Molecular Regulation of Host Defense Responses Mediated by Biological Anti-TMV Agent Ningnanmycin
Abstract
:1. Introduction
2. Materials and Methods
2.1. NNM Treatment on N. benthamiana and BY-2 Protoplasts Inoculated with TMV
2.2. Northern Blot Analysis
2.3. RNA Extraction, cDNA Library Construction, and Illumina Sequencing
2.4. Real-Time Quantitative PCR
3. Results
3.1. NNM Treatment-Inhibited TMV Systemic Infection in Planta and Viral Accumulation in Protoplasts
3.2. Identification of the Genes in Response to NNM by RNA-Seq
3.3. Plant Immunity, Metal Ion, and Phytohormone Signaling Response Induced by NNM
3.4. Verification of DEGs by Real-Time Quantitative PCR
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rybicki, E.P. A Top Ten list for economically important plant viruses. Arch. virol. 2015, 160, 17–20. [Google Scholar] [CrossRef]
- Gouveia, B.C.; Calil, I.P.; Machado, J.P.; Santos, A.A.; Fontes, E.P. Immune receptors and co-receptors in antiviral innate immunity in plants. Front. Microbiol. 2016, 7, 2139. [Google Scholar] [CrossRef]
- Mandadi, K.K.; Scholthof, K.B. Plant immune responses against viruses: How does a virus cause disease? Plant Cell 2013, 25, 1489–1505. [Google Scholar] [CrossRef]
- Collum, T.D.; Culver, J.N. The impact of phytohormones on virus infection and disease. Curr. Opin. Virol. 2016, 17, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Pooggin, M.M. RNAi-mediated resistance to viruses: A critical assessment of methodologies. Curr. Opin. Virol. 2017, 26, 28–35. [Google Scholar] [CrossRef]
- Dawson, W.O. Tobacco mosaic virus virulence and avirulence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1999, 354, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, K.; Ishikawa, M. Replication of Tobamovirus RNA. Annu. Rev. Phytopathol. 2016, 54, 55–78. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, A.A.; Haq, S.; Bhat, R.A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 2017, 111, 458–467. [Google Scholar] [CrossRef]
- Onaka, H. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J. Antibiot. 2017, 70, 865–870. [Google Scholar] [CrossRef]
- Nett, M.; Ikeda, H.; Moore, B.S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 2009, 26, 1362–1384. [Google Scholar] [CrossRef]
- Han, Y.; Luo, Y.; Qin, S.; Xi, L.; Wan, B.; Du, L. Induction of systemic resistance against tobacco mosaic virus by Ningnanmycin in tobacco. Pestic. Biochem. Physiol. 2014, 111, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Song, B.; Bhadury, P.S.; Jin, L.; Hu, D.; Yang, S. Antiviral activity and mechanism of action of novel thiourea containing chiral phosphonate on tobacco mosaic virus. Int. J. Mol. Sci. 2011, 12, 4522–4535. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Wang, D.; Chen, K.; Huang, M.; Xie, X.; Li, X. Activation of biochemical factors in CMV-infected tobacco by ningnanmycin. Pestic. Biochem. Physiol. 2019, 156, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hao, G.; Wang, Q.; Chen, Z.; Ding, Y.; Yu, L.; Hu, D.; Song, B. Ningnanmycin inhibits tobacco mosaic virus virulence by binding directly to its coat protein discs. Oncotarget 2017, 8, 82446–82458. [Google Scholar] [CrossRef] [PubMed]
