Preventive and Therapeutic Strategies for Bovine Leukemia Virus: Lessons for HTLV
Abstract
:1. Introduction
2. Transmission
3. Epidemiology
4. Preventive and Therapeutic Strategies
4.1. Removal or Segregation Approaches
4.1.1. Test and Eliminate
4.1.2. Test and Segregate
4.2. Corrective Management and Veterinary Practices
- -
- (i) use of individual, single-use needles and syringes during vaccination or therapeutic protocols;
- -
- (ii) use of individual, single-use obstetrical sleeves (or at least replacement between examination of BLV-reactors and non-infected animals);
- -
- (iii) use of disposable equipment (or at least cleaning, disinfection or sterilization of reusable materials and surgical instruments) in procedures such as dehorning, tattooing, implanting, cauterizing, castration or ear-tagging;
- -
- (iv) use of electrical or gas burning devices rather than gouging equipment during dehorning;
- -
- (v) feeding calves with colostrum or whole milk from non-infected dams, pasteurized colostrum from BLV-infected cows or milk replacer;
- -
- (vi) elimination of insects, particularly in densely populated farm areas (milking areas, free-stalls, barns) in order to minimize potential transmission between animals through arthropod vectors;
- -
- (vii) natural and/or artificial insemination and embryo transfer with BLV-free dams and bulls.
4.3. Selection of BLV-Resistant Cattle
4.4. Epigenetic Modulation of Viral Expression as Therapy
4.5. Vaccination
4.5.1. Inactivated Virus Vaccines
4.5.2. Cell-Derived Vaccines
- -
- -
- BLV-infected FLK or SF-28 cells fixed with 3% glutaraldehyde [178].
- -
4.5.3. Viral Subunit Vaccines
4.5.4. Recombinant Vaccinia Virus
4.5.5. Synthetic Peptides
4.5.6. DNA Vaccines
4.6. Competitive Infection by Attenuated Proviruses
5. BLV as a Model for HTLV Therapy and Prevention
5.1. Prevention
5.1.1. Interruption or Short-Term Breast-Feeding
- -
- -
5.1.2. Prevention of Sexual Transmission
5.1.3. Prevention of Iatrogenic Transmission
5.2. Vaccination Strategies
- -
- heat-inactivated HTLV-1 [309];
- -
- -
- -
- -
- -
5.3. Epigenetic Modulation Strategy and Gene Activation Therapy
6. Conclusion
Acknowledgments
Conflict of Interest
References and Notes
- Leisering, A. Hypertrophy der Malpighischen Körperoen der Milz. Berl. Vet. West. Kgr. Sachsen 1871, 16, 15–16. [Google Scholar]
- Olson, C.; Miller, J. History and terminology of enzootic bovine leukosis. In Enzootic Bovine Leukosis and Bovine Leukemia Virus; Burny, A., Mammerickx, M., Eds.; Martinus Nijhoff Publishing: Boston, MA, USA, 1987; pp. 3–14. [Google Scholar]
- Bollinger, O. Über Leukämie bei den Haustieren. Virchows Arch. 1874, 59, 341–349. [Google Scholar] [CrossRef]
- Siedamgrotzky, O.; Hofmeister, V. Anleitung zur mikroskopischen und chemischen Diagnostik der Krankheiten der Hausthiere: für Thierärzte und Landwirthe/bearb; Schönfeld VIII: Dresden, Germany, 1876; p. 192. [Google Scholar]
- Schöttler, F.; Schöttler, H. Über Ätiologie und Therapie der Aleukämischen Lymphadenose des Rindes. Berl. Muench. Tierarztl. Wochenschr. 1934, 50, 497–502, 513–517. [Google Scholar]
- Johnson, R.; Kaneene, J.B. Bovine leukaemia virus and enzootic bovine leukosis. Vet. Bull. 1992, 62, 287–312. [Google Scholar]
- Bendixen, H.J. Bovine enzootic leukosis. Adv. Vet. Sci. 1965, 10, 129–204. [Google Scholar]
- Miller, J.M.; Miller, L.D.; Olson, C.; Gillette, K.G. Virus-like particles in phytohemagglutinin- stimulated lymphocyte cultures with reference to bovine lymphosarcoma. J. Natl. Cancer Inst. 1969, 43, 1297–1305. [Google Scholar]
- Ferrer, J.F.; Marshak, R.R.; Abt, D.A.; Kenyon, S.J. Persistent lymphocytosis in cattle: Its cause, nature and relation to lymphosarcoma. Ann. Rech. Vet. 1978, 9, 851–857. [Google Scholar]
- Ferrer, J.F. Bovine lymphosarcoma. Adv. Vet. Sci. Comp. Med. 1980, 24, 1–68. [Google Scholar]
- Burny, A.; Bex, F.; Chantrenne, H.; Cleuter, Y.; Dekegel, D.; Ghysdael, J.; Kettmann, R.; Leclercq, M.; Leunen, J.; Mammerickx, M.; et al. Bovine leukemia virus involvement in enzootic bovine leukosis. Adv. Cancer Res. 1978, 28, 251–311. [Google Scholar]
- Burny, A.; Bruck, C.; Chantrenne, H.; Cleuter, Y.; Dekegel, D.; Ghysdael, J.; Kettmann, R.; Leclercq, M.; Leunen, J.; Mammerickx, M.; et al. Bovine leukemia virus: Molecular biology and epidemiology. In Viral Oncology; Klein, G., Ed.; Raven Press: New York, NY, USA, 1980. [Google Scholar]
- Burny, A.; Bruck, C.; Cleuter, Y.; Couez, D.; Deschamps, J.; Gregoire, D.; Ghysdael, J.; Kettmann, R.; Mammerickx, M.; Marbaix, G.; et al. Bovine leukaemia virus and enzootic bovine leukosis. Onderstepoort J. Vet. Res. 1985, 52, 133–144. [Google Scholar]
- Burny, A.; Cleuter, Y.; Kettmann, R.; Mammerickx, M.; Marbaix, G.; Portetelle, D.; van den Broeke, A.; Willems, L.; Thomas, R. Bovine leukaemia: Facts and hypotheses derived from the study of an infectious cancer. Vet. Microbiol. 1988, 17, 197–218. [Google Scholar] [CrossRef]
- Kettmann, R.; Portetelle, D.; Mammerickx, M.; Cleuter, Y.; Dekegel, D.; Galoux, M.; Ghysdael, J.; Burny, A.; Chantrenne, H. Bovine leukemia virus: An exogenous RNA oncogenic virus. Proc. Natl. Acad. Sci. U. S. A. 1976, 73, 1014–1018. [Google Scholar] [CrossRef]
