19 | Hybrid 33-64 | Cultivar test plot 1 | Tatarstan | Coat protein | MH346293 |
Ka20 | Hybrid 33-64 | Cultivar test plot 1 | Tatarstan | Coat protein | MH346294 |
Ka21 | Hybrid 80-8 | Cultivar test plot 1 | Tatarstan | Coat protein | MH346295 |
Ka22 | Tveritinovskaya | Cultivar test plot 1 | Tatarstan | Coat protein | MH346296 |
Ka23 | Sevast’yanovskaya | Cultivar test plot 1 | Tatarstan | Complete genome | MH311859 |
Ka24 | Pamyat Sakharova | Cultivar test plot 1 | Tatarstan | Coat protein | MH346297 |
Ka27 | Gilfanovskaya | Cultivar test plot 1 | Tatarstan | Coat protein | MH346298 |
Ka28 | Zonalnaya | Cultivar test plot 1 | Tatarstan | Coat protein | MH346299 |
Ka31 | Root offshoot | Cultivar test plot 2 | Tatarstan | Coat protein | MH346300 |
Ka36 | Morel Rannyaya | Private garden | Tatarstan | Coat protein | MH346301 |
Ka42 | Hybrid 102-8/2 | Cultivar test plot 1 | Tatarstan | Coat protein | MH346302 |
Ka43 | Hybrid 102-8/3 | Cultivar test plot 1 | Tatarstan | Coat protein | MH346303 |
Ka44 | Hybrid 102-8/4 | Cultivar test plot 1 | Tatarstan | Coat protein | MH346304 |
Ka45 | Hybrid 102-8/5 | Cultivar test plot 1 | Tatarstan | Coat protein | MH346305 |
Ka54 | Root offshoot | Abandoned hybrid orchard | Tatarstan | Coat protein | MH346306 |
Ka55 | Hybrid 1-4-16 | Abandoned hybrid orchard | Tatarstan | Coat protein | MH346307 |
Ka56 | Hybrid 1-5-2 | Abandoned hybrid orchard | Tatarstan | Coat protein | MH346308 |
Ka57 | Root offshoot | Abandoned hybrid orchard | Tatarstan | Coat protein | MH346309 |
Ka58 | Root offshoot | Abandoned hybrid orchard | Tatarstan | Coat protein | MH346310 |
Ka62 | Zarya Tatarii | Abandoned cultivar collection 2 | Tatarstan | Coat protein | MH346311 |
Pav2 | Tchereshnevaya | Cultivar collection | Pavlovsk | Coat protein | MH346312 |
Pav3 | Shakirovskaya | Cultivar collection | Pavlovsk | Coat protein | MH346313 |
Pav5 | Zarya Tatarii | Cultivar collection | Pavlovsk | Coat protein | MH346314 |
Pav67 | Truzhenitsa Tatarii | Cultivar collection | Pavlovsk | Coat protein | MH346316 |
Pav8 | Tukaevskaya | Cultivar collection | Pavlovsk | Coat protein | MH346315 |
Pul | Unknown | Wild tree | Moscow | Complete genome | MH311856 |
Ka15 | Prunus tomentosa | Cultivar test plot 1 | Tatarstan | Complete genome | MH311858 |
Isolate | Optical Density at 405 nm 1 | Universal Epitope 4 | |
---|---|---|---|
DAS-ELISA 2 | TAS-ELISA 3 | ||
Bg6 | 2.42 | 0.20 | ERDVDAG |
Bg10 | 2.32 | 0.27 | ERDVDAG |
Bg26 | 2.80 | 0.21 | ERDVDAG |
Bg60 | 2.56 | 2.34 | DRDVDAG |
Bg66 | 2.69 | 1.09 | DRDVDAG |
Ka1 | 2.63 | 2.42 | DRDVDAG |
Ka5 | 2.63 | 1.36 | DRDVDAG |
Ka7 | 2.70 | 2.87 | DRDVDAG |
Ka10 | 2.57 | 0.78 | DRDVNAG |
Ka11 | 2.69 | 0.24 | ERDVDAG |
Ka12 | 2.76 | 1.45 | DRDVDAG |
Ka13 | 2.95 | 0.22 | ERDVDAG |
Ka15 | 2.23 | 2.35 | DRDVDAG |
Ka16 | 2.81 | 2.48 | DRDVDAG |
Ka19 | 2.85 | 0.24 | ERDVDAG |
Ka20 | 2.78 | 0.18 | ERDVDAG |
Ka21 | 2.68 | 0.24 | ERDVDAG |