- Eslamloo, K.; Xue, X.; Booman, M.; Smith, N.C.; Rise, M.L. Transcriptome profiling of the antiviral immune response in Atlantic cod macrophages. Dev. Comp. Immunol. 2016, 63, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ding, Y.; Nan, J.; Yang, X.; Sun, L.; Zhao, X.; Jiang, L. Transcriptome sequencing and ITRAQ reveal the detoxification mechanism of Bacillus GJ1, a potential biocontrol agent for Huanglongbing. PLoS ONE 2018, 13, e0200427. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Zhou, T.; Wu, Y. Development of infectious clone and RNA hybridization detection system for tobacco mosaic virus Shenyang isolate. 2019; (unpublished). [Google Scholar]
- Gooding, G.V., Jr.; Hebert, T.T. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 1967, 57, 1285. [Google Scholar] [PubMed]
- Yu, M.; Liu, H.; Zheng, H.; Yan, F.; Zhao, X.; Xia, Z.; An, M.; Wu, Y. Viral sequences required for efficient viral infection differ between two Chinese pepper mild mottle virus isolates. Virus Res. 2019, 267, 9–15. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Zhao, X.; Zhou, T.; Wang, G.; Xia, Z.; Wu, Y. A novel biological agent Cytosinpeptidemycin inhibited the pathogenesis of tobacco mosaic virus by inducing host resistance and stress response. J. Agric. Food Chem. 2019, 67, 7738–7747. [Google Scholar] [CrossRef]
- An, M.; Zhao, X.; Wu, Y. Concentration gradient test for Ningnanmycin in Nicotiana benthamina and BY-2 protoplasts. 2019; (unpublished). [Google Scholar]
- Aldon, D.; Mbengue, M. Calcium Signalling in Plant Biotic Interactions. Int. J. Mol. Sci. 2018, 19, 665. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Bio. 2016, 16, 86. [Google Scholar] [CrossRef]
- Wildermuth, M.C. Plants fight fungi using kiwellin proteins. Nature 2019, 565, 575–577. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Zhou, M.; Yoo, H.; Pruneda-Paz, J.L.; Spivey, N.W.; Kay, S.A.; Dong, X. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proc. Natl. Acad. Sci. USA 2015, 112, 9166–9173. [Google Scholar] [CrossRef] [Green Version]
- Akbudak, M.A.; Filiz, E.; Kontbay, K. DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): Genome-wide identification, characterization and expression profiles under cadmium and salt stresses. 3 Biotech 2018, 8, 426. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S.C. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28, 489–521. [Google Scholar] [CrossRef]
- Hussain, R.M.F.; Sheikh, A.H.; Haider, I.; Quareshy, M.; Linthorst, H.J.M. Arabidopsis WRKY50 and TGA transcription factors synergistically activate expression of PR1. Front. Plant Sci. 2018, 9, 930. [Google Scholar] [CrossRef]
- Shang, Y.; Yan, L.; Liu, Z.Q.; Cao, Z.; Mei, C.; Xin, Q.; Wu, F.Q.; Wang, X.F.; Du, S.Y.; Jiang, T.; et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 2010, 22, 1909–1935. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, L.; Weng, Y.; Zou, H.; Li, X.; Yang, S.; Qiu, S.; Huang, X.; Huang, J.; Hussain, A.; et al. ChiIV3 acts as a novel target of WRKY40 to mediate pepper immunity against Ralstonia solanacearum infection. Mol. Plant Microbe Interact. 2019. [Google Scholar] [CrossRef]
- Liao, Y.W.; Sun, Z.H.; Zhou, Y.H.; Shi, K.; Li, X.; Zhang, G.Q.; Xia, X.J.; Chen, Z.X.; Yu, J.Q. The role of hydrogen peroxide and nitric oxide in the induction of plant-encoded RNA-dependent RNA polymerase 1 in the basal defense against Tobacco mosaic virus. PLoS ONE 2013, 8, e76090. [Google Scholar] [CrossRef]