- Kettmann, R.; Burny, A. Bovine Leukemia Virus. In The Retroviridae; Levy, J.A., Ed.; Plenum Press: New York, NY, USA, 1994; Volume 3, pp. 39–81. [Google Scholar]
- Kenyon, S.J.; Piper, C.E. Cellular basis of persistent lymphocytosis in cattle infected with bovine leukemia virus. Infect. Immun. 1977, 16, 891–897. [Google Scholar] [CrossRef]
- Ferrer, J.F.; Marshak, R.R.; Abt, D.A.; Kenyon, S.J. Relationship between lymphosarcoma and persistent lymphocytosis in cattle: A review. J. Am. Vet. Med. Assoc. 1979, 175, 705–708. [Google Scholar]
- Schwartz, I.; Levy, D. Pathobiology of bovine leukemia virus. Vet. Res. 1994, 25, 521–536. [Google Scholar]
- Kettmann, R.; Burny, A.; Cleuter, Y.; Ghysdael, J.; Mammerickx, M. Distribution of bovine leukemia virus proviral sequences in tissues of bovine, ovine and human origin. Ann. Rech. Vet. 1978, 9, 837–844. [Google Scholar]
- Kettmann, R.; Meunier-Rotival, M.; Cortadas, J.; Cuny, G.; Ghysdael, J.; Mammerickx, M.; Burny, A.; Bernardi, G. Integration of bovine leukemia virus DNA in the bovine genome. Proc. Natl. Acad. Sci. U. S. A. 1979, 76, 4822–4826. [Google Scholar] [CrossRef]
- Kettmann, R.; Meunier-Rotival, M.; Cortadas, J.; Cuny, G.; Ghysdael, J.; Mammerickx, M.; Burny, A.; Bernardi, G. Integration site of bovine leukemia virus DNA in the bovine genome [proceedings]. Arch. Int. Physiol. Biochim. 1979, 87, 818–819. [Google Scholar]
- Kettmann, R.; Cleuter, Y.; Mammerickx, M.; Meunier-Rotival, M.; Bernardi, G.; Burny, A.; Chantrenne, H. Genomic integration of bovine leukemia provirus: Comparison of persistent lymphocytosis with lymph node tumor form of enzootic. Proc. Natl. Acad. Sci. U. S. A. 1980, 77, 2577–2581. [Google Scholar] [CrossRef]
- Jacobs, R.M.; Song, Z.; Poon, H.; Heeney, J.L.; Taylor, J.A.; Jefferson, B.; Vernau, W.; Valli, V.E. Proviral detection and serology in bovine leukemia virus-exposed normal cattle and cattle with lymphoma. Can. J. Vet. Res. 1992, 56, 339–348. [Google Scholar]
- Thurmond, M.C. Economics of enzootic bovine leukosis. In Enzootic bovine leukosis and bovine leukemia virus; Burny, A., Mammerickx, M., Eds.; Martinus Nijhoff Publishing: Boston, MA, USA, 1987; pp. 71–86. [Google Scholar]
- Pelzer, K.D. Economics of bovine leukemia virus infection. Vet. Clin. North Am. Food Anim. Pract. 1997, 13, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Trainin, Z.; Brenner, J. The direct and indirect economic impacts of bovine leukemia virus infection on dairy cattle. Isr. J. Vet. Med. 2005, 60, 90–105. [Google Scholar]
- Johnson, R.; Gibson, C.D.; Kaneene, J.B. Bovine leukemia virus: A herd-based control strategy. Prev. Vet. Med. 1985, 3, 339–349. [Google Scholar] [CrossRef]
- Hopkins, S.G.; DiGiacomo, R.F. Natural transmission of bovine leukemia virus in dairy and beef cattle. Vet. Clin. North. Am. Food Anim. Pract. 1997, 13, 107–128. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, K.; Okada, K.; Numakunai, S.; Yoneyama, Y.; Sato, S.; Takahashi, K. Evidence on horizontal transmission of bovine leukemia virus due to blood-sucking tabanid flies. Nippon Juigaku Zasshi. 1981, 43, 79–81. [Google Scholar] [CrossRef]
- Perino, L.J.; Wright, R.E.; Hoppe, K.L.; Fulton, R.W. Bovine leukosis virus transmission with mouthparts from Tabanus abactor after interrupted feeding. Am. J. Vet. Res. 1990, 51, 1167–1169. [Google Scholar]
- Ferrer, J.F.; Piper, C.E.; Abt, D.A.; Marshak, R.R.; Bhatt, D.M. Natural mode of transmission of the bovine C type leukemia virus (BLV). Bibl. Haematol. 1975, 43, 235–237. [Google Scholar]
- Lassauzet, M.L.; Thurmond, M.C.; Johnson, W.O.; Holmberg, C.A. Factors associated with in utero or periparturient transmission of bovine leukemia virus in calves on a California dairy. Can. J. Vet. Res. 1991, 55, 264–268. [Google Scholar]
- Piper, C.E.; Ferrer, J.F.; Abt, D.A.; Marshak, R.R. Postnatal and prenatal transmission of the bovine leukemia virus under natural conditions. J. Natl. Cancer Inst. 1979, 62, 165–168. [Google Scholar]
- Agresti, A.; Ponti, W.; Rocchi, M.; Meneveri, R.; Marozzi, A.; Cavalleri, D.; Peri, E.; Poli, G.; Ginelli, E. Use of polymerase chain reaction to diagnose bovine leukemia virus infection in calves at birth. Am. J. Vet. Res. 1993, 54, 373–378. [Google Scholar]
- Ferrer, J.F.; Piper, C.E. Role of colostrum and milk in the natural transmission of the bovine leukemia virus. Cancer Res. 1981, 41, 4906–4909. [Google Scholar]
- Ferrer, J.F.; Piper, C.E. An evaluation of the role of milk in the natural transmission of BLV. Ann. Rech. Vet. 1978, 9, 803–807. [Google Scholar]
- Ferrer, J.F.; Kenyon, S.J.; Gupta, P. Milk of dairy cows frequently contains a leukemogenic virus. Science 1981, 213, 1014–1016. [Google Scholar] [CrossRef]
- Van Der Maaten, M.J.; Miller, J.M.; Schmerr, M.J. Effect of colostral antibody on bovine leukemia virus infection of neonatal calves. Am. J. Vet. Res. 1981, 42, 1498–1500. [Google Scholar]
- Van der Maaten, M.J.; Miller, J.M. Susceptibility of cattle to bovine leukemia virus infection by various routes of exposure. In Advances in Comparative Leukemia Research; Bentvelzen, P., Hilgers, J., Yohn, D.S., Eds.; Elsevier/North Holland Biomedical Press: Amsterdam, the Netherlands, 1978; pp. 29–32. [Google Scholar]