Ka22 | 2.74 | 0.27 | ERDVDAG |
Ka23 | 3.12 | 2.87 | DRDVDAG |
Ka24 | 2.95 | 0.26 | ERDVDAG |
Ka27 | 2.78 | 1.74 | DRDVDAG |
Ka28 | 3.07 | 0.24 | ERDVDAG |
Ka31 | 2.82 | 2.66 | DRDVDAG |
Ka42 | 2.54 | 0.66 | ERDVDAG |
Ka43 | 2.71 | 2.20 | DRDVDAG |
Ka44 | 1.95 | 1.59 | DRDVDAG |
Ka45 | 2.66 | 2.55 | DRDVDAG |
Ka54 | 2.40 | 0.24 | ERDVDAG |
Ka55 | 2.54 | 2.18 | DRDVDAG |
Ka56 | 2.76 | 2.34 | DRDVDAG |
Ka57 | 2.57 | 0.23 | ERDVDAG |
Ka58 | 2.68 | 0.29 | ERDVDAG |
Ka62 | 2.65 | 0.69 | ERDVDAG |
Pav2 | 2.78 | 0.22 | ERDVDAG |
Pav3 | 2.65 | 1.46 | DRDVDAG |
Pav5 | 2.72 | 0.21 | ERDVDAG |
Pav67 | 2.63 | 0.23 | ERDVDAG |
Pav8 | 2.89 | 2.56 | DRDVDAG |
Pul | 2.74 | 2.96 | DRDVDAG |
PPV-free cherry 5 | 0.21 | 0.24 |
Event Number | Recombinant | Beginning Breakpoint | Ending Breakpoint | Major Parent | Minor Parent | p Values Calculated with Seven Methods Implemented in RDP4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RDP | Geneconv | Bootscan | Maxchi | Chimaera | SiScan | 3Seq | ||||||
1 | Bg6 | 664 | 1723 | Tat-4 | RU-17sc | 3.6 × 10−7 | Not detected | 7.5 × 10−5 | 2.7 × 10−4 | 8.1 × 10−4 | 1.3 × 10−22 | 2.1 × 10−8 |
Bg26 | 664 | 1703 | ||||||||||
Bg66 | 664 | 1723 | ||||||||||
BY101 | 664 | 1703 | ||||||||||
BY181 | 664 | 1703 | ||||||||||
GC27 | 649 | 1723 | ||||||||||
Ka7 | 664 | 1723 | ||||||||||
Ka15 | 625 | 1723 | ||||||||||
Ka23 | 625 | 1723 | ||||||||||
Pul | 649 | 1653 | ||||||||||
SoC | 664 | 1723 | ||||||||||
SwC | 664 | 1723 | ||||||||||
Volk143 | 664 | 1723 | ||||||||||
2 | SoC | 9096 | 9756 | SwC | Volk143 | 2.0 × 10−3 | 7.9 × 10−3 | 8.1 × 10−3 | 1.2 × 10−3 | 9.1 × 10−4 | 7.4 × 10−3 | 2.4 × 10−3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheveleva, A.; Ivanov, P.; Gasanova, T.; Osipov, G.; Chirkov, S. Sequence Analysis of Plum pox virus Strain C Isolates from Russia Revealed Prevalence of the D96E Mutation in the Universal Epitope and Interstrain Recombination Events. Viruses 2018, 10, 450. https://doi.org/10.3390/v10090450
Sheveleva A, Ivanov P, Gasanova T, Osipov G, Chirkov S. Sequence Analysis of Plum pox virus Strain C Isolates from Russia Revealed Prevalence of the D96E Mutation in the Universal Epitope and Interstrain Recombination Events. Viruses. 2018; 10(9):450. https://doi.org/10.3390/v10090450
Chicago/Turabian StyleSheveleva, Anna, Peter Ivanov, Tatiana Gasanova, Gennady Osipov, and Sergei Chirkov. 2018. "Sequence Analysis of Plum pox virus Strain C Isolates from Russia Revealed Prevalence of the D96E Mutation in the Universal Epitope and Interstrain Recombination Events" Viruses 10, no. 9: 450. https://doi.org/10.3390/v10090450
APA StyleSheveleva, A., Ivanov, P., Gasanova, T., Osipov, G., & Chirkov, S. (2018). Sequence Analysis of Plum pox virus Strain C Isolates from Russia Revealed Prevalence of the D96E Mutation in the Universal Epitope and Interstrain Recombination Events. Viruses, 10(9), 450. https://doi.org/10.3390/v10090450