- Qin, L.; Mo, N.; Zhang, Y.; Muhammad, T.; Zhao, G.; Zhang, Y.; Liang, Y. CaRDR1, an RNA-Dependent RNA polymerase plays a positive role in pepper resistance against TMV. Front. Plant Sci. 2017, 8, 1068. [Google Scholar] [CrossRef]
- Wang, H.; Jiao, X. A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant Physiol. 2016, 170, 2365–2377. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.M.; Venugopal, S.; Navarre, D.; Kachroo, A. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant physiol. 2011, 155, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Prasad, B.D.; Creissen, G.; Lamb, C.; Chattoo, B.B. Overexpression of rice (Oryza sativa L.) OsCDR1 leads to constitutive activation of defense responses in rice and Arabidopsis. Mol. Plant Microbe Interact. 2009, 22, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Nitta, Y.; Zhang, Q.; Wu, D.; Tian, H.; Lee, J.S.; Zhang, Y. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Rep. 2018, 19, e45324. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ye, M. OsLRR-RLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore. New Phytol. 2018, 219, 1097–1111. [Google Scholar] [CrossRef]
- Garcia, A.V.; Charrier, A.; Schikora, A.; Bigeard, J.; Pateyron, S.; de Tauzia-Moreau, M.L.; Evrard, A.; Mithofer, A.; Martin-Magniette, M.L.; Virlogeux-Payant, I.; et al. Salmonella enterica flagellin is recognized via FLS2 and activates PAMP-triggered immunity in Arabidopsis thaliana. Mol. Plant 2014, 7, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Beffa, R.S.; Neuhaus, J.M.; Meins, F., Jr. Physiological compensation in antisense transformants: Specific induction of an “ersatz” glucan endo-1,3-beta-glucosidase in plants infected with necrotizing viruses. Proc. Natl. Acad. Sci. USA 1993, 90, 8792–8796. [Google Scholar] [CrossRef]
- Li, K.; Wu, G.; Li, M.; Ma, M.; Du, J.; Sun, M.; Sun, X.; Qing, L. Transcriptome analysis of Nicotiana benthamiana infected by Tobacco curly shoot virus. Virol. J. 2018, 15, 138. [Google Scholar] [CrossRef]
- Ward, E.R.; Payne, G.B.; Moyer, M.B.; Williams, S.C.; Dincher, S.S.; Sharkey, K.C.; Beck, J.J.; Taylor, H.T.; Ahl-Goy, P.; Meins, F.; et al. Differential regulation of beta-1,3-glucanase messenger RNAs in response to pathogen infection. Plant Physiol. 1991, 96, 390–397. [Google Scholar] [CrossRef]
- Gebauer, P.; Korn, M.; Engelsdorf, T.; Sonnewald, U.; Koch, C.; Voll, L.M. Sugar accumulation in leaves of Arabidopsis sweet11/sweet12 double mutants enhances priming of the salicylic acid-mediated defense response. Front. Plant Sci. 2017, 8, 1378. [Google Scholar] [CrossRef]
- Le, C.T.; Brumbarova, T.; Ivanov, R.; Stoof, C.; Weber, E. Zinc Finger Of Arabidopsis Thaliana12 (ZAT12) Interacts With Fer-Like Iron Deficiency-Induced Transcription Factor (FIT) linking iron deficiency and oxidative stress responses. Plant Physiol. 2016, 170, 540–557. [Google Scholar] [CrossRef]
- Aguado, L.C.; Schmid, S.; May, J.; Sabin, L.R.; Panis, M.; Blanco-Melo, D.; Shim, J.V.; Sachs, D.; Cherry, S.; Simon, A.E.; et al. RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature 2017, 547, 114–117. [Google Scholar] [CrossRef] [Green Version]
- Pablos, I.; Eichhorn, S.; Machado, Y.; Briza, P.; Neunkirchner, A.; Jahn-Schmid, B. Distinct epitope structures of defensin-like proteins linked to proline-rich regions give rise to differences in their allergenic activity. Allergy 2018, 73, 431–441. [Google Scholar] [CrossRef]
- Sanfaçon, H. Plant translation factors and virus resistance. Viruses 2015, 7, 3392–3419. [Google Scholar] [CrossRef]
- Hanemian, M.; Barlet, X.; Sorin, C.; Yadeta, K.A.; Keller, H.; Favery, B.; Simon, R.; Thomma, B.P.; Hartmann, C.; Crespi, M.; et al. Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway. New phytol. 2016, 211, 502–515. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z. Carbonic anhydrases function in anther cell differentiation downstream of the Receptor-like kinase EMS1. Plant Cell 2017, 29, 1335–1356. [Google Scholar] [CrossRef]
- Toussaint, F.; Pierman, B.; Bertin, A.; Levy, D.; Boutry, M. Purification and biochemical characterization of NpABCG5/NpPDR5, a plant pleiotropic drug resistance transporter expressed in Nicotiana tabacum BY-2 suspension cells. Biochem. J. 2017, 474, 1689–1703. [Google Scholar] [CrossRef]
- Maekawa, S.; Sato, T.; Asada, Y.; Yasuda, S.; Yoshida, M.; Chiba, Y.; Yamaguchi, J. The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response. Plant Mol. Biol. 2012, 79, 217–227. [Google Scholar] [CrossRef]
- Xing, Y.; Chen, W.H.; Jia, W.; Zhang, J. Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. J. Exp. Bot. 2015, 66, 5971–5981. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Q.; Liu, Y.; Zhang, L.; Ding, W. Overexpression of NtPR-Q Up-Regulates Multiple Defense-Related Genes in Nicotiana tabacum and Enhances Plant Resistance to Ralstonia solanacearum. Front. Plant Sci. 2017, 8, 1963. [Google Scholar] [CrossRef]
- Eitas, T.K.; Nimchuk, Z.L.; Dangl, J.L. Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Proc. Natl. Acad. Sci. USA 2008, 105, 6475–6480. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Henarejos, S.A.; Alcaraz, L.A.; Donaire, A. Blue Copper Proteins: A rigid machine for efficient electron transfer, a flexible device for metal uptake. Arch. Biochem. Biophys. 2015, 584, 134–148. [Google Scholar] [CrossRef] [PubMed]
- de Abreu-Neto, J.B.; Turchetto-Zolet, A.C.; de Oliveira, L.F.; Zanettini, M.H.; Margis-Pinheiro, M. Heavy metal-associated isoprenylated plant protein (HIPP): Characterization of a family of proteins exclusive to plants. FEBS J. 2013, 280, 1604–1616. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Yamaji, N.; Yokosho, K.; Ma, J.F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 2012, 24, 2155–2167. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.L.; Shi, Z. Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal closure, and plant immunity. Plant Physiol. 2017, 175, 424–437. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Truman, W.; Liu, X. Different modes of negative regulation of plant immunity by Calmodulin-related genes. Plant Physiol. 2018, 176, 3046–3061. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Zhang, H.; Gan, X.; Zhang, L.; Chen, Y.; Nie, F.; Shi, L.; Li, M.; Guo, Z.; Zhang, G.; et al. Transcriptome profiling of the potato (Solanum tuberosum L.) plant under drought stress and water-stimulus conditions. PLoS ONE 2015, 10, e0128041. [Google Scholar] [CrossRef]
- Rodriguez, M.C.; Conti, G.; Zavallo, D.; Manacorda, C.A.; Asurmendi, S. TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection. BMC Plant Biol. 2014, 14, 210. [Google Scholar] [CrossRef]
- Nham, N.T.; Macnish, A.J.; Zakharov, F.; Mitcham, E.J. ‘Bartlett’ pear fruit (Pyrus communis L.) ripening regulation by low temperatures involves genes associated with jasmonic acid, cold response, and transcription factors. Plant Sci. 2017, 260, 8–18. [Google Scholar] [CrossRef]
- Laskowski, M.J.; Dreher, K.A.; Gehring, M.A.; Abel, S.; Gensler, A.L.; Sussex, I.M. FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase. Plant Physiol. 2002, 128, 578–590. [Google Scholar] [CrossRef]
- Bahieldin, A.; Atef, A.; Edris, S.; Gadalla, N.O.; Ali, H.M.; Hassan, S.M.; Al-Kordy, M.A.; Ramadan, A.M.; Makki, R.M.; Al-Hajar, A.S.; et al. Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant. BMC Plant Biol. 2016, 16, 216. [Google Scholar] [CrossRef]
- Ohashi-Ito, K.; Matsukawa, M.; Fukuda, H. An atypical bHLH transcription factor regulates early xylem development downstream of auxin. Plant Cell Physiol. 2013, 54, 398–405. [Google Scholar] [CrossRef]
- Wang, A. Dissecting the molecular network of virus-plant interactions: The complex roles of host factors. Annu. Rev. Phytopathol. 2015, 53, 45–66. [Google Scholar] [CrossRef]
- Mattos, B.B.; Montebianco, C.; Romanel, E.; da Franca Silva, T.; Bernabe, R.B.; Simas-Tosin, F.; Souza, L.M.; Sassaki, G.L.; Vaslin, M.F.S.; Barreto-Bergter, E. A peptidogalactomannan isolated from Cladosporium herbarum induces defense-related genes in BY-2 tobacco cells. Plant Physiol. Biochem. 2018, 126, 206–216. [Google Scholar] [CrossRef]
- Palukaitis, P.; Yoon, J.Y.; Choi, S.K.; Carr, J.P. Manipulation of induced resistance to viruses. Curr. Opin. Virol. 2017, 26, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Yoda, H.; Ogawa, M.; Yamaguchi, Y.; Koizumi, N.; Kusano, T.; Sano, H. Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants. Mol. Genet. Genomics 2002, 267, 154–161. [Google Scholar]
- Huh, S.U.; Choi, L.M.; Lee, G.J.; Kim, Y.J.; Paek, K.H. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Sci. 2012, 197, 50–58. [Google Scholar] [CrossRef]
- Thor, K. Calcium-Nutrient and Messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef]
- Seybold, H.; Trempel, F.; Ranf, S.; Scheel, D.; Romeis, T.; Lee, J. Ca2+ signalling in plant immune response: From pattern recognition receptors to Ca2+ decoding mechanisms. New phytol. 2014, 204, 782–790. [Google Scholar] [CrossRef]
- Xu, B.; Cheval, C.; Laohavisit, A.; Hocking, B.; Chiasson, D.; Olsson, T.S.G.; Shirasu, K. A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses. New Phytol. 2017, 215, 77–84. [Google Scholar] [CrossRef]
- Lozano-Durán, R.; Macho, A.P.; Boutrot, F.; Segonzac, C.; Somssich, I.E.; Zipfel, C. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. eLife 2013, 2, e00983. [Google Scholar] [CrossRef]
- Li, J.; Brader, G.; Palva, E.T. The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 2004, 16, 319–331. [Google Scholar] [CrossRef]
- Ding, S.W. RNA-based antiviral immunity. Nat. Rev. Immunol. 2010, 10, 632–644. [Google Scholar] [CrossRef]
- Ding, S.W.; Voinnet, O. Antiviral immunity directed by small RNAs. Cell 2007, 130, 413–426. [Google Scholar] [CrossRef]
- Nakahara, K.S.; Masuta, C.; Yamada, S.; Shimura, H.; Kashihara, Y.; Wada, T.S.; Meguro, A.; Goto, K.; Tadamura, K.; Sueda, K.; et al. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc. Natl. Acad. Sci. USA 2012, 109, 10113–10118. [Google Scholar] [CrossRef] [Green Version]
- Jeon, E.J.; Tadamura, K.; Murakami, T.; Inaba, J.I.; Kim, B.M.; Sato, M.; Atsumi, G.; Kuchitsu, K.; Masuta, C.; Nakahara, K.S. rgs-CaM detects and counteracts viral RNA silencing suppressors in plant immune priming. J. Virol. 2017, 91, e00761-17. [Google Scholar] [CrossRef]
Sample Name | CK | NNM |
---|---|---|
Raw reads | 62,234,835 | 70,288,896 |
Clean reads | 61,272,488 | 69,374,590 |
Total mapped | 55,575,990 | 63,343,398 |
Total mapped | 90.70% | 91.31% |
Uniquely mapped | 51,425,125 | 58,315,517 |
Uniquely mapped | 83.93% | 84.06% |
Q30 | 90.26% | 89.19% |
GC contents | 42.93% | 42.79% |
Gene Symbol | Gene Description | Regulate | logFC | p-value | Major Reported Functions | References |
---|---|---|---|---|---|---|
LOC107797745 | kiwellin-like | Up | 4.68729 | 3.03 × 10−12 | fungi resistance | [24] |
LOC107829465 | protein NTM1-like 9 | Up | 4.00045 | 8.89 × 10−10 | activate SA synthesis | [25] |
LOC107808010 | dehydration-responsive element-binding protein 1D-like | Up | 3.84958 | 1.23 × 10−9 | cadmium and salt stresses response | [26] |
LOC107789568 | probable WRKY transcription factor 70 | Up | 3.66519 | 1.76 × 10−9 | regulate immune response | [27] |
LOC107802518 | probable WRKY transcription factor 50 | Up | 2.57431 | 4.13 × 10−5 | activate PR1 | [28] |
LOC107792337 | probable WRKY transcription factor 40 | Up | 3.67502 | 1.92 × 10−9 | regulate plant immunity, negatively regulate ABA | [29,30] |
LOC107765311 | RNA-dependent RNA polymerase 1-like | Up | 4.06945 | 1.01 × 10−8 | basal resistance against TMV | [31,32] |
LOC107788900 | probable RNA-dependent RNA polymerase 1 | Up | 2.91618 | 1.98 × 10−6 | virus resistance, antiviral RNA silencing | [32,33] |
LOC107807916 | probable WRKY transcription factor 51 | Up | 3.51474 | 1.25 × 10−8 | defense response | [34] |
LOC107790605 | aspartic proteinase CDR1-like | Up | 5.38706 | 1.77 × 10−8 | defense response | [35] |
LOC107821703 | mitogen-activated protein kinase kinase kinase YODA-like | Up | 3.05664 | 1.59 × 10−7 | MAPK pathway | [36] |
LOC107807021 | G-type lectin S-receptor-like serine/threonine-protein kinase RLK1 | Up | 4.01213 | 5.03 × 10−7 | receptor-like protein kinase, PRR in PTI pathway | [37] |
LOC107827601 | LRR receptor-like serine/threonine-protein kinase FLS2 | Up | 2.91334 | 5.76 × 10−7 | PRR in PTI pathway | [38] |
LOC107825406 | glucan endo-1,3-beta-glucosidase, acidic | Up | 2.87528 | 6.30 × 10−7 | defense against pathogen infect, belongs to PR2? | [39,40] |
LOC107795723 | protein HYPER-SENSITIVITY-RELATED 4-like | Up | 3.07585 | 1.73 × 10−6 | unknown function | |
LOC107798618 | basic form of pathogenesis-related protein 1-like | Down | -3.0255 | 2.25 × 10−6 | response to pathogen infection? | [41] |
LOC107791385 | bidirectional sugar transporter SWEET12-like | Up | 3.53641 | 2.93 × 10−6 | Induced by pathogen | [42] |
LOC107771327 | receptor-like protein 12 | Up | 3.11029 | 5.47 × 10−6 | Unknown function | |
LOC107791128 | zinc finger protein ZAT12-like | Up | 2.68871 | 6.34 × 10−6 | Stress response | [43] |
LOC107789836 | ribonuclease 3-like protein 3 | Up | 3.39531 | 9.08 × 10−6 | antivital immunity? | [44] |
LOC107831090 | mitogen-activated protein kinase kinase kinase 2-like | Up | 2.62214 | 1.26 × 10−5 | Unknown function | |
LOC107797667 | defensin-like protein 19 | Up | 2.42846 | 1.84 × 10−5 | Unknown function, antibiotics? | [45] |
LOC107789688 | eukaryotic initiation factor 4A-9-like | Up | 2.48755 | 1.85 × 10−5 | involved in virus resistance? | [46] |
LOC107818786 | protein ENHANCED DISEASE RESISTANCE 2-like | Up | 2.79094 | 2.13 × 10−5 | Unknown function | |
LOC107831360 | CBL-interacting serine/threonine-protein kinase 25-like | Down | −2.3955 | 2.24 × 10−5 | Unknown function | |
LOC107765573 | disease resistance-like protein CSA1 | Up | 5.60637 | 2.86 × 10−5 | Unknown function, disease resistance | |
LOC107828757 | receptor protein kinase CLAVATA1-like | Up | 2.37093 | 3.15 × 10−5 | disease resistance | [47] |
LOC107768384 | pathogenesis-related leaf protein 4-like | Down | −2.6253 | 4.41 × 10−5 | Unknown function | |
LOC107763443 | leucine-rich repeat receptor protein kinase EMS1-like | Up | 3.28444 | 7.18 × 10−5 | Cell differentiation | [48] |
LOC107772607 | thaumatin-like protein 1b | Up | 2.20055 | 0.000118 | biotic and abiotic stress response | |
LOC107785865 | pleiotropic drug resistance protein 1-like | Up | 2.15959 | 0.000125 | Resistance to pathogens? | [49] |
LOC107765095 | E3 ubiquitin-protein ligase ATL6-like | Up | 2.10871 | 0.000158 | defense response | [50] |
LOC107800503 | mitogen-activated protein kinase kinase 5-like | Up | 2.10615 | 0.000159 | salinity stress response | [51] |
LOC107775435 | probable LRR receptor-like serine/threonine-protein kinase At1g67720 | Up | 2.09775 | 0.000213 | Unknown function | |
LOC107779438 | G-type lectin S-receptor-like serine/threonine-protein kinase At5g35370 | Down | −2.0631 | 0.000218 | Unknown function | |
LOC107831947 | probable L-type lectin-domain containing receptor kinase S.5 | Up | 2.91973 | 0.000249 | Unknown function | |
LOC107822671 | protein NtpR-like | Down | −2.5692 | 0.000273 | Enhance plant resistance? | [52] |
LOC107828940 | G-type lectin S-receptor-like serine/threonine-protein kinase At4g27290 | Up | 2.02879 | 0.00029 | Unknown function, RLKs | |
LOC107771655 | G-type lectin S-receptor-like serine/threonine-protein kinase CES101 | Up | 2.01366 | 0.000299 | Unknown function, RLKs | |
LOC107786338 | disease resistance protein TAO1-like | Up | 1.98511 | 0.000372 | TIR-NB-LRR protein | [53] |
Gene Symbol | Gene Description | Regulate | logFC | p-value | Major Reported Functions | References |
---|---|---|---|---|---|---|
LOC107829449 | blue copper protein-like | Up | 3.3206 | 2.13 × 10−8 | Metal uptake | [54] |
LOC107771638 | metal tolerance protein 9-like | Up | 2.60188 | 5.76 × 10−6 | Unknown function | |
LOC107789039 | heavy metal-associated isoprenylated plant protein 20-like | Up | 2.90802 | 5.67 × 10−7 | metal homeostasis, plant pathogen interaction | [55] |
LOC107760691 | metal transporter Nramp5-like | Up | 4.71724 | 2.13 × 10−11 | regulate cadmium uptake | [56] |
LOC107832175 | calcium-transporting ATPase 12, plasma membrane-type-like | Up | 3.85928 | 2.50 × 10−10 | calcium-transporting, involved in plant immunity | [57] |
LOC107774700 | probable calcium-binding protein CML45 | Up | 3.17773 | 2.67 × 10−7 | Unknown function | |
LOC107802864 | calmodulin-binding protein 60 A-like | Up | 5.02141 | 4.02 × 10−7 | calmodulin binding, Regulate plant immunity? | [58] |
LOC107782005 | putative calcium-transporting ATPase 13, plasma membrane-type | Up | 2.73531 | 7.72 × 10−6 | calcium-transporting, involved in plant immunity | [57] |
LOC107819435 | probable calcium-binding protein CML44 | Up | 2.29199 | 4.93 × 10−5 | Unknown function | |
LOC107808229 | putative calcium-binding protein CML19 | Up | 2.69525 | 9.43 × 10−5 | Drought stress response | [59] |
LOC107794908 | calcium-binding protein PBP1-like | Up | 2.08773 | 0.000209 | Unknown function | |
LOC107762012 | calcium uniporter protein 2, mitochondrial-like | Up | 3.16227 | 0.000242 | Unknown function | |
LOC107792571 | calmodulin-like | Up | 2.38374 | 0.000126 | Regulate plant immunity | [58] |
LOC107806239 | calmodulin-binding protein 60 D-like | Up | 2.03208 | 0.000273 | Unknown function | |
LOC107780788 | cyclic nucleotide-gated ion channel 1-like | Up | 2.46217 | 1.79 × 10−5 | ion uptake | |
LOC107817341 | probable magnesium transporter NIPA8 | Up | 2.16689 | 0.00017 | Unknown function |
Gene Symbol | Gene Description | Regulate | logFC | p-value | Major Reported Functions | References |
---|---|---|---|---|---|---|
LOC107764158 | DELLA protein GAI-like | Up | 3.82241 | 1.85 × 10−9 | repressors of GA signal pathway, virus defense? | [60] |
LOC107802518 | probable WRKY transcription factor 50 | Up | 2.57431 | 4.13 × 10−5 | Up-regulate SA | [28] |
LOC107792337 | probable WRKY transcription factor 40 | Up | 3.67502 | 1.92 × 10−9 | Negatively regulate ABA | [29] |
LOC107802866 | transcription factor MYB1R1-like | Up | 2.91012 | 2.45 × 10−6 | enhancement of ripening | [61] |
LOC107829401 | probable NAD(P)H dehydrogenase (quinone) FQR1-like 1 | Up | 2.89138 | 6.41 × 10−7 | Auxin response | [62] |
LOC107820920 | ethylene-responsive transcription factor ERF022-like | Up | 5.49089 | 5.49 × 10−5 | unknown function | |
LOC107785865 | pleiotropic drug resistance protein 1-like | Up | 2.15959 | 0.000125 | Plant hormone transportation | [49] |
LOC107806172 | ethylene-responsive transcription factor ERF109-like | Up | 2.88682 | 7.04 × 10−5 | retards PCD and improves salt tolerance | [63] |
LOC107801499 | transcription factor LHW-like | Up | 4.54979 | 0.000142 | regulate Auxin | [64] |
LOC107763786 | cytokinin hydroxylase-like | Up | 2.406 | 0.000246 | unknown function | |
LOC107803728 | ARF guanine-nucleotide exchange factor GNL2-like | Up | 3.04343 | 0.000321 | unknown function | |
LOC107797939 | ethylene-responsive transcription factor 1B-like | Up | 2.02845 | 0.000338 | unknown function | |
LOC107766165 | ethylene-responsive transcription factor 14-like | Up | 2.70111 | 0.000367 | unknown function |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, M.; Zhou, T.; Guo, Y.; Zhao, X.; Wu, Y. Molecular Regulation of Host Defense Responses Mediated by Biological Anti-TMV Agent Ningnanmycin. Viruses 2019, 11, 815. https://doi.org/10.3390/v11090815
An M, Zhou T, Guo Y, Zhao X, Wu Y. Molecular Regulation of Host Defense Responses Mediated by Biological Anti-TMV Agent Ningnanmycin. Viruses. 2019; 11(9):815. https://doi.org/10.3390/v11090815
Chicago/Turabian StyleAn, Mengnan, Tao Zhou, Yi Guo, Xiuxiang Zhao, and Yuanhua Wu. 2019. "Molecular Regulation of Host Defense Responses Mediated by Biological Anti-TMV Agent Ningnanmycin" Viruses 11, no. 9: 815. https://doi.org/10.3390/v11090815
APA StyleAn, M., Zhou, T., Guo, Y., Zhao, X., & Wu, Y. (2019). Molecular Regulation of Host Defense Responses Mediated by Biological Anti-TMV Agent Ningnanmycin. Viruses, 11(9), 815. https://doi.org/10.3390/v11090815