- Lassauzet, M.L.; Johnson, W.O.; Thurmond, M.C.; Stevens, F. Protection of colostral antibodies against bovine leukemia virus infection in calves on a California dairy. Can. J. Vet. Res. 1989, 53, 424–430. [Google Scholar]
- Forschner, E.; Bunger, I.; Krause, H.P. Surveillance investigations of brucellosis-, leukosis- and BHV-free cattle herds. ELISA-based bulk milk studies compared to single animal sample studies with traditional test systems. Safety and cost. Dtsch. Tierarztl. Wochenschr. 1988, 95, 214–218. [Google Scholar]
- Knapen, K.; Kerkhofs, P.; Mammerickx, M. Eradication of enzootic bovine leukosis in Belgium: Results of the mass detection on the national cattle population in 1989, 1990 and 1991. Ann. Med. Vet. 1993, 137, 197–201. [Google Scholar]
- Nuotio, L.; Rusanen, H.; Sihvonen, L.; Neuvonen, E. Eradication of enzootic bovine leukosis from Finland. Prev. Vet. Med. 2003, 59, 43–49. [Google Scholar] [CrossRef]
- Acaite, J.; Tamosiunas, V.; Lukauskas, K.; Milius, J.; Pieskus, J. The eradication experience of enzootic bovine leukosis from Lithuania. Prev. Vet. Med. 2007, 82, 83–89. [Google Scholar] [CrossRef]
- OIE World Animal Health InformationDatabase (WAHID Interface), Version 1.4. Available online: http://web.oie.int/wahis/public.php?page=disease_status_detail (accessed on 27 April 2011).
- NAHIS-AHA Enzootic Bovine Leukosis. Available online: http://www.animalhealthaustralia. com.au/nahis/pmwiki/pmwiki.php?n=Factsheet.90-1 (accessed on 27 April 2011).
- Hayes, D.; Burton, L. Enzootic bovine leucosis eradication scheme. Surveillance 1998, 25, 3–5. [Google Scholar]
- NAHMS-USDA Bovine Leukosis Virus on, U.S. Dairy Operations. 2007. Available online: http://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy07/Dairy07_is_BLV.pdf (accessed on 27 April 2011).
- Jacobs, R.M.; Pollari, F.L.; McNab, W.B.; Jefferson, B. A serological survey of bovine syncytial virus in Ontario: associations with bovine leukemia and immunodeficiency-like viruses, production records, and management practices. Can. J. Vet. Res. 1995, 59, 271–278. [Google Scholar] [PubMed]
- Van Leeuwen, J.A.; Keefe, G.P.; Tremblay, R.; Power, C.; Wichtel, J.J. Seroprevalence of infection with Mycobacterium avium subspecies paratuberculosis, bovine leukemia virus, and bovine viral diarrhea virus in maritime Canada dairy cattle. Can. Vet. J. 2001, 42, 193–198. [Google Scholar] [PubMed]
- Van Leeuwen, J.A.; Forsythe, L.; Tiwari, A.; Chartier, R. Seroprevalence of antibodies against bovine leukemia virus, bovine viral diarrhea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum in dairy cattle in Saskatchewan. Can. Vet. J. 2005, 46, 56–58. [Google Scholar] [PubMed]
- Van Leeuwen, J.A.; Tiwari, A.; Plaizier, J.C.; Whiting, T.L. Seroprevalence of antibodies against bovine leukemia virus, bovine viral diarrhea virus, Mycobacterium avium subspecies partuberculosis, and Neospora caninum in beef and dairy cattle in Manitoba. Can. Vet. J. 2006, 47, 783–786. [Google Scholar] [PubMed]
- Scott, H.M.; Sorensen, O.; Wu, J.T.; Chow, E.Y.; Manninen, K.; Van Leeuwen, J.A. Seroprevalence of Mycobacterium avium subspecies paratuberculosis, Neospora caninum, Bovine leukemia virus, and Bovine viral diarrhea virus infection among dairy cattle and herds in Alberta and agroecological risk factors associated with seropositivity. Can. Vet. J. 2006, 47, 981–991. [Google Scholar]
- Marin, C.; de López, N.M.; Álvarez, L.; Lozano, O.; España, W.; Castaños, H.; León, A. Epidemiology of bovine leukemia in Venezuela. Ann. Rech. Vet. 1978, 9, 743–746. [Google Scholar]
- Islas, L.A.; Inchaurtieta, S.C.; Muñoz, P.G. Prevalencia de leucosis enzoótica bovina (LEB) en lecherías de las comunas de San Fernando, Chimbarongo y Placilla. Monograf. Med. Vet. 1990, 12, 64–70. [Google Scholar]
- Alfonso, R.; Almansa, J.E.; Barrera, J.C. Serological prevalence and evaluation of the risk factors of bovine enzootic leukosis in the Bogota savannah and the Ubate and Chiquinquira Valleys, Colombia. Rev. Sci. Tech. 1998, 17, 723–732. [Google Scholar] [CrossRef]
- Rama, G.; Moratorio, G.; Greif, G.; Obal, G.; Bianchi, S.; Tomé, L.; Carrion, F.; Meikle, A.; Pritsch, O. Development of a real time PCR assay using SYBR Green chemistry for bovine leukemia virus detection. Retrovirology 2011, 8, A17. [Google Scholar] [CrossRef]
- Trono, K.G.; Perez-Filgueira, D.M.; Duffy, S.; Borca, M.V.; Carrillo, C. Seroprevalence of bovine leukemia virus in dairy cattle in Argentina: Comparison of sensitivity and specificity of different detection methods. Vet. Microbiol. 2001, 83, 235–248. [Google Scholar] [CrossRef]
- D’Angelino, J.L.; Garcia, M.; Birgel, E.H. Epidemiological study of enzootic bovine leukosis in Brazil. Trop. Anim. Health Prod. 1998, 30, 13–15. [Google Scholar] [CrossRef]
- Abreu, V.L.V.; Silva, J.A.; Modena, C.M.; Moreira, É.C.; Figueiredo, M.M.N. Prevalência da leucose enzoótica bovina nos estados de Rondônia e Acre. Arq. Bras. Med. Vet. Zootec. 1990, 42, 203–210. [Google Scholar]
- Melo, L.E.H. Leucose enzoótica dos bovinos. Prevalência da infecção em rebanhos leiteiros criados no agreste meridional do estado de Pernambuco. Dissertação (Mestrado), Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Sao Paulo, Brazil, 1991; p. 102.
- Melo, C.B.; Oliveira, A.M.; Figueiredo, H.C.P.; Leite, R.C.; Lobato, Z.I.P. Prevalência de anticorpos contra Herpesvírus Bovino-1, vírus da Diarréia Bovina a Vírus e vírus da Leucose Enzoótica Bovina em bovinos do Estado de Sergipe, Brasil. Rev. Bras. Reprod. Anim. 1997, 21, 160–161. [Google Scholar]
- Molnár, E.; Molnár, L.; Tavares Dias, H.; da Silva, A.O.A.; Gomes Vale, W. Ocorrência da Leucose Enzoótica dos Bovinos no Estado do Pará, Brasil. Pesq. Vet. Bras. 1999, 19, 7–11. [Google Scholar] [CrossRef]
- Leuzzi Junior, L.Á.; Fernandes Alfieri, A.; Alfieri, A.A. Leucose enzoótica bovina e vírus da leucemia bovina. Semina 2001, 22, 211–221. [Google Scholar] [CrossRef]
- Cerqueira-Leite, R.; Portela Lobato, Z.I.; Fernandes Camargos, M. Leucose Enzoótica Bovina. Revista CFMFVZ 2001, 24, 20–28. [Google Scholar]
- Del Fava, C.; Pituco, E.M. Infecção pelo vírus da leucemia bovina (BLV) no Brasil. Biológico 2004, 66, 1–8. [Google Scholar]
- Wang, C.T. Bovine leukemia virus infection in Taiwan: Epizdemiological study. J. Vet. Med. Sci. 1991, 53, 395–398. [Google Scholar] [CrossRef]
- Meas, S.; Ohashi, K.; Tum, S.; Chhin, M.; Te, K.; Miura, K.; Sugimoto, C.; Onuma, M. Seroprevalence of bovine immunodeficiency virus and bovine leukemia virus in draught animals in Cambodia. J. Vet. Med. Sci. 2000, 62, 779–781. [Google Scholar] [CrossRef]
- Murakami, K.; Kobayashi, S.; Konishi, M.; Kameyama, K.; Yamamoto, T.; Tsutsui, T. The recent prevalence of bovine leukemia virus (BLV) infection among Japanese cattle. Vet. Microbiol. 2011, 148, 84–88. [Google Scholar] [CrossRef]
- Suh, G.H.; Lee, J.C.; Lee, C.Y.; Hur, T.Y.; Son, D.S.; Ahn, B.S.; Kim, N.C.; Lee, C.G. Establishment of a bovine leukemia virus-free dairy herd in Korea. J. Vet. Sci. 2005, 6, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Hafez, S.M.; Sharif, M.; Al-Sukayran, A.; Dela-Cruz, D. Preliminary studies on enzootic bovine leukosis in Saudi dairy farms. Dtsch. Tierarztl. Wochenschr. 1990, 97, 61–63. [Google Scholar] [PubMed]
- Meas, S.; Seto, J.; Sugimoto, C.; Bakhsh, M.; Riaz, M.; Sato, T.; Naeem, K.; Ohashi, K.; Onuma, M. Infection of Bovine Immunodeficiency Virus and Bovine Leukemia Virus in Water Buffalo and Cattle Populations in Pakistan. J. Vet. Med. Sci. 2000, 62, 329–331. [Google Scholar] [CrossRef] [PubMed]
- Pourjafar, M.; Mahzonieh, M.R.; Heidari Borujeni, M. Serological study of bovine viral leukosis in Borujen, Lordegan and Farsan. In Proceedings of the 23rd World Buiatrics Congress, Quebec City, Canada, 11–16 July 2004; p. 338. [Google Scholar]
- Burgu, I.; Alkan, F.; Karaoglu, T.; Bilge-Dagalp, S.; Can-Sahna, K.; Gungor, B.; Demir, B. Control and eradication programme of enzootic bovine leucosis (EBL) from selected dairy herds in Turkey. Dtsch. Tierarztl. Wochenschr. 2005, 112, 271–274. [Google Scholar]
- Haghparast, A.; Mohammadi, G.; Mousavi, S. Seroepidemiology of bovine leukemia virus (BLV) infection in the north eastern provinces of Iran. In Proceedings of the XVI Congress of the Mediterranean Federation for Health and Production of Ruminants, Zadar, Croatia, 22–26 April 2008; Harapin, I., Kos, J., Eds.; Faculty of Veterinary medicine, Zagreb Croatian Veterinary Chamber: Zadar, Croatia, 2008; p. 504. [Google Scholar]
- Brujeni, G.N.; Poorbazargani, T.T.; Nadin-Davis, S.; Tolooie, M.; Barjesteh, N. Bovine immunodeficiency virus and bovine leukemia virus and their mixed infection in Iranian Holstein cattle. J. Infect. Dev. Ctries. 2010, 4, 576–579. [Google Scholar] [CrossRef]
- Tan, M.T.; Yildirim, Y.; Erol, N.; Gungor, A.B. The seroprevalence of bovine herpes virus type 1 (BHV-1) and bovine leukemia virus (BLV) in selected dairy cattle herds in Aydin province, Turkey. Turk. J. Vet. Anim. Sci. 2006, 30, 353–357. [Google Scholar]
- Ferrer, J.F. Bovine leukosis: Natural transmission and principles of control. J. Am. Vet. Med. Assoc. 1979, 175, 1281–1286. [Google Scholar]
- DiGiacomo, R.F. The epidemiology and control of bovine leukemia virus infection. Vet. Med. 1992, 87, 248–257. [Google Scholar]
- Mammerickx, M.; Cormann, A.; Burny, A.; Dekegel, D.; Portetelle, D. Eradication of enzootic bovine leukosis based on the detection of the disease by the GP immunodiffusion test. Ann. Rech. Vet. 1978, 9, 885–894. [Google Scholar]
- Straub, O.C. First results of a new sanitation program concerning the eradication of enzootic bovine leukosis. Ann. Rech. Vet. 1978, 9, 895–898. [Google Scholar]
- Maas-Inderwiesen, F.; Albrecht, A.; Bause, I.; Osmers, M.; Schmidt, F.W. Effect of leukosis control on the development of enzootic bovine leukosis in Lower Saxony. Dtsch. Tierarztl. Wochenschr. 1978, 85, 309–313. [Google Scholar]
- Van Der Maaten, M.J.; Miller, J.M. Appraisal of control measures for bovine leukosis. J. Am. Vet. Med. Assoc. 1979, 175, 1287–1290. [Google Scholar]
- Roberts, D.H.; Bushnell, S. Herd eradication of enzootic bovine leukosis. Vet. Rec. 1982, 111, 487. [Google Scholar] [CrossRef]
- Schmidt, F.W. In Results and observations of an EBL eradication programme based on AGIDT diagnosis and culling of reactors, Proceedings of the Fourth International Symposium on Bovine Leukosis, Bologna, Italy, 5–7 November 1980; Straub, O.C., Ed.; Martinus Nijhoff Publishing: Dordrecht, The Netherlands, 1982; pp. 491–497.
- Yoshikawa, T.; Yoshikawa, H.; Koyama, H.; Tsubaki, S. Preliminary attempts to eradicate infection with bovine leukemia virus from a stock farm in Japan. Nippon Juigaku Zasshi 1982, 44, 831–843. [Google Scholar] [CrossRef]
- Ohshima, K.; Okada, K.; Numakunai, S.; Kayano, H.; Goto, T. An eradication program without economic loss in a herd infected with bovine leukemia virus (BLV). Nippon Juigaku Zasshi 1988, 50, 1074–1078. [Google Scholar] [CrossRef]
- Wang, C.T.; Onuma, M. Attempt to eradicate bovine leukemia virus-infected cattle from herds. Jpn. J. Vet. Res. 1992, 40, 105–111. [Google Scholar]
- Asfaw, Y.; Tsuduku, S.; Konishi, M.; Murakami, K.; Tsuboi, T.; Wu, D.; Sentsui, H. Distribution and superinfection of bovine leukemia virus genotypes in Japan. Arch. Virol. 2005, 150, 493–505. [Google Scholar] [CrossRef]
- Monti, G.; Schrijver, R.; Beier, D. Genetic diversity and spread of Bovine leukaemia virus isolates in Argentine dairy cattle. Arch. Virol. 2005, 150, 443–458. [Google Scholar] [CrossRef]
- Shettigara, P.T.; Samagh, B.S.; Lobinowich, E.M. Control of bovine leukemia virus infection in dairy herds by agar gel immunodiffusion test and segregation of reactors. Can. J. Vet. Res. 1989, 53, 108–110. [Google Scholar]
- Brenner, J.; Meiron, R.; Avraham, R.; Savir, S.; Trainin, Z. Trial of two methods for the eradication of bovine leucosis virus infection from two large dairy herds in Israel. Isr. J. Vet. Med. 1988, 44, 168–175. [Google Scholar]
- Kaja, R.W.; Olson, C.; Rowe, R.F.; Stauffacher, R.H.; Strozinski, L.L.; Hardie, A.R.; Bause, I. Establishment of a bovine leukosis virus-free dairy herd. J. Am. Vet. Med. Assoc. 1984, 184, 184–185. [Google Scholar] [PubMed]
- Otachel-Hawranek, J. Eradication of enzootic bovine leukosis in dairy cattle from the lower Silesia region. Bull. Vet. Inst. Pulawy 2007, 51, 465–469. [Google Scholar]
- OIE. Enzootic bovine leukosis. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; Chapter 2.4.11; World Organisation for Animal Health: Paris, France, 2008; Volume 2, pp. 729–738. [Google Scholar]
- Evermann, J.F.; DiGiacomo, R.F.; Ferrer, J.F.; Parish, S.M. Transmission of bovine leukosis virus by blood inoculation. Am. J. Vet. Res. 1986, 47, 1885–1887. [Google Scholar] [PubMed]
- Burridge, M.J.; Thurmond, M.C.; Miller, J.M.; Schmerr, M.J.; Van Der Maaten, M.J. Duration of colostral antibodies to bovine leukemia virus by two serologic tests. Am. J. Vet. Res. 1982, 43, 1866–1867. [Google Scholar]
- Burridge, M.J.; Thurmond, M.C.; Miller, J.M.; Schmerr, M.J.; Van Der Maaten, M.J. Fall in antibody titer to bovine leukemia virus in the periparturient period. Can. J. Comp. Med. 1982, 46, 270–271. [Google Scholar]
- Lew, A.E.; Bock, R.E.; Miles, J.; Cuttell, L.B.; Steer, P.; Nadin-Davis, S.A. Sensitive and specific detection of bovine immunodeficiency virus and bovine syncytial virus by 5’ Taq nuclease assays with fluorescent 3’ minor groove binder-DNA probes. J. Virol. Methods 2004, 116, 1–9. [Google Scholar] [CrossRef]
- Jimba, M.; Takeshima, S.N.; Matoba, K.; Endoh, D.; Aida, Y. BLV-CoCoMo-qPCR: Quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm. Retrovirology 2010, 7, 91. [Google Scholar] [CrossRef]
- Juliarena, M.A.; Gutierrez, S.E.; Ceriani, C. Determination of proviral load in bovine leukemia virus-infected cattle with and without lymphocytosis. Am. J. Vet. Res. 2007, 68, 1220–1225. [Google Scholar] [CrossRef]
- Esteban, E.N.; Poli, M.; Poiesz, B.; Ceriani, C.; Dube, S.; Gutierrez, S.; Dolcini, G.; Gagliardi, R.; Perez, S.; Lützelschwab, C.; et al. Bovine leukemia virus (BLV), proposed control and eradication programs by marker assisted breeding of genetically resistant cattle. In Animal Genetics; Chapter 6; Rechi, L.J., Ed.; Nova Science Publishers, Inc: Hauppauge, NY, USA, 2009; pp. 107–130. [Google Scholar]
- Gutiérrez, G.; Alvarez, I.; Politzki, R.; Lomónaco, M.; Dus Santos, M.J.; Rondelli, F.; Fondevila, N.; Trono, K. Natural progression of bovine leukemia virus infection in Argentinean dairy cattle. Vet. Microbiol. 2011, in press. [CrossRef]
- Ruppanner, R.; Behymer, D.E.; Paul, S.; Miller, J.M.; Theilen, G.H. A strategy for control of bovine leukemia virus infection: test and corrective management. Can. Vet. J. 1983, 24, 192–195. [Google Scholar]
- Sprecher, D.J.; Pelzer, K.D.; Lessard, P. Possible effect of altered management practices on seroprevalence of bovine leukemia virus in heifers of a dairy herd with history of high prevalence of infection. J. Am. Vet. Med. Assoc. 1991, 199, 584–588. [Google Scholar]
- Bacon, L.D. Influence of the major histocompatibility complex on disease resistance and productivity. Poult. Sci. 1987, 66, 802–11. [Google Scholar] [CrossRef]
- Gogolin-Ewens, K.J.; Meeusen, E.N.; Scott, P.C.; Adams, T.E.; Brandon, M.R. Genetic selection for disease resistance and traits of economic importance in animal production. Rev. Sci. Tech. 1990, 9, 865–896. [Google Scholar] [CrossRef]
- Warner, C.M.; Meeker, D.L.; Rothschild, M.F. Genetic control of immune responsiveness: A review of its use as a tool for selection for disease resistance. J. Anim. Sci. 1987, 64, 394–406. [Google Scholar] [CrossRef]
- Lamont, S.J. Impact of genetics on disease resistance. Poult. Sci. 1998, 77, 1111–1118. [Google Scholar] [CrossRef]
- Amorena, B.; Stone, W.H. Serologically defined (SD) locus in cattle. Science 1978, 201, 159–160. [Google Scholar] [CrossRef]
- Spooner, R.L.; Leveziel, H.; Grosclaude, F.; Oliver, R.A.; Vaiman, M. Evidence for a possible major histocompatibility complex (BLA) in cattle. J. Immunogenet. 1978, 5, 325–346. [Google Scholar] [CrossRef]
- Spooner, R.L.; Oliver, R.A.; Sales, D.I.; McCoubrey, C.M.; Millar, P.; Morgan, A.G.; Amorena, B.; Bailey, E.; Bernoco, D.; Brandon, M.; et al. Analysis of alloantisera against bovine lymphocytes. Joint report of the 1st International Bovine Lymphocyte Antigen (BoLA) workshop. Anim. Blood Groups Biochem. Genet. 1979, 10, 63–86. [Google Scholar] [CrossRef]
- Burridge, M.J.; Wilcox, C.J.; Hennemann, J.M. Influence of genetic factors on the susceptibility of cattle to bovine leukemia virus infection. Eur. J. Cancer 1979, 15, 1395–1400. [Google Scholar] [CrossRef]
- Lewin, H.A.; Bernoco, D. Evidence for BoLA-linked resistance and susceptibility to subclinical progression of bovine leukaemia virus infection. Anim. Genet. 1986, 17, 197–207. [Google Scholar] [CrossRef]
- Stear, M.J.; Dimmock, C.K.; Newman, M.J.; Nicholas, F.W. BoLA antigens are associated with increased frequency of persistent lymphocytosis in bovine leukaemia virus infected cattle and with increased incidence of antibodies to bovine leukaemia virus. Anim. Genet. 1988, 19, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Lewin, H.A.; Wu, M.C.; Stewart, J.A.; Nolan, T.J. Association between BoLA and subclinical bovine leukemia virus infection in a herd of Holstein-Friesian cows. Immunogenetics 1988, 27, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Bull, R.W.; Lewin, H.A.; Wu, M.C.; Peterbaugh, K.; Antczak, D.; Bernoco, D.; Cwik, S.; Dam, L.; Davies, C.; Dawkins, R.L.; et al. Joint report of the Third International Bovine Lymphocyte Antigen (BoLA) Workshop, Helsinki, Finland, 27 July 1986. Anim. Genet. 1989, 20, 109–132. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.; Thurmond, M.; Picanso, J.; Brewer, A.W.; Bernoco, D. In Susceptibility of cattle bovine leukemia virus infection associated with BoLA type, Proceedings of the 91st Annual Meeting of United States Animal Health Association, Salk Lake City, UT, USA, 25–30 October 1987; United States Animal Health Association: Richmond, VA, USA, 1987; pp. 218–228.
- van Eijk, M.J.; Stewart-Haynes, J.A.; Beever, J.E.; Fernando, R.L.; Lewin, H.A. Development of persistent lymphocytosis in cattle is closely associated with DRB2. Immunogenetics 1992, 37, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; van Eijk, M.J.; Park, C.; Lewin, H.A. Polymorphism in BoLA-DRB3 exon 2 correlates with resistance to persistent lymphocytosis caused by bovine leukemia virus. J. Immunol. 1993, 151, 6977–6985. [Google Scholar] [CrossRef]
- van Eijk, M.J.; Stewart-Haynes, J.A.; Lewin, H.A. Extensive polymorphism of the BoLA-DRB3 gene distinguished by PCR-RFLP. Anim. Genet. 1992, 23, 483–496. [Google Scholar] [CrossRef]
- Burke, M.G.; Stone, R.T.; Muggli-Cockett, N.E. Nucleotide sequence and northern analysis of a bovine major histocompatibility class II DR beta-like cDNA. Anim. Genet. 1991, 22, 343–352. [Google Scholar] [CrossRef]
- Mirsky, M.L.; Olmstead, C.; Da, Y.; Lewin, H.A. Reduced bovine leukaemia virus proviral load in genetically resistant cattle. Anim. Genet. 1998, 29, 245–252. [Google Scholar] [CrossRef]
- Zanotti, M.; Poli, G.; Ponti, W.; Polli, M.; Rocchi, M.; Bolzani, E.; Longeri, M.; Russo, S.; Lewin, H.A.; van Eijk, M.J. Association of BoLA class II haplotypes with subclinical progression of bovine leukaemia virus infection in Holstein-Friesian cattle. Anim. Genet. 1996, 27, 337–341. [Google Scholar]
- Udina, I.G.; Karamysheva, E.E.; Turkova, S.O.; Orlova, A.R.; Sulimova, G.E. Genetic mechanisms of resistance and susceptibility to leukemia in Ayrshire and black pied cattle breeds determined by allelic distribution of gene Bola-DRB3. Genetika 2003, 39, 383–396. [Google Scholar]
- Juliarena, M.A.; Poli, M.; Sala, L.; Ceriani, C.; Gutierrez, S.; Dolcini, G.; Rodriguez, E.M.; Marino, B.; Rodriguez-Dubra, C.; Esteban, E.N. Association of BLV infection profiles with alleles of the BoLA-DRB3.2 gene. Anim. Genet. 2008, 39, 432–438. [Google Scholar] [CrossRef]
- Takashima, I.; Olson, C. Histocompatibility antigens in bovine lymphosarcoma. A preliminary study. Ann. Rech. Vet. 1978, 9, 821–823. [Google Scholar]
- Aida, Y. Influence of host genetic diffences on leukemogenesis induced bovine leukaemia virus. AIDS Res. Hum. Retroviruses 2001, 17, 12. [Google Scholar]
- Nagaoka, Y.; Kabeya, H.; Onuma, M.; Kasai, N.; Okada, K.; Aida, Y. Ovine MHC class II DRB1 alleles associated with resistance or susceptibility to development of bovine leukemia virus-induced ovine lymphoma. Cancer Res. 1999, 59, 975–981. [Google Scholar]
- Kabeya, H.; Ohashi, K.; Oyunbileg, N.; Nagaoka, Y.; Aida, Y.; Sugimoto, C.; Yokomizo, Y.; Onuma, M. Up-regulation of tumor necrosis factor alpha mRNA is associated with bovine- leukemia virus (BLV) elimination in the early phase of infection. Vet. Immunol. Immunopathol. 1999, 68, 255–265. [Google Scholar] [CrossRef]
- Konnai, S.; Usui, T.; Ikeda, M.; Kohara, J.; Hirata, T.; Okada, K.; Ohashi, K.; Onuma, M. Tumor necrosis factor-alpha genetic polymorphism may contribute to progression of bovine leukemia virus-infection. Microbes Infect. 2006, 8, 2163–2171. [Google Scholar] [CrossRef]
- Bojarojc-Nosowicz, B.; Kaczmarczyk, E. Somatic cell count and chemical composition of milk in naturally BLV-infected cows with different phenotypes of blood leukocyte acid phosphatase. Archiv. für Tierzucht. 2006, 49, 17–28. [Google Scholar] [CrossRef]
- Lewin, H.A. Disease resistance and immune response genes in cattle: Strategies for their detection and evidence of their existence. J. Dairy Sci. 1989, 72, 1334–1348. [Google Scholar] [CrossRef]
- Lander, E.S.; Schork, N.J. Genetic dissection of complex traits. Science 1994, 265, 2037–2048. [Google Scholar] [CrossRef]
- Kramnik, I.; Boyartchuk, V. Immunity to intracellular pathogens as a complex genetic trait. Curr. Opin. Microbiol. 2002, 5, 111–117. [Google Scholar] [CrossRef]
- Glass, E.J.; Baxter, R.; Leach, R.; Taylor, G. Bovine viral diseases: The role of host genetics. In Breeding for Disease Resistance in Farm Animals, 3rd ed.; Chapter 6; Bishop, S.C., Axford, R.F.E., Owen, J., Nicholas, F., Eds.; CAB International: Oxfordshire, UK, 2011; pp. 80–140. [Google Scholar]
- Williams, J.L. The use of marker-assisted selection in animal breeding and biotechnology. Rev. Sci. Tech. Off. Int. Epiz. 2005, 24, 379–391. [Google Scholar] [CrossRef]
- Juliarena, M.A.; Poli, M.; Ceriani, C.; Sala, L.; Rodriguez, E.; Gutierrez, S.; Dolcini, G.; Odeon, A.; Esteban, E.N. Antibody response against three widespread bovine viruses is not impaired in Holstein cattle carrying bovine leukocyte antigen DRB3.2 alleles associated with bovine leukemia virus resistance. J. Dairy Sci. 2009, 92, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.H.; Bird, A. Histone deacetylases: Silencers for hire. Trends Biochem. Sci. 2000, 25, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Graessle, S.; Loidl, P.; Brosch, G. Histone acetylation: Plants and fungi as model systems for the investigation of histone deacetylases. Cell. Mol. Life Sci. 2001, 58, 704–720. [Google Scholar] [CrossRef] [PubMed]
- Czermin, B.; Imhof, A. The sounds of silence-histone deacetylation meets histone methylation. Genetica 2003, 117, 159–164. [Google Scholar] [CrossRef]
- Yoo, C.B.; Jones, P.A. Epigenetic therapy of cancer: Past, present and future. Nat. Rev. Drug Discov. 2006, 5, 37–50. [Google Scholar] [CrossRef]
- Papait, R.; Monti, E.; Bonapace, I.M. Novel approaches on epigenetics. Curr. Opin. Drug Discov. Devel. 2009, 12, 264–275. [Google Scholar]
- Wanczyk, M.; Roszczenko, K.; Marcinkiewicz, K.; Bojarczuk, K.; Kowara, M.; Winiarska, M. HDACi-going through the mechanisms. Front. Biosci. 2011, 16, 340–359. [Google Scholar] [CrossRef]
- de Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J. 2003, 370, 737–749. [Google Scholar] [CrossRef]
- Kettmann, R.; Marbaix, G.; Cleuter, Y.; Portetelle, D.; Mammerickx, M.; Burny, A. Genomic integration of bovine leukemia provirus and lack of viral RNA expression in the target cells of cattle with different responses to BLV infection. Leuk. Res. 1980, 4, 509–519. [Google Scholar] [CrossRef]
- Gupta, P.; Ferrer, J.F. Expression of bovine leukemia virus genome is blocked by a nonimmunoglobulin protein in plasma from infected cattle. Science 1982, 215, 405–407. [Google Scholar] [CrossRef]
- Kashmiri, S.V.; Mehdi, R.; Gupta, P.; Ferrer, J.F. Methylation and expression of bovine leukemia proviral DNA. Biochem. Biophys. Res. Commun. 1985, 129, 126–133. [Google Scholar] [CrossRef]
- Van den Broeke, A.; Cleuter, Y.; Chen, G.; Portetelle, D.; Mammerickx, M.; Zagury, D.; Fouchard, M.; Coulombel, L.; Kettmann, R.; Burny, A. Even transcriptionally competent proviruses are silent in bovine leukemia virus-induced sheep tumor cells. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 9263–3267. [Google Scholar] [CrossRef]
- Lagarias, D.M.; Radke, K. Transcriptional activation of bovine leukemia virus in blood cells from experimentally infected, asymptomatic sheep with latent infections. J. Virol. 1989, 63, 2099–2107. [Google Scholar] [CrossRef]
- Merimi, M.; Klener, P.; Szynal, M.; Cleuter, Y.; Bagnis, C.; Kerkhofs, P.; Burny, A.; Martiat, P.; Van den Broeke, A. Complete suppression of viral gene expression is associated with the onset and progression of lymphoid malignancy: Observations in Bovine Leukemia Virus-infected sheep. Retrovirology 2007, 4, 51. [Google Scholar] [CrossRef]
- Merimi, M.; Klener, P.; Szynal, M.; Cleuter, Y.; Kerkhofs, P.; Burny, A.; Martiat, P.; Van den Broeke, A. Suppression of viral gene expression in bovine leukemia virus-associated B-cell malignancy: interplay of epigenetic modifications leading to chromatin with a repressive histone code. J. Virol. 2007, 81, 5929–5939. [Google Scholar] [CrossRef]
- Kerkhofs, P.; Adam, E.; Droogmans, L.; Portetelle, D.; Mammerickx, M.; Burny, A.; Kettmann, R.; Willems, L. Cellular pathways involved in the ex vivo expression of bovine leukemia virus. J. Virol. 1996, 70, 2170–2177. [Google Scholar] [CrossRef]
- Merezak, C.; Reichert, M.; Van Lint, C.; Kerkhofs, P.; Portetelle, D.; Willems, L.; Kettmann, R. Inhibition of histone deacetylases induces bovine leukemia virus expression in vitro and in vivo. J. Virol. 2002, 76, 5034–5042. [Google Scholar] [CrossRef]
- Tajima, S.; Tsukamoto, M.; Aida, Y. Latency of viral expression in vivo is not related to CpG methylation in the U3 region and part of the R region of the long terminal repeat of bovine leukemia virus. J. Virol. 2003, 77, 4423–4430. [Google Scholar] [CrossRef]
- Calomme, C.; Dekoninck, A.; Nizet, S.; Adam, E.; Nguyen, T.L.; Van Den Broeke, A.; Willems, L.; Kettmann, R.; Burny, A.; Van Lint, C. Overlapping CRE and E box motifs in the enhancer sequences of the bovine leukemia virus 5’ long terminal repeat are critical for basal and acetylation-dependent transcriptional activity of the viral promoter: implications for viral latency. J. Virol. 2004, 78, 13848–13864. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Calomme, C.; Wijmeersch, G.; Nizet, S.; Veithen, E.; Portetelle, D.; de Launoit, Y.; Burny, A.; Van Lint, C. Deacetylase inhibitors and the viral transactivator TaxBLV synergistically activate bovine leukemia virus gene expression via a cAMP-responsive element- and cAMP-responsive element-binding protein-dependent mechanism. J. Biol. Chem. 2004, 279, 35025–35036. [Google Scholar] [CrossRef]
- Achachi, A.; Florins, A.; Gillet, N.; Debacq, C.; Urbain, P.; Foutsop, G.M.; Vandermeers, F.; Jasik, A.; Reichert, M.; Kerkhofs, P.; et al. Valproate activates bovine leukemia virus gene expression, triggers apoptosis, and induces leukemia/lymphoma regression in vivo. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10309–10314. [Google Scholar] [CrossRef] [PubMed]
- Pierard, V.; Guiguen, A.; Colin, L.; Wijmeersch, G.; Vanhulle, C.; Van Driessche, B.; Dekoninck, A.; Blazkova, J.; Cardona, C.; Merimi, M.; et al. DNA cytosine methylation in the bovine leukemia virus promoter is associated with latency in a lymphoma-derived B-cell line: potential involvement of direct inhibition of cAMP-responsive element (CRE)-binding protein/CRE modulator/activation transcription factor binding. J. Biol. Chem. 2010, 285, 19434–19449. [Google Scholar] [PubMed]
- Merezak, C.; Pierreux, C.; Adam, E.; Lemaigre, F.; Rousseau, G.G.; Calomme, C.; Van Lint, C.; