Mosquito-Specific Viruses—Transmission and Interaction
Abstract
:1. Discovery of Different Mosquito-Specific Viruses (MSVs)
1.1. The Discovery
1.1.1. Flaviviridae
1.1.2. Togaviridae
1.1.3. Bunyaviridae
1.1.4. Mesoniviridae
2. Interaction of Mosquito-Specific Viruses with Arboviruses
2.1. Flaviviruses
2.2. Alphaviruses
3. Transmission Mechanisms of MSVs
3.1. Vertical Transmission
3.2. Horizontal Transmission
4. Interaction of MSVs with the Mosquito Immune System
4.1. MSVs and RNAi
4.2. MSVs and RNAi Suppressor Molecules
5. Possible Uses of MSVs
5.1. Vector and Transmission Control
5.2. Gene Expression Platforms and Vaccines
5.3. Diagnostic Assays
6. Conclusions and Future Directions
Funding
Conflicts of Interest
References
- Öhlund, P.; Lundén, H.; Blomström, A.L. Insect-Specific Virus Evolution and Potential Effects on Vector Competence. Virus Genes 2019, 1–11, 127–137. [Google Scholar]
- Atoni, E.; Zhao, L.; Karungu, S.; Obanda, V.; Agwanda, B.; Xia, H.; Yuan, Z. The Discovery and Global Distribution of Novel Mosquito-associated Viruses in the Last Decade (2007–2017). Rev. Med. Virol. 2019, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.G.; Weaver, S.C.; Tesh, R.B.; Vasilakis, N. Insect-Specific Virus Discovery: Significance for the Arbovirus Community. Viruses 2015, 7, 4911–4928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, S.; Budhauliya, R.; Das, B.; Chatterjee, S.; Vanlalhmuaka; Veer, V. Next-Generation Sequencing in Clinical Virology: Discovery of New Viruses. World J. Virol. 2015, 4, 265. [Google Scholar] [CrossRef] [PubMed]
- Qiang-long, Z.; Shi, L.; Peng, G.; Fei-shi, L. High-Throughput Sequencing Technology and Its Application. J. Northeast. Agric. Univ. 2014, 21, 84–96. [Google Scholar] [CrossRef]
- Zhang, W.; Chipman, P.R.; Corver, J.; Johnson, P.R.; Zhang, Y.; Mukhopadhyay, S.; Baker, T.S.; Strauss, J.H.; Rossmann, M.G.; Kuhn, R.J. Visualization of Membrane Protein Domains by Cryo-Electron Microscopy of Dengue Virus. Nat. Struct. Mol. Biol. 2003, 10, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Lindenbach, B.D.; Thiel, H.; Rice, C.M. Flaviviridae: The viruses and their replication. In Fields Virology; Knipe, D.M., Howley, P.M., Eds.; Lippincott William & Wilkins: Philadelphia, PA, USA, 2007; pp. 1101–1152. [Google Scholar]
- Stollar, V.; Thomas, V.L. An Agent in the Aedes aegypti Cell Line (Peleg) Which Causes Fusion of Aedes albopictus Cells. Virology 1975, 64, 367–377. [Google Scholar] [CrossRef]
- Blitvich, B.J.; Firth, A.E. Insect-Specific Flaviviruses: A Systematic Review of Their Discovery, Host Range, Mode of Transmission, Superinfection Exclusion Potential and Genomic Organization. Viruses 2015, 7, 1927–1959. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Mukhopadhyay, S.; Merits, A.; Bolling, B.; Nasar, F.; Coffey, L.L.; Powers, A.; Weaver, S.C. ICTV Virus Taxonomy Profile: Togaviridae. J. Gen. Virol. 2018, 99, 761–762. [Google Scholar] [CrossRef]
- Nasar, F.; Palacios, G.; Gorchakov, R.V.; Guzman, H.; Da Rosa, A.P.T.; Savji, N.; Popov, V.L.; Sherman, M.B.; Lipkin, W.I.; Tesh, R.B.; et al. Eilat Virus, a Unique Alphavirus with Host Range Restricted to Insects by RNA Replication. Proc. Natl. Acad. Sci. USA 2012, 109, 14622–14627. [Google Scholar] [CrossRef]
- Maes, P.; Alkhovsky, S.V.; Bào, Y.; Beer, M.; Birkhead, M.; Briese, T.; Buchmeier, M.J.; Calisher, C.H.; Charrel, R.N.; Choi, I.R.; et al. Taxonomy of the Family Arenaviridae and the Order Bunyavirales: Update 2018. Arch. Virol. 2018, 163, 2295–2310. [Google Scholar] [CrossRef] [PubMed]
- Marklewitz, M.; Zirkel, F.; Rwego, I.B.; Heidemann, H.; Trippner, P.; Kurth, A.; Kallies, R.; Briese, T.; Lipkin, W.I.; Drosten, C.; et al. Discovery of a Unique Novel Clade of Mosquito-Associated Bunyaviruses. J. Virol. 2013, 87, 12850–12865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marklewitz, M.; Handrick, S.; Grasse, W.; Kurth, A.; Lukashev, A.; Drosten, C.; Ellerbrok, H.; Leendertz, F.H.; Pauli, G.; Junglen, S. Gouleako Virus Isolated from West African Mosquitoes Constitutes a Proposed Novel Genus in the Family Bunyaviridae. J. Virol. 2011, 85, 9227–9234. [Google Scholar] [CrossRef] [PubMed]
- Marklewitz, M.; Zirkel, F.; Kurth, A.; Drosten, C.; Junglen, S. Evolutionary and Phenotypic Analysis of Live Virus Isolates Suggests Arthropod Origin of a Pathogenic RNA Virus Family. Proc. Natl. Acad. Sci. USA 2015, 112, 7536–7541. [Google Scholar] [CrossRef] [PubMed]
- Hobson-Peters, J.; Warrilow, D.; McLean, B.J.; Watterson, D.; Colmant, A.M.G.; van den Hurk, A.F.; Hall-Mendelin, S.; Hastie, M.L.; Gorman, J.J.; Harrison, J.J.; et al. Discovery and Characterisation of a New Insect-Specific Bunyavirus from Culex Mosquitoes Captured in Northern Australia. Virology 2016, 489, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Lauber, C.; Ziebuhr, J.; Junglen, S.; Drosten, C.; Zirkel, F.; Nga, P.T.; Morita, K.; Snijder, E.J.; Gorbalenya, A.E. Mesoniviridae: A Proposed New Family in the Order Nidovirales Formed by a Single Species of Mosquito-Borne Viruses. Arch. Virol. 2012, 157, 1623–1628. [Google Scholar] [CrossRef] [PubMed]
- Zirkel, F.; Kurth, A.; Quan, P.-L.; Briese, T.; Ellerbrok, H.; Pauli, G.; Leendertz, F.H.; Lipkin, W.I.; Ziebuhr, J.; Drosten, C.; et al. An Insect Nidovirus Emerging from a Primary Tropical Rainforest. MBio 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xia, H.; Zhang, B.; Liu, X.; Yuan, Z. Isolation and Characterization of a Novel Mesonivirus from Culex Mosquitoes in China. Virus Res. 2017, 240, 130–139. [Google Scholar] [CrossRef]
- Sang, R.C.; Gichogo, A.; Gachoya, J.; Dunster, M.D.; Ofula, V.; Hunt, A.R.; Crabtree, M.B.; Miller, B.R.; Dunster, L.M. Isolation of a New Flavivirus Related to Cell Fusing Agent Virus (CFAV) from Field-Collected Flood-Water Aedes Mosquitoes Sampled from a Dambo in Central Kenya. Arch. Virol. 2003, 148, 1085–1093. [Google Scholar] [CrossRef]
- Hobson-Peters, J.; Yam, A.W.Y.; Lu, J.W.F.; Setoh, Y.X.; May, F.J.; Kurucz, N.; Walsh, S.; Prow, N.A.; Davis, S.S.; Weir, R.; et al. A New Insect-Specific Flavivirus from Northern Australia Suppresses Replication of West Nile Virus and Murray Valley Encephalitis Virus in Co-Infected Mosquito Cells. PLoS ONE 2013, 8, e56534. [Google Scholar] [CrossRef]
- Huhtamo, E.; Cook, S.; Moureau, G.; Uzcátegui, N.Y.; Sironen, T.; Kuivanen, S.; Putkuri, N.; Kurkela, S.; Harbach, R.E.; Firth, A.E.; et al. Novel Flaviviruses from Mosquitoes: Mosquito-Specific Evolutionary Lineages within the Phylogenetic Group of Mosquito-Borne Flaviviruses. Virology 2014, 464–465, 320–329. [Google Scholar] [CrossRef]
- Hoshino, K.; Isawa, H.; Tsuda, Y.; Yano, K.; Sasaki, T.; Yuda, M.; Takasaki, T.; Kobayashi, M.; Sawabe, K. Genetic Characterization of a New Insect Flavivirus Isolated from Culex pipiens Mosquito in Japan. Virology 2007, 359, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, K.; Isawa, H.; Tsuda, Y.; Sawabe, K.; Kobayashi, M. Isolation and Characterization of a New Insect Flavivirus from Aedes albopictus and Aedes flavopictus Mosquitoes in Japan. Virology 2009, 391, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, K.; Takahashi-Nakaguchi, A.; Isawa, H.; Sasaki, T.; Higa, Y.; Kasai, S.; Tsuda, Y.; Sawabe, K.; Kobayashi, M. Entomological Surveillance for Flaviviruses at Migratory Bird Stopover Sites in Hokkaido, Japan, and a New Insect Flavivirus Detected in Aedes galloisi (Diptera: Culicidae). J. Med. Entomol. 2012, 49, 175–182. [Google Scholar] [CrossRef]
- Ajamma, Y.U.; Onchuru, T.O.; Ouso, D.O.; Omondi, D.; Masiga, D.K.; Villinger, J. Vertical Transmission of Naturally Occurring Bunyamwera and Insect-Specific Flavivirus Infections in Mosquitoes from Islands and Mainland Shores of Lakes Victoria and Baringo in Kenya. PLoS Negl. Trop. Dis. 2018, 12, e0006949. [Google Scholar] [CrossRef]
- Carrera, J.P.; Guzman, H.; Beltrán, D.; Díaz, Y.; López-Vergès, S.; Torres-Cosme, R.; Popov, V.; Widen, S.G.; Wood, T.G.; Weaver, S.C.; et al. Mercadeo Virus: A Novel Mosquito-Specific Flavivirus from Panama. Am. J. Trop. Med. Hyg. 2015, 93, 1014–1019. [Google Scholar] [CrossRef]
- Crabtree, M.B.; Nga, P.T.; Miller, B.R. Isolation and Characterization of a New Mosquito Flavivirus, Quang Binh Virus, from Vietnam. Arch. Virol. 2009, 154, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Junglen, S.; Korries, M.; Grasse, W.; Wieseler, J.; Kopp, A.; Hermanns, K.; León-Juárez, M.; Drosten, C.; Kümmerer, B.M. Host Range Restriction of Insect-Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle. mSphere 2017, 2. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Popov, V.; Guzman, H.; Phan, T.G.; Vasilakis, N.; Tesh, R.; Delwart, E. Genomes of Viral Isolates Derived from Different Mosquitos Species. Virus Res. 2017, 242, 49–57. [Google Scholar] [CrossRef]
- Pauvolid-Corrêa, A.; Solberg, O.; Couto-Lima, D.; Kenney, J.; Serra-Freire, N.; Brault, A.; Nogueira, R.; Langevin, S.; Komar, N. Nhumirim Virus, a Novel Flavivirus Isolated from Mosquitoes from the Pantanal, Brazil. Arch. Virol. 2015, 160, 21–27. [Google Scholar] [CrossRef]
- Vázquez, A.; Sánchez-Seco, M.-P.; Palacios, G.; Molero, F.; Reyes, N.; Ruiz, S.; Aranda, C.; Marqués, E.; Escosa, R.; Moreno, J.; et al. Novel Flaviviruses Detected in Different Species of Mosquitoes in Spain. Vector Borne Zoonotic Dis. 2012, 12, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.D.; Cook, S.; Lopes, Â.; de Matos, A.P.; Esteves, A.; Abecasis, A.; de Almeida, A.P.G.; Piedade, J.; Parreira, R. Characterization of an Insect-Specific Flavivirus (OCFVPT) Co-Isolated from Ochlerotatus caspius Collected in Southern Portugal along with a Putative New Negev-like Virus. Virus Genes 2013, 47, 532–545. [Google Scholar] [CrossRef]
- Huhtamo, E.; Putkuri, N.; Kurkela, S.; Manni, T.; Vaheri, A.; Vapalahti, O.; Uzcategui, N.Y. Characterization of a Novel Flavivirus from Mosquitoes in Northern Europe That Is Related to Mosquito-Borne Flaviviruses of the Tropics. J. Virol. 2009, 83, 9532–9540. [Google Scholar] [CrossRef]
- Junglen, S.; Kopp, A.; Kurth, A.; Pauli, G.; Ellerbrok, H.; Leendertz, F.H. A New Flavivirus and a New Vector: Characterization of a Novel Flavivirus Isolated from Uranotaenia Mosquitoes from a Tropical Rain Forest. J. Virol. 2009, 83, 4462–4468. [Google Scholar] [CrossRef]
- Lee, J.S.; Grubaugh, N.D.; Kondig, J.P.; Turell, M.J.; Kim, H.C.; Klein, T.A.; O’Guinn, M.L. Isolation and Genomic Characterization of Chaoyang Virus Strain ROK144 from Aedes vexans nipponii from the Republic of Korea. Virology 2013, 435, 220–224. [Google Scholar] [CrossRef]
- Kolodziejek, J.; Pachler, K.; Bin, H.; Mendelson, E.; Shulman, L.; Orshan, L.; Nowotny, N. Barkedji Virus, a Novel Mosquito-Borne Flavivirus Identified in Culex perexiguus Mosquitoes, Israel, 2011. J. Gen. Virol. 2013, 94, 2449–2457. [Google Scholar] [CrossRef]
- Farfan-Ale, J.A.; Loroño-Pino, M.A.; Garcia-Rejon, J.E.; Hovav, E.; Powers, A.M.; Lin, M.; Dorman, K.S.; Platt, K.B.; Bartholomay, L.C.; Soto, V.; et al. Detection of RNA from a Novel West Nile-like Virus and High Prevalence of an Insect-Specific Flavivirus in Mosquitoes in the Yucatan Peninsula of Mexico. Am. J. Trop. Med. Hyg. 2009, 80, 85–95. [Google Scholar] [CrossRef]
- Kuwata, R.; Sugiyama, H.; Yonemitsu, K.; Van Dung, N.; Terada, Y.; Taniguchi, M.; Shimoda, H.; Takano, A.; Maeda, K. Isolation of Japanese Encephalitis Virus and a Novel Insect-Specific Flavivirus from Mosquitoes Collected in a Cowshed in Japan. Arch. Virol. 2015, 160, 2151–2159. [Google Scholar] [CrossRef]
- Misencik, M.J.; Grubaugh, N.D.; Andreadis, T.G.; Ebel, G.D.; Armstrong, P.M. Isolation of a Novel Insect-Specific Flavivirus from Culiseta Melanura in the Northeastern United States. Vector Borne Zoonotic Dis. 2016, 16, 181–190. [Google Scholar] [CrossRef]
- Evangelista, J.; Cruz, C.; Guevara, C.; Astete, H.; Carey, C.; Kochel, T.J.; Morrison, A.C.; Williams, M.; Halsey, E.S.; Forshey, B.M. Characterization of a Novel Flavivirus Isolated from Culex (Melanoconion) ocossa Mosquitoes from Iquitos, Peru. J. Gen. Virol. 2013, 94, 1266–1272. [Google Scholar] [CrossRef]
- Guzman, H.; Contreras-Gutierrez, M.A.; Travassos da Rosa, A.P.A.; Nunes, M.R.T.; Cardoso, J.F.; Popov, V.L.; Young, K.I.; Savit, C.; Wood, T.G.; Widen, S.G.; et al. Characterization of Three New Insect-Specific Flaviviruses: Their Relationship to the Mosquito-Borne Flavivirus Pathogens. Am. J. Trop. Med. Hyg. 2018, 98, 410–419. [Google Scholar] [CrossRef]
- Yamao, T.; Eshita, Y.; Kihara, Y.; Satho, T.; Kuroda, M.; Sekizuka, T.; Nishimura, M.; Sakai, K.; Watanabe, S.; Akashi, H.; et al. Novel Virus Discovery in Field-Collected Mosquito Larvae Using an Improved System for Rapid Determination of Viral RNA Sequences (RDV Ver4.0). Arch. Virol. 2009, 154, 153–158. [Google Scholar] [CrossRef]
- Auguste, A.J.; Carrington, C.V.F.; Forrester, N.L.; Popov, V.L.; Guzman, H.; Widen, S.G.; Wood, T.G.; Weaver, S.C.; Tesh, R.B. Characterization of a Novel Negevirus and a Novel Bunyavirus Isolated from Culex (Culex) Declarator Mosquitoes in Trinidad. J. Gen. Virol. 2014, 95, 481–485. [Google Scholar] [CrossRef]
- Shchetinin, A.M.; Lvov, D.K.; Alkhovsky, S.V.; Shchelkanov, M.Y.; Aristova, V.A.; Morozova, T.N.; Gitelman, A.K.; Deryabin, P.G.; Botikov, A.G. Complete Genome Analysis of the Batai Virus (BATV) and the New Anadyr Virus (ANADV) of the Bunyamwera Group (Bunyaviridae, Orthobunyavirus) Isolated in Russia. Voprosy Virusologii 2014, 59, 16–22. [Google Scholar]
- Parry, R.; Asgari, S. Aedes anphevirus: An Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells. J. Virol. 2018, 92. [Google Scholar] [CrossRef]
- Vasilakis, N.; Castro-Llanos, F.; Widen, S.G.; Aguilar, P.V.; Guzman, H.; Guevara, C.; Fernandez, R.; Auguste, A.J.; Wood, T.G.; Popov, V.; et al. Arboretum and Puerto Almendras Viruses: Two Novel Rhabdoviruses Isolated from Mosquitoes in Peru. J. Gen. Virol. 2014, 95, 787–792. [Google Scholar] [CrossRef]
- Kuwata, R.; Isawa, H.; Hoshino, K.; Tsuda, Y.; Yanase, T.; Sasaki, T.; Kobayashi, M.; Sawabe, K. RNA Splicing in a New Rhabdovirus from Culex Mosquitoes. J. Virol. 2011, 85, 6185–6196. [Google Scholar] [CrossRef]
- Charles, J.; Firth, A.E.; Loroño-Pino, M.A.; Garcia-Rejon, J.E.; Farfan-Ale, J.A.; Ian Lipkin, W.; Blitvich, B.J.; Briese, T. Merida Virus, a Putative Novel Rhabdovirus Discovered in Culex and Ochlerotatus spp. Mosquitoes in the Yucatan Peninsula of Mexico. J. Gen. Virol. 2016, 97, 977–987. [Google Scholar] [CrossRef]
- Quan, P.-L.; Junglen, S.; Tashmukhamedova, A.; Conlan, S.; Hutchison, S.K.; Kurth, A.; Ellerbrok, H.; Egholm, M.; Briese, T.; Leendertz, F.H.; et al. Moussa Virus: A New Member of the Rhabdoviridae Family Isolated from Culex Decens Mosquitoes in Côte d’Ivoire. Virus Res. 2010, 147, 17–24. [Google Scholar] [CrossRef]
- Contreras, M.A.; Eastwood, G.; Guzman, H.; Popov, V.; Savit, C.; Uribe, S.; Kramer, L.D.; Wood, T.G.; Widen, S.G.; Fish, D.; et al. Almendravirus: A Proposed New Genus of Rhabdoviruses Isolated from Mosquitoes in Tropical Regions of the Americas. Am. J. Trop. Med. Hyg. 2017, 96, 100–109. [Google Scholar] [CrossRef]
- Charles, J.; Tangudu, C.S.; Hurt, S.L.; Tumescheit, C.; Firth, A.E.; Garcia-Rejon, J.E.; Machain-Williams, C.; Blitvich, B.J. Detection of Novel and Recognized RNA Viruses in Mosquitoes from the Yucatan Peninsula of Mexico Using Metagenomics and Characterization of Their in vitro Host Ranges. J. Gen. Virol. 2018, 99, 1729–1738. [Google Scholar] [CrossRef]
- Zirkel, F.; Roth, H.; Kurth, A.; Drosten, C.; Ziebuhr, J.; Junglen, S. Identification and Characterization of Genetically Divergent Members of the Newly Established Family Mesoniviridae. J. Virol. 2013, 87, 6346–6358. [Google Scholar] [CrossRef]
- Kuwata, R.; Satho, T.; Isawa, H.; Yen, N.T.; Phong, T.V.; Nga, P.T.; Kurashige, T.; Hiramatsu, Y.; Fukumitsu, Y.; Hoshino, K.; et al. Characterization of Dak Nong Virus, an Insect Nidovirus Isolated from Culex Mosquitoes in Vietnam. Arch. Virol. 2013, 158, 2273–2284. [Google Scholar] [CrossRef]
- Warrilow, D.; Watterson, D.; Hall, R.A.; Davis, S.S.; Weir, R.; Kurucz, N.; Whelan, P.; Allcock, R.; Hall-Mendelin, S.; O’Brien, C.A.; et al. A New Species of Mesonivirus from the Northern Territory, Australia. PLoS ONE 2014, 9, e91103. [Google Scholar] [CrossRef]
- Wang, L.; Lv, X.; Zhai, Y.; Fu, S.; Wang, D.; Rayner, S.; Tang, Q.; Liang, G. Genomic Characterization of a Novel Virus of the Family Tymoviridae Isolated from Mosquitoes. PLoS ONE 2012, 7, e39845. [Google Scholar] [CrossRef]
- Marklewitz, M.; Gloza-Rausch, F.; Kurth, A.; Kummerer, B.M.; Drosten, C.; Junglen, S. First Isolation of an Entomobirnavirus from Free-Living Insects. J. Gen. Virol. 2012, 93, 2431–2435. [Google Scholar] [CrossRef]
- Vancini, R.; Paredes, A.; Ribeiro, M.; Blackburn, K.; Ferreira, D.; Kononchik, J.P.; Hernandez, R.; Brown, D. Espirito Santo Virus: A New Birnavirus That Replicates in Insect Cells. J. Virol. 2012, 86, 2390–2399. [Google Scholar] [CrossRef]
- Vasilakis, N.; Forrester, N.L.; Palacios, G.; Nasar, F.; Savji, N.; Rossi, S.L.; Guzman, H.; Wood, T.G.; Popov, V.; Gorchakov, R.; et al. Negevirus: A Proposed New Taxon of Insect-Specific Viruses with Wide Geographic Distribution. J. Virol. 2013, 87, 2475–2488. [Google Scholar] [CrossRef]
- Schuster, S.; Zirkel, F.; Kurth, A.; van Cleef, K.W.R.; Drosten, C.; van Rij, R.P.; Junglen, S. A Unique Nodavirus with Novel Features: Mosinovirus Expresses Two Subgenomic RNAs, a Capsid Gene of Unknown Origin, and a Suppressor of the Antiviral RNA Interference Pathway. J. Virol. 2014, 88, 13447. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; He, Y.; Zhou, Y.; Meng, J.; Zhu, W.; Chen, H.; Liao, D.; Man, Y. Isolation and Genetic Characterization of Mangshi Virus: A Newly Discovered Seadornavirus of the Reoviridae Family Found in Yunnan Province, China. PLoS ONE 2015, 10, e0143601. [Google Scholar] [CrossRef]
- Song, S.; Li, Y.; Fu, S.; Lei, W.; Guo, X.; Feng, Y.; Gao, X.; Li, X.; Yang, Z.; Xu, Z.; et al. Genome Sequencing and Phylogenetic Analysis of Banna Virus (Genus Seadornavirus, Family Reoviridae) Isolated from Culicoides. Sci. China Life Sci. 2017, 60, 1372–1382. [Google Scholar] [CrossRef]
- Harrison, J.; Warrilow, D.; McLean, B.; Watterson, D.; O’Brien, C.; Colmant, A.; Johansen, C.; Barnard, R.; Hall-Mendelin, S.; Davis, S.; et al. A New Orbivirus Isolated from Mosquitoes in North-Western Australia Shows Antigenic and Genetic Similarity to Corriparta Virus but Does Not Replicate in Vertebrate Cells. Viruses 2016, 8, 141. [Google Scholar] [CrossRef]
- Auguste, A.J.; Kaelber, J.T.; Fokam, E.B.; Guzman, H.; Carrington, C.V.F.; Erasmus, J.H.; Kamgang, B.; Popov, V.L.; Jakana, J.; Liu, X.; et al. A Newly Isolated Reovirus Has the Simplest Genomic and Structural Organization of Any Reovirus. J. Virol. 2015, 89, 676–687. [Google Scholar] [CrossRef] [Green Version]
- Attoui, H.; Mohd Jaafar, F.; Belhouchet, M.; Biagini, P.; Cantaloube, J.-F.; de Micco, P.; de Lamballerie, X. Expansion of Family Reoviridae to Include Nine-Segmented DsRNA Viruses: Isolation and Characterization of a New Virus Designated Aedes pseudoscutellaris Reovirus Assigned to a Proposed Genus (Dinovernavirus). Virology 2005, 343, 212–223. [Google Scholar] [CrossRef]
- Hermanns, K.; Zirkel, F.; Kurth, A.; Drosten, C.; Junglen, S. Cimodo Virus Belongs to a Novel Lineage of Reoviruses Isolated from African Mosquitoes. J. Gen. Virol. 2014, 95, 905–909. [Google Scholar] [CrossRef]
- Zhai, Y.G.; Lv, X.J.; Sun, X.H.; Fu, S.H.; Da Gong, Z.; Fen, Y.; Tong, S.X.; Wang, Z.X.; Tang, Q.; Attoui, H.; et al. Isolation and Characterization of the Full Coding Sequence of a Novel Densovirus from the Mosquito Culex pipiens Pallens. J. Gen. Virol. 2008, 89, 195–199. [Google Scholar] [CrossRef]
- Jousset, F.-X.; Baquerizo, E.; Bergoin, M. A New Densovirus Isolated from the Mosquito Culex pipiens (Diptera: Culicidae). Virus Res. 2000, 67, 11–16. [Google Scholar] [CrossRef]
- Jousset, F.X.; Barreau, C.; Boublik, Y.; Cornet, M. A Parvo-like Virus Persistently Infecting a C6/36 Clone of Aedes albopictus Mosquito Cell Line and Pathogenic for Aedes aegypti Larvae. Virus Res. 1993, 29, 99–114. [Google Scholar] [CrossRef]
- Huang, Y.; Li, S.; Zhao, Q.; Pei, G.; An, X.; Guo, X.; Zhou, H.; Zhang, Z.; Zhang, J.; Tong, Y. Isolation and Characterization of a Novel Invertebrate Iridovirus from Adult Anopheles minimus (AMIV) in China. J. Invertebr. Pathol. 2015, 127, 1–5. [Google Scholar] [CrossRef]
- Fujita, R.; Kato, F.; Kobayashi, D.; Murota, K.; Takasaki, T.; Tajima, S.; Lim, C.-K.; Saijo, M.; Isawa, H.; Sawabe, K. Persistent Viruses in Mosquito Cultured Cell Line Suppress Multiplication of Flaviviruses. Heliyon 2018, 4, e00736. [Google Scholar] [CrossRef]
- Kobayashi, D.; Isawa, H.; Fujita, R.; Murota, K.; Itokawa, K.; Higa, Y.; Katayama, Y.; Sasaki, T.; Mizutani, T.; Iwanaga, S.; et al. Isolation and Characterization of a New Iflavirus from Armigeres spp. Mosquitoes in the Philippines. J. Gen. Virol. 2017, 98, 2876–2881. [Google Scholar] [CrossRef]
- Contreras-Gutiérrez, M.A.; Nunes, M.R.T.; Guzman, H.; Uribe, S.; Gallego Gómez, J.C.; Suaza Vasco, J.D.; Cardoso, J.F.; Popov, V.L.; Widen, S.G.; Wood, T.G.; et al. Sinu Virus, a Novel and Divergent Orthomyxovirus Related to Members of the Genus Thogotovirus Isolated from Mosquitoes in Colombia. Virology 2017, 501, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Isawa, H.; Kuwata, R.; Hoshino, K.; Tsuda, Y.; Sakai, K.; Watanabe, S.; Nishimura, M.; Satho, T.; Kataoka, M.; Nagata, N.; et al. Identification and Molecular Characterization of a New Nonsegmented Double-Stranded RNA Virus Isolated from Culex Mosquitoes in Japan. Virus Res. 2011, 155, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Kenney, J.L.; Brault, A.C. The Role of environmental, virological and vector interactions in dictating biological transmission of arthropod-borne viruses by mosquitoes. In Advances in Virus Research; Academic Press: Cambridge, MA, USA, 2014; pp. 39–83. [Google Scholar]
- Bolling, B.G.; Olea-Popelka, F.J.; Eisen, L.; Moore, C.G.; Blair, C.D. Transmission Dynamics of an Insect-Specific Flavivirus in a Naturally Infected Culex pipiens Laboratory Colony and Effects of Co-Infection on Vector Competence for West Nile Virus. Virology 2012, 427, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Kent, R.J.; Crabtree, M.B.; Miller, B.R. Transmission of West Nile Virus by Culex Quinquefasciatus Say Infected with Culex Flavivirus Izabal. PLoS Negl. Trop. Dis. 2010, 4, e671. [Google Scholar] [CrossRef] [PubMed]
- Talavera, S.; Birnberg, L.; Nuñez, A.I.; Muñoz-Muñoz, F.; Vázquez, A.; Busquets, N. Culex Flavivirus Infection in a Culex pipiens Mosquito Colony and Its Effects on Vector Competence for Rift Valley Fever Phlebovirus. Parasit. Vectors 2018, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- Hall-Mendelin, S.; McLean, B.J.; Bielefeldt-Ohmann, H.; Hobson-Peters, J.; Hall, R.A.; van den Hurk, A.F. The Insect-Specific Palm Creek Virus Modulates West Nile Virus Infection in and Transmission by Australian Mosquitoes. Parasit. Vectors 2016, 9, 414. [Google Scholar] [CrossRef]
- Kenney, J.L.; Solberg, O.D.; Langevin, S.A.; Brault, A.C. Characterization of a Novel Insect-Specific Flavivirus from Brazil: Potential for Inhibition of Infection of Arthropod Cells with Medically Important Flaviviruses. J. Gen. Virol. 2014, 95, 2796–2808. [Google Scholar] [CrossRef]
- Goenaga, S.; Kenney, J.L.; Duggal, N.K.; Delorey, M.; Ebel, G.D.; Zhang, B.; Levis, S.C.; Enria, D.A.; Brault, A.C. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes. Viruses 2015, 7, 5801–5812. [Google Scholar] [CrossRef]
- Romo, H.; Kenney, J.L.; Blitvich, B.J.; Brault, A.C. Restriction of Zika Virus Infection and Transmission in Aedes aegypti Mediated by an Insect-Specific Flavivirus. Emerg. Microbes Infect. 2018, 7, 181. [Google Scholar] [CrossRef]
- Schultz, M.J.; Frydman, H.M.; Connor, J.H. Dual Insect Specific Virus Infection Limits Arbovirus Replication in Aedes Mosquito Cells. Virology 2018, 518, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Nasar, F.; Erasmus, J.H.; Haddow, A.D.; Tesh, R.B.; Weaver, S.C. Eilat Virus Induces Both Homologous and Heterologous Interference. Virology 2015, 484, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Baidaliuk, A.; Miot, E.F.; Lequime, S.; Moltini-Conclois, I.; Delaigue, F.; Dabo, S.; Dickson, L.B.; Aubry, F.; Merkling, S.H.; Cao-Lormeau, V.-M.; et al. Cell-Fusing Agent Virus Reduces Arbovirus Dissemination in Aedes aegypti Mosquitoes in vivo. J. Virol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Asad, S.; Khromykh, A.A.; Asgari, S. Cell Fusing Agent Virus and Dengue Virus Mutually Interact in Aedes aegypti Cell Lines. Sci. Rep. 2017, 7, 6935. [Google Scholar] [CrossRef] [PubMed]
- Kuwata, R.; Hoshino, K.; Isawa, H.; Maeda, K.; Sasaki, T.; Kobayashi, M.; Sawabe, K. Analysis of Mosquito-Borne Flavivirus Superinfection in Culex tritaeniorhynchus (Diptera: Culicidae) Cells Persistently Infected with Culex Flavivirus (Flaviviridae). J. Med. Entomol. 2015, 52, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Kanthong, N.; Khemnu, N.; Pattanakitsakul, S.-N.; Malasit, P.; Flegel, T.W. Persistent, Triple-Virus Co-Infections in Mosquito Cells. BMC Microbiol. 2010, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Kanthong, N.; Khemnu, N.; Sriurairatana, S.; Pattanakitsakul, S.N.; Malasit, P.; Flegel, T.W. Mosquito Cells Accommodate Balanced, Persistent Co-Infections with a Densovirus and Dengue Virus. Dev. Comp. Immunol. 2008, 32, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Burivong, P.; Pattanakitsakul, S.N.; Thongrungkiat, S.; Malasit, P.; Flegel, T.W. Markedly Reduced Severity of Dengue Virus Infection in Mosquito Cell Cultures Persistently Infected with Aedes albopictus Densovirus (AalDNV). Virology 2004, 329, 261–269. [Google Scholar] [CrossRef]
- Ebert, D. The Epidemiology and Evolution of Symbionts with Mixed-Mode Transmission. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 623–643. [Google Scholar] [CrossRef] [Green Version]
- Cressler, C.E.; McLeod, D.V.; Rozins, C.; Van Den Hoogen, J.; Day, T. The Adaptive Evolution of Virulence: A Review of Theoretical Predictions and Empirical Tests. Parasitology 2016, 143, 915–930. [Google Scholar] [CrossRef]
- Bolling, B.G.; Eisen, L.; Moore, C.G.; Blair, C.D. Insect-Specific Flaviviruses from Culex Mosquitoes in Colorado, with Evidence of Vertical Transmission. Am. J. Trop. Med. Hyg. 2011, 85, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Fauver, J.R.; Grubaugh, N.D.; Krajacich, B.J.; Weger-Lucarelli, J.; Lakin, S.M.; Fakoli, L.S.; Bolay, F.K.; Diclaro, J.W.; Dabiré, K.R.; Foy, B.D.; et al. West African Anopheles Gambiae Mosquitoes Harbor a Taxonomically Diverse Virome Including New Insect-Specific Flaviviruses, Mononegaviruses, and Totiviruses. Virology 2016, 498, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Haddow, A.D.; Guzman, H.; Popov, V.L.; Wood, T.G.; Widen, S.G.; Haddow, A.D.; Tesh, R.B.; Weaver, S.C. First Isolation of Aedes Flavivirus in the Western Hemisphere and Evidence of Vertical Transmission in the Mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae). Virology 2013, 440, 134–139. [Google Scholar] [CrossRef]
- Cook, S.; Bennett, S.N.; Holmes, E.C.; De Chesse, R.; Moureau, G.; de Lamballerie, X. Isolation of a New Strain of the Flavivirus Cell Fusing Agent Virus in a Natural Mosquito Population from Puerto Rico. J. Gen. Virol. 2006, 87, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, A.; Thongrungkiat, S.; Ramasoota, P.; Konishi, E. Genetic and Evolutionary Analysis of Cell-Fusing Agent Virus Based on Thai Strains Isolated in 2008 and 2012. Infect. Genet. Evol. 2013, 19, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Farfan-Ale, J.A.; Loroño-Pino, M.A.; Garcia-Rejon, J.E.; Soto, V.; Lin, M.; Staley, M.; Dorman, K.S.; Bartholomay, L.C.; Hovav, E.; Blitvich, B.J. Detection of Flaviviruses and Orthobunyaviruses in Mosquitoes in the Yucatan Peninsula of Mexico in 2008. Vector Borne Zoonotic Dis. 2010, 10, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawakami, K.; Kurnia, Y.W.; Fujita, R.; Ito, T.; Isawa, H.; Asano, S.I.; Binh, N.D.; Bando, H. Characterization of a Novel Negevirus Isolated from Aedes Larvae Collected in a Subarctic Region of Japan. Arch. Virol. 2016, 161, 801–809. [Google Scholar] [CrossRef]
- Green, T.B.; Shapiro, A.; White, S.; Rao, S.; Mertens, P.P.C.; Carner, G.; Becnel, J.J. Molecular and Biological Characterization of a Cypovirus from the Mosquito Culex restuans. J. Invertebr. Pathol. 2006, 91, 27–34. [Google Scholar] [CrossRef]
- Czech, B.; Hannon, G.J. One Loop to Rule Them All: The Ping-Pong Cycle and PiRNA-Guided Silencing. Trends Biochem. Sci. 2016, 41, 324–337. [Google Scholar] [CrossRef]
- Saiyasombat, R.; Bolling, B.G.; Brault, A.C.; Bartholomay, L.C.; Blitvich, B.J. Evidence of Efficient Transovarial Transmission of Culex Flavivirus by Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 2011, 48, 1031–1038. [Google Scholar] [CrossRef]
- Becnel, J.J.; White, S.E.; Moser, B.A.; Fukuda, T.; Rotstein, M.J.; Undeen, A.H.; Cockburn, A. Epizootiology and Transmission of a Newly Discovered Baculovirus from the Mosquitoes Culex nigripalpus and C. quinquefasciatus. J. Gen. Virol. 2001, 82, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Barreau, C.; Jousset, F.X.; Bergoin, M. Venereal and Vertical Transmission of the Aedes albopictus Parvovirus in Aedes aegypti Mosquitoes. Am. J. Trop. Med. Hyg. 1997, 57, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Altinli, M.; Soms, J.; Ravallec, M.; Justy, F.; Bonneau, M.; Weill, M.; Gosselin-Grenet, A.-S.; Sicard, M. Sharing Cells with Wolbachia: The Transovarian Vertical Transmission of Culex pipiens Densovirus. Environ. Microbiol. 2019, 21, 3284–3298. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.M.; Becnel, J.J.; White, S.E. A Nucleopolyhedrovirus from Uranotaenia sapphirina (Diptera: Culicidae). J. Invertebr. Pathol. 2004, 86, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Becnel, J.J.; White, S.E.; Ars, U.; Drive, S.W. Mosquito Pathogenic Viruses-the Last 20 Years. J. Am. Mosq. Control. Assoc. 2007, 23, 36–49. [Google Scholar] [CrossRef]
- Shapiro, A.; Green, T.; Rao, S.; White, S.; Carner, G.; Mertens, P.P.C.; Becnel, J.J. Morphological and Molecular Characterization of a Cypovirus (Reoviridae) from the Mosquito Uranotaenia sapphirina (Diptera: Culicidae). J. Virol. 2005, 79, 9430–9438. [Google Scholar] [CrossRef] [PubMed]
- Linley, J.R.; Nielsen, H.T. Transmission of a Mosquito Iridescent Virus in Aedes taeniorhynchus. J. Invertebr. Pathol. 1968, 12, 17–24. [Google Scholar] [CrossRef]
- Muttis, E.; Miele, S.A.B.; Belaich, M.N.; Micieli, M.V.; Becnel, J.J.; Ghiringhelli, P.D.; García, J.J. First Record of a Mosquito Iridescent Virus in Culex pipiens L. (Diptera: Culicidae). Arch. Virol. 2012, 157, 1569–1571. [Google Scholar] [CrossRef] [PubMed]
- Muttis, E.; Micieli, M.V.; Urrutia, M.I.; García, J.J. Transmission of a Pathogenic Virus (Iridoviridae) of Culex pipiens Larvae Mediated by the Mermithid Strelkovimermis spiculatus (Nematoda). J. Invertebr. Pathol. 2015, 129, 40–44. [Google Scholar] [CrossRef]
- Muttis, E.; Victoria, M.M.; José, G.J. Culex pipiens Affected by Joint Infection of a Mosquito Iridescent Virus and Strelkovimermis spiculatus. J. Invertebr. Pathol. 2013, 114, 295–297. [Google Scholar]
- Buchatsky, L. Densonucleosis of Bloodsucking Mosquitoes. Dis. Aquat. Organ. 1989, 6, 145–150. [Google Scholar] [CrossRef]
- Ledermann, J.P.; Suchman, E.L.; Black IV, W.C.; Carlson, J.O. Infection and Pathogenicity of the Mosquito Densoviruses AeDNV, HeDNV, and APeDNV in Aedes aegypti Mosquitoes (Diptera: Culicidae). J. Econ. Entomol. 2004, 97, 1828–1835. [Google Scholar] [CrossRef] [PubMed]
- Barreau, C.; Jousset, F.-X.; Bergoin, M. Pathogenicity of the Aedes albopictus Parvovirus (AaPV), a Denso-like Virus, for Aedes aegypti Mosquitoes. J. Invertebr. Pathol. 1996, 68, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Lutomiah, J.J.L.; Mwandawiro, C.; Magambo, J.; Sang, R.C. Infection and Vertical Transmission of Kamiti River Virus in Laboratory Bred Aedes aegypti Mosquitoes. J. Insect Sci. 2007, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Guzman, H.; Bueno, R.; Dennett, J.A.; Auguste, A.J.; Carrington, C.V.F.; Popov, V.L.; Weaver, S.C.; Beasley, D.W.C.; Tesh, R.B. Characterization of Culex Flavivirus (Flaviviridae) Strains Isolated from Mosquitoes in the United States and Trinidad. Virology 2009, 386, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Obara-Nagoya, M.; Yamauchi, T.; Watanabe, M.; Hasegawa, S.; Iwai-Itamochi, M.; Horimoto, E.; Takizawa, T.; Takashima, I.; Kariwa, H. Ecological and Genetic Analyses of the Complete Genomes of Culex Flavivirus Strains Isolated from Culex tritaeniorhynchus and Culex pipiens (Diptera: Culicidae) Group Mosquitoes. J. Med. Entomol. 2013, 50, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Nasar, F.; Haddow, A.D.; Tesh, R.B.; Weaver, S.C. Eilat Virus Displays a Narrow Mosquito Vector Range. Parasit. Vectors 2014, 7, 595. [Google Scholar] [CrossRef] [PubMed]
- Kallies, R.; Kopp, A.; Zirkel, F.; Estrada, A.; Gillespie, T.R.; Drosten, C.; Junglen, S. Genetic Characterization of Goutanap Virus, a Novel Virus Related to Negeviruses, Cileviruses and Higreviruses. Viruses 2014, 6, 4346–4357. [Google Scholar] [CrossRef] [PubMed]
- Vasilakis, N.; Tesh, R.B. Insect-Specific Viruses and Their Potential Impact on Arbovirus Transmission. Curr. Opin. Virol. 2015, 15, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Roossinck, M.J. Plants, Viruses and the Environment: Ecology and Mutualism. Virology 2015, 479–480, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.R.T.; Contreras-Gutierrez, M.A.; Guzman, H.; Martins, L.C.; Feitoza, M.; Savit, C.; Balta, V.; Uribe, S.; Vivero, R.; Suaza, D.; et al. Genetic Characterization, Molecular Epidemiology, and Phylogenetic Relationships of Insect-Speci Fi c Viruses in the Taxon Negevirus. Virology 2017, 504, 152–167. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.; Virto, C.; Murillo, R.; Caballero, P. Covert Infection of Insects by Baculoviruses. Front. Microbiol. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-S.; Webster, J.A.; Madzokere, E.T.; Stephenson, E.B.; Herrero, L.J. Mosquito Antiviral Defense Mechanisms: A Delicate Balance between Innate Immunity and Persistent Viral Infection. Parasit. Vectors 2019, 12, 165. [Google Scholar] [CrossRef] [PubMed]
- Leggewie, M.; Schnettler, E. RNAi-Mediated Antiviral Immunity in Insects and Their Possible Application. Curr. Opin. Virol. 2018, 32, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Fejes Tóth, K.; Aravin, A.A. PiRNA Biogenesis in Drosophila Melanogaster. Trends Genet. 2017, 33, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Varjak, M.; Leggewie, M.; Schnettler, E. The Antiviral PiRNA Response in Mosquitoes? J. Gen. Virol. 2018, 99, 1551–1562. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.L.; Black, W.C.; Hess, A.M.; Foy, B.D.; Foy, B.D. Comparative Genomics of Small RNA Regulatory Pathway Components in Vector Mosquitoes. BMC Genom. 2008, 9, 425. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.H.; Salmela, H.; Obbard, D.J. Duplication and Diversification of Dipteran Argonaute Genes, and the Evolutionary Divergence of Piwi and Aubergine. Genome Biol. Evol. 2016, 8, 507–518. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, B.; Liu, P.; Li, J.; Chen, X.; Gu, J. PiRNA Profiling of Dengue Virus Type 2-Infected Asian Tiger Mosquito and Midgut Tissues. Viruses 2018, 10, 213. [Google Scholar] [CrossRef]
- Akbari, O.S.; Antoshechkin, I.; Amrhein, H.; Williams, B.; Diloreto, R.; Sandler, J.; Hay, B.A. The Developmental Transcriptome of the Mosquito Aedes aegypti, an Invasive Species and Major Arbovirus Vector. G3 Genes Genomes Genet. 2013, 3, 1493–1509. [Google Scholar] [CrossRef]
- Lewis, S.H.; Quarles, K.A.; Yang, Y.; Tanguy, M.; Frézal, L.; Smith, S.A.; Sharma, P.P.; Cordaux, R.; Gilbert, C.; Giraud, I.; et al. Pan-Arthropod Analysis Reveals Somatic PiRNAs as an Ancestral Defence against Transposable Elements. Nat. Ecol. Evol. 2018, 2, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Morazzani, E.M.; Wiley, M.R.; Murreddu, M.G.; Adelman, Z.N.; Myles, K.M. Production of Virus-Derived Ping-Pong-Dependent PiRNA-like Small RNAs in the Mosquito Soma. PLoS Pathog. 2012, 8, e1002470. [Google Scholar] [CrossRef] [PubMed]
- Arensburger, P.; Hice, R.H.; Wright, J.A.; Craig, N.L.; Atkinson, P.W. The Mosquito Aedes aegypti Has a Large Genome Size and High Transposable Element Load but Contains a Low Proportion of Transoson-Specific PiRNAs. BMC Genom. 2011, 12, 606. [Google Scholar] [CrossRef] [PubMed]
- Girardi, E.; Miesen, P.; Pennings, B.; Frangeul, L.; Saleh, M.-C.; van Rij, R.P. Histone-Derived PiRNA Biogensis Depends on the Ping-Pong Partners Piwi5 and Ago3 in Aedes aegypti. Nucleic Acids Res. 2017, 45, 4881–4892. [Google Scholar] [PubMed]
- Donald, C.L.; Kohl, A.; Schnettler, E. New Insights into Control of Arbovirus Replication and Spread by Insect RNA Interference Pathways. Insects 2012, 3, 511–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Etebari, K.; Hall-Mendelin, S.; van den Hurk, A.F.; Hobson-Peters, J.; Vatipally, S.; Schnettler, E.; Hall, R.; Asgari, S. Understanding the Role of MicroRNAs in the Interaction of Aedes aegypti Mosquitoes with an Insect-Specific Flavivirus. J. Gen. Virol. 2017, 98, 1892–1903. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.C.; Brackney, D.E.; Campbell, C.L.; Bondu-Hawkins, V.; Hjelle, B.; Ebel, G.D.; Olson, K.E.; Blair, C.D. Comparison of Dengue Virus Type 2-Specific Small RNAs from RNA Interference-Competent and-Incompetent Mosquito Cells. PLoS Negl. Trop. Dis. 2010, 4, e848. [Google Scholar] [CrossRef] [PubMed]
- Schnettler, E.; Sreenu, V.B.; Mottram, T.; McFarlane, M. Wolbachia Restricts Insect-Specific Flavivirus Infection in Aedes aegypti Cells. J. Gen. Virol. 2016, 97, 3024–3029. [Google Scholar] [CrossRef] [PubMed]
- Franzke, K.; Leggewie, M.; Sreenu, V.B.; Jansen, S.; Heitmann, A.; Welch, S.R.; Brennan, B.; Elliott, R.M.; Tannich, E.; Becker, S.C.; et al. Detection, Infection Dynamics and Small RNA Response against Culex Y Virus in Mosquito-Derived Cells. J. Gen. Virol. 2018, 99, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Göertz, G.; Miesen, P.; Overheul, G.; van Rij, R.; van Oers, M.; Pijlman, G. Mosquito Small RNA Responses to West Nile and Insect-Specific Virus Infections in Aedes and Culex Mosquito Cells. Viruses 2019, 11, 271. [Google Scholar] [CrossRef] [PubMed]
- Van Cleef, K.W.R.R.; van Mierlo, J.T.; Miesen, P.; Overheul, G.J.; Fros, J.J.; Schuster, S.; Marklewitz, M.; Pijlman, G.P.; Junglen, S.; van Rij, R.P. Mosquito and Drosophila entomobirnaviruses Suppress DsRNA-and SiRNA-Induced RNAi. Nucleic Acids Res. 2014, 42, 8732–8744. [Google Scholar] [CrossRef] [PubMed]
- Schnettler, E.; Donald, C.L.; Human, S.; Watson, M.; Siu, R.W.C.; McFarlane, M.; Fazakerley, J.K.; Kohl, A.; Fragkoudis, R. Knockdown of PiRNA Pathway Proteins Results in Enhanced Semliki Forest Virus Production in Mosquito Cells. J. Gen. Virol. 2013, 94, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, E.R.G.R.; Olmo, R.P.; Paro, S.; Ferreira, F.V.; de Faria, I.J.D.S.; Todjro, Y.M.H.; Lobo, F.P.; Kroon, E.G.; Meignin, C.; Gatherer, D.; et al. Sequence-Independent Characterization of Viruses Based on the Pattern of Viral Small RNAs Produced by the Host. Nucleic Acids Res. 2015, 43, 6191–6206. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, R.; Krebs, J.R. Arms Races between and within Species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1979, 205, 489–511. [Google Scholar]
- Gammon, D.B.; Mello, C.C. RNA Interference-Mediated Antiviral Defense in Insects. Curr. Opin. Insect Sci. 2015, 8, 111–120. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, S.T.; Samuel, G.H.; Adelman, Z.N.; Myles, K.M. Mosquito-Borne Viruses and Suppressors of Invertebrate Antiviral RNA Silencing. Viruses 2014, 6, 4314–4331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, J.A.; Lee, J.H.; Chapados, B.R.; Debler, E.W.; Schneemann, A.; Williamson, J.R. Dual Modes of RNA-Silencing Suppression by Flock House Virus Protein B2. Nat. Struct. Mol. Biol. 2005, 12, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Qi, N.; Cai, D.; Qiu, Y.; Xie, J.; Wang, Z.; Si, J.; Zhang, J.; Zhou, X.; Hu, Y. RNA Binding by a Novel Helical Fold of B2 Protein from Wuhan Nodavirus Mediates the Suppression of RNA Interference and Promotes B2 Dimerization. J. Virol. 2011, 85, 9543–9554. [Google Scholar] [CrossRef] [Green Version]
- Qi, N.; Zhang, L.; Qiu, Y.; Wang, Z.; Si, J.; Liu, Y.; Xiang, X.; Xie, J.; Qin, C.-F.; Zhou, X.; et al. Targeting of Dicer-2 and RNA by a Viral RNA Silencing Suppressor in Drosophila Cells. J. Virol. 2012, 86, 5763–5773. [Google Scholar] [CrossRef]
- Sullivan, C.S.; Ganem, D. A Virus-Encoded Inhibitor That Blocks RNA Interference in Mammalian Cells. J. Virol. 2005, 79, 7371–7379. [Google Scholar] [CrossRef] [Green Version]
- Nayak, A.; Berry, B.; Tassetto, M.; Kunitomi, M.; Acevedo, A.; Deng, C.; Krutchinsky, A.; Gross, J.; Antoniewski, C.; Andino, R. Cricket Paralysis Virus Antagonizes Argonaute 2 to Modulate Antiviral Defense in Drosophila. Nat. Struct. Mol. Biol. 2010, 17, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Van Rij, R.P.; Saleh, M.-C.; Berry, B.; Foo, C.; Houk, A.; Antoniewski, C.; Andino, R. The RNA Silencing Endonuclease Argonaute 2 Mediates Specific Antiviral Immunity in Drosophila melanogaster. Genes Dev. 2006, 20, 2985–2995. [Google Scholar] [CrossRef] [PubMed]
- Berry, B.; Deddouche, S.; Kirschner, D.; Imler, J.-L.; Antoniewski, C. Viral Suppressors of RNA Silencing Hinder Exogenous and Endogenous Small RNA Pathways in Drosophila. PLoS ONE 2009, 4, e5866. [Google Scholar] [CrossRef]
- Singh, G.; Popli, S.; Hari, Y.; Malhotra, P.; Mukherjee, S.; Bhatnagar, R.K. Suppression of RNA Silencing by Flock House Virus B2 Protein Is Mediated through Its Interaction with the PAZ Domain of Dicer. FASEB J. 2009, 23, 1845–1857. [Google Scholar] [CrossRef] [PubMed]
- Van Mierlo, J.T.; Bronkhorst, A.W.; Overheul, G.J.; Sadanandan, S.A.; Ekström, J.-O.; Heestermans, M.; Hultmark, D.; Antoniewski, C.; van Rij, R.P. Convergent Evolution of Argonaute-2 Slicer Antagonism in Two Distinct Insect RNA Viruses. PLoS Pathog. 2012, 8, e1002872. [Google Scholar] [CrossRef]
- Van Mierlo, J.T.; Overheul, G.J.; Obadia, B.; van Cleef, K.W.R.; Webster, C.L.; Saleh, M.-C.; Obbard, D.J.; van Rij, R.P. Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi. PLoS Pathog. 2014, 10, e1004256. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Abraham, A.M.; Asgari, S. An Ascovirus-Encoded RNase III Autoregulates Its Expression and Suppresses RNA Interference-Mediated Gene Silencing. J. Virol. 2010, 84, 3624–3630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fareh, M.; van Lopik, J.; Katechis, I.; Bronkhorst, A.W.; Haagsma, A.C.; van Rij, R.P.; Joo, C. Viral Suppressors of RNAi Employ a Rapid Screening Mode to Discriminate Viral RNA from Cellular Small RNA. Nucleic Acids Res. 2018, 46, 3187–3197. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.M.; Rasgon, J.L. Densonucleosis Viruses (‘Densoviruses’) for Mosquito and Pathogen Control. Curr. Opin. Insect Sci. 2018, 28, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Read, A.F.; Lynch, P.A.; Thomas, M.B. How to Make Evolution-Proof Insecticides for Malaria Control. PLoS Biol. 2009, 7, e1000058. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Rasgon, J.L. Potential for the Anopheles gambiae Densonucleosis Virus to Act as an “Evolution-Proof” Biopesticide. J. Virol. 2010, 84, 7726–7729. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.E.; Blair, C.D. Arbovirus-Mosquito Interactions: RNAi Pathway. Curr. Opin. Virol. 2015, 15, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Blair, C.D.; Olson, K.E.; Bonizzoni, M. The Widespread Occurrence and Potential Biological Roles of Endogenous Viral Elements in Insect Genomes. Curr. Issues Mol. Biol. 2019, 34, 13–30. [Google Scholar] [PubMed]
- Erasmus, J.H.; Seymour, R.L.; Kaelber, J.T.; Kim, D.Y.; Leal, G.; Sherman, M.B.; Frolov, I.; Chiu, W.; Weaver, S.C.; Nasar, F. Novel Insect-Specific Eilat Virus-Based Chimeric Vaccine Candidates Provide Durable, Mono-and Multi-Valent, Single Dose Protection against Lethal Alphavirus Challenge. J. Virol. 2017, 92. [Google Scholar] [CrossRef] [PubMed]
- Nasar, F.; Gorchakov, R.V.; Tesh, R.B.; Weaver, S.C. Eilat Virus Host Range Restriction Is Present at Multiple Levels of the Virus Life Cycle. J. Virol. 2015, 89, 1404–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piyasena, T.B.H.; Setoh, Y.X.; Hobson-Peters, J.; Newton, N.D.; Bielefeldt-Ohmann, H.; McLean, B.J.; Vet, L.J.; Khromykh, A.A.; Hall, R.A. Infectious DNAs Derived from Insect-Specific Flavivirus Genomes Enable Identification of Pre- and Post-Entry Host Restrictions in Vertebrate Cells. Sci. Rep. 2017, 7, 2940. [Google Scholar] [CrossRef]
- Erasmus, J.H.; Needham, J.; Raychaudhuri, S.; Diamond, M.S.; Beasley, D.W.C.; Morkowski, S.; Salje, H.; Fernandez Salas, I.; Kim, D.Y.; Frolov, I.; et al. Utilization of an Eilat Virus-Based Chimera for Serological Detection of Chikungunya Infection. PLoS Negl. Trop. Dis. 2015, 9, e0004119. [Google Scholar] [CrossRef]
MSV (Acronym) | Year | First Mosquito Host | Country Isolated | Family | Reference |
---|---|---|---|---|---|
Flaviviridae | |||||
Cell-fusing agent virus (CFAV) | 1975 | Aedes aegypti cell line | USA | [8] | |
Kamiti River virus (KRV) | 2003 | Aedes macintoshi | Kenya | [20] | |
Palm creek virus (PCV) | 2013 | Coquillettidia xanthogaster | Australia | [21] | |
Hanko virus (HANKV) | 2014 | Ochlerotatus sp. | Finland | [22] | |
Culex flavivirus (CxFV) | 2007 | Culex pipiens | Japan | [23] | |
Aedes flavivirus (AEFV) | 2009 | Aedes albopictus, Aedes flavopictus | Japan | [24] | |
Aedes galloisi flavivirus (AGFV) | 2012 | Aedes galloisi | Japan | [25] | |
Anopheles flavivirus (AnFV) | 2018 | Anopheles gambiae | Kenya | [26] | |
Mercadeo virus (MECDV) | 2015 | Culex sp. | Panama | [27] | |
Quang Binh virus (QBV) | 2009 | Culex tritaeniorhyncus | Vietnam | [28] | |
Nienokoue virus (NIEV) | 2017 | Culex sp. | Côte d’Ivoire | [29] | |
Culex theileri flavivirus (CTFV) | 2017 | Anopheles vagus | Indonesia | [30] | |
Nhumirim virus (NHUV) | 2015 | Culex chidesteri | Brazil | [31] | |
Spanish Culex flavivirus (SCxFV) | 2012 | Culex pipiens | Spain | [32] | |
Spanish Ochlerotatus flavivirus (SOcFV) | 2012 | Ochlerotatus caspius | Spain | [32] | |
Ochlerotatus caspius flavivirus (OCFV) | 2013 | Ochlerotatus caspius | Portugal | [33] | |
Mediterranean Ochlerotatus Flavivirus (MoFV) | 2012 | Ochlerotatus caspius | Spain | [32] | |
Ilomantsi virus (ILOV) | 2014 | Ochlerotatus riparius and/or Anopheles spp. (Pool; COI based identification) | Finland | [22] | |
Lammi virus (LAMV) | 2009 | Aedes cinereus (COI based identification) | Finland | [34] | |
Nounane virus (NOUV) | 2009 | Uranotaenia mashonaensis | Côte d’Ivoire | [35] | |
Chaoyang virus (CHAOV) | 2013 | Aedes vexans nipponii | South Korea | [36] | |
Barkedji virus (BJV) | 2013 | Culex perexiguus | Israel | [37] | |
T’Ho virus | 2009 | Culex quinquefasciatus | Mexico | [38] | |
Yamadai flavivirus | 2015 | Culex mosquitoes | Japan | [39] | |
Culiseta flavivirus | 2016 | Culiseta melanura | USA | [40] | |
Marisma mosquito virus (MMV) | 2012 | Ochlerotatus caspius | Spain | [32] | |
Nanay virus (NANV) | 2013 | Culex (Melanoconion) ocossa | Peru | [41] | |
Kampung Karu virus (KPKV) | 2018 | Anopheles tessellatus | Malaysia | [42] | |
Long Pine Key virus (LPKV) | 2018 | Anopheles crucians | USA | [42] | |
La Tina virus (LTNV) | 2018 | Aedes scapularis | Peru | [42] | |
Togaviridae | |||||
Eilat virus (EILV) | 2012 | Anopheles coustani | Israel | [11] | |
Bunyaviridae | |||||
Badu virus (BADUV) | 2016 | Culex sp. | Australia | [16] | |
Kibale virus (KIBV) | 2013 | Culex simpliciforceps | Uganda | [13] | |
Ferak virus (FERV) | 2015 | Culex sp. | Côte d’Ivoire | [15] | |
Phasi Charoen virus (PCLV) | 2009 | Aedes aegypti | Thailand | [43] | |
Cumuto virus (CUMV) | 2014 | Culex portesi | Trinidad and Tobago | [44] | |
Herbert virus (HEBV) | 2013 | Culex nebulosus | Côte d’Ivoire | [13] | |
Tai virus (TAIV) | 2013 | Culicidae sp. | Côte d’Ivoire | [13] | |
Jonchet virus (JONV) | 2015 | Culex sp. | Côte d’Ivoire | [15] | |
Gouleako virus (GOLV) | 2011 | Culex sp. | Côte d’Ivoire | [14] | |
Anadyr virus (ANADV) | 2014 | Aedes sp. | Russia | [45] | |
Rhabdoviridae | |||||
Aedes Anphevirus (AeAV) | 2018 | Aedes albopictus cell line RML-12 | USA | [46] | |
Puerto Almendras virus (PTAMV) | 2014 | Ochlerotattus fulvus | Peru | [47] | |
Arboretum virus (ABTV) | 2014 | Psorophora albigenu | Peru | [47] | |
Culex tritaeniorhynchus rhabdovirus (CTRV) | 2011 | Culex tritaeniorhynchus | Japan | [48] | |
Merida virus (MERDV) | 2016 | Culex quinquefasciatus | Mexico | [49] | |
Moussa virus (MOUV) | 2010 | Culex decens | Côte d’Ivoire | [50] | |
Coot Bay virus almendravirus | 2017 | Anopheles quadrimaculatus | USA | [51] | |
Rio Chico virus almendravirus | 2017 | Anopheles triannulatus | Panama | [51] | |
Balsa almendravirus | 2017 | Culex erraticus | Colombia | [51] | |
Mesoniviridae | |||||
Houston virus (HOUV) | 2018 | Culex quinquefasciatus | Mexico | [52] | |
Nse virus (NseV) | 2013 | Culex nebulosus | Côte d’Ivoire | [53] | |
Meno virus (MenoV) | 2013 | Uranotaenia chorleyi | Côte d’Ivoire | [53] | |
Hana virus (HanaV) | 2013 | Culex sp. | Côte d’Ivoire | [53] | |
Dak Nong virus (DKNV) | 2013 | Culex tritaeniorhynchus | Vietnam | [54] | |
Yichang virus (YCV) | 2017 | Culex sp. | China | [19] | |
Casuarina virus (CASV) | 2014 | Coquillettidia xanthogaster | Australia | [55] | |
Tymoviridae | |||||
Culex originated Tymoviridae-like virus (CuTLV) | 2012 | Culex sp. | China | [56] | |
Birnaviridae | |||||
Culex Y virus (CYV) | 2012 | Culex pipiens (s.l.) | Germany | [57] | |
Espirito Santo virus (ESV) | 2012 | Aedes albopictus C6/36 cells | Brazil | [58] | |
Negeviruses * | |||||
Uxmal virus | 2018 | Ochlerotatus taeniorhynchus | Mexico | [52] | |
Mayapan virus | 2018 | Psorophora ferox | Mexico | [52] | |
Santana virus | 2013 | Culex sp. | Brazil | [59] | |
Wallerfield virus (WALV) | 2014 | Culex portesi | Trinidad & Tobago | [44] | |
Dezidougou virus | 2013 | Aedes aegypti | Côte d’Ivoire | [59] | |
Loreto virus | 2013 | Anopheles albimanus | Peru | [59] | |
Negev virus | 2013 | Culex coronator | USA | [59] | |
Piura virus | 2013 | Culex sp. | Peru | [59] | |
Nodaviridae | |||||
Mosinovirus (MoNV) | 2014 | Culicidae mosquitoes | Côte d’Ivoire | [60] | |
Reoviridae | |||||
Mangshi virus (MSV) | 2015 | Culex tritaeniorhynchus | China | [61] | |
Ninarumi virus (NRUV) | 2017 | Ochlerotatus fulvus | Peru | [30] | |
High Island virus (HISLV) | 2017 | Psorophora ciliata | USA | [30] | |
Banna virus (BAV) | 2017 | Culicoides sp. | China | [62] | |
Parry’s Lagoon virus (PLV) | 2016 | Culex annulirostris | Australia | [63] | |
Fako virus (FAKV) | 2015 | Mosquito pool | Cameroon | [64] | |
Aedes pseudoscutellaris reovirus (APRV) | 2005 | Aedes pseudoscutellaris mosquito cells | France | [65] | |
Cimodo virus (CMDV) | 2014 | Culicidae sp. | Côte d’Ivoire | [66] | |
Parvoviridae | |||||
Culex pipiens pallens densovirus (CppDV) | 2008 | Culex pipiens pallens | China | [67] | |
Culex pipiens densovirus (CpDV) | 2000 | Culex pipiens pipiens | France | [68] | |
Aedes albopictus densovirus 2 (AalDV 2) | 1993 | Aedes albopictus C6/36 cells | France | [69] | |
Iridoviridae | |||||
Anopheles minimus Iridovirus (AMIV) | 2015 | Anopheles minimus | China | [70] | |
Permutotetraviridae | |||||
Sarawak virus (SWKV) | 2017 | Aedes albopictus | Malaysia | [30] | |
Shinobi tetravirus (SHTV) | 2018 | Aedes albopictus C6/36 cells | Japan | [71] | |
Iflaviridae | |||||
Armigeres iflavirus | 2017 | Armigeres mosquitoes | Philippine | [72] | |
Orthomyxoviridae | |||||
Sinu virus | 2017 | Adult mosquito pool | Colombia | [73] | |
Totiviridae | |||||
Omono river virus | 2011 | Culex sp. | Japan | [74] |
MSV | Arbovirus | Year | Method | Effect on Growth of Arbovirus | Reference | |||
---|---|---|---|---|---|---|---|---|
In-Vitro | In-Vivo | Reduction | Increase | No Effect | ||||
CFAV | DENV-1 ZIKV | 2019 | Yes Yes | Yes Yes | Yes Yes | No No | No | [85] |
NHUV | ZIKV DENV CHIKV | 2018 | Yes Yes Yes | Yes No No | Yes Yes No | No No No | No | [82] |
MRV, SHTV | ZIKV | 2018 | Yes | No | Yes | No | No | [71] |
CFAV, PCLV | ZIKV DENV LACV | 2018 | Yes Yes Yes | No No No | Yes Yes Yes | No No No | No | [83] |
CxFV | RVFV | 2018 | No | Yes | No | No | Yes | [78] |
AeAV | DENV | 2018 | Yes | No | Yes | No | No | [46] |
CFAV | DENV | 2017 | Yes | No | No | Yes | No | [86] |
PCV | WNV | 2016 | No | Yes | No | Yes | No | [79] |
EILV | SINV, VEEV, EEEV, WEEV, CHIKV CHIKV | 2015 | Yes No | No Yes | Yes Yes | No No | No | [84] |
CxFV | DENV, JEV JEV | 2015 | Yes Yes | No No | No No | No Yes | No | [87] |
NHUV | WNV | 2015 | Yes | Yes | Yes | No | No | [81] |
NHUV | WNV SLEV JEV | 2014 | Yes Yes Yes | No No No | Yes Yes Yes | No No No | No | [80] |
PCV | WNV MVEV | 2013 | Yes Yes | No No | Yes Yes | No No | No | [21] |
CxFV | WNV | 2012 | Yes | Yes | Yes | No | No | [76] |
CxFV | WNV | 2010 | Yes | Yes | No | No | Yes | [77] |
AalDV | JEV, DENV-2 | 2010 | Yes | No | Yes | No | No | [88] |
AalDV | DENV-2 | 2008 | Yes | No | Yes | No | No | [89] |
AalDV | DENV-2 | 2004 | Yes | No | Yes | No | No | [90] |
MSV | Family | Genome | Small RNAs | In Vivo /In Vitro | Species | Reference |
---|---|---|---|---|---|---|
Cell fusion agent virus (CFAV) | Flaviviridae | +ssRNA | piRNAs and siRNAs | in vitro | Aag2 (Aedes aegypti) C6/36 (Aedes albopictus) | [139,140] |
Small RNA ** | in vitro | Aag2 | [141] | |||
Calbertado virus | Flaviviridae | +ssRNA | siRNAs | in vitro | CT (Culex tarsalis) | [142] |
Palm Creek virus (PCV) | Flaviviridae | +ssRNA | siRNAs and piRNA-like | in vivo | Aedes aegypti | [138] |
Culex Y virus (CYV) | Birnaviridae | dsRNA | piRNA-like | in vitro | Aag2 C7/10 (Ae albopictus) U4.4 (Ae albopictus) | [141] |
siRNAs | in vitro | CT Aag2 U4.4 | [141,142,143] | |||
Phasi-Charoen-like virus (PCLV) | Phenuiviridae | -ssRNA | Small RNAs ** | in vitro | Aag2 Ae (Ae aegypti) C7/10 | [141] |
siRNAs and piRNAs | in vitro | Aag2 CT | [142,144] | |||
siRNAs and piRNAs | in vivo | Ae aegypti | [145] | |||
Aedes pseudoscutellaris reovirus | Reoviridae | dsRNA | Small RNAs ** | in vitro | Ae | [141] |
Flock House virus | Nodaviridae | +ssRNA | siRNA | in vitro | CT | [142] |
Culex narnavirus 1 | Narna-like *** | +ssRNA *** | siRNA | in vitro | CT | [142] |
Aedes Anphevirus (AeAV) | n/a * | -ssRNA | piRNA and siRNA | in vitro | Aag2.wMelPop-CLA (Wolbachia strain wMelPop-CLA infected Aag2) | [46] |
Aedes albopictus densovirus 2 (Dipteran brevidensovirus 2) | Parvoviridae | ssDNA | Small RNAs ** | in vitro | Aag2 | [141] |
Aedes densovirus (Dipteran brevidensovirus 1) | Parvoviridae | ssDNA | siRNA | in vitro | Aag2 | [142] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agboli, E.; Leggewie, M.; Altinli, M.; Schnettler, E. Mosquito-Specific Viruses—Transmission and Interaction. Viruses 2019, 11, 873. https://doi.org/10.3390/v11090873
Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-Specific Viruses—Transmission and Interaction. Viruses. 2019; 11(9):873. https://doi.org/10.3390/v11090873
Chicago/Turabian StyleAgboli, Eric, Mayke Leggewie, Mine Altinli, and Esther Schnettler. 2019. "Mosquito-Specific Viruses—Transmission and Interaction" Viruses 11, no. 9: 873. https://doi.org/10.3390/v11090873
APA StyleAgboli, E., Leggewie, M., Altinli, M., & Schnettler, E. (2019). Mosquito-Specific Viruses—Transmission and Interaction. Viruses, 11(9), 873. https://doi.org/10.3390/v11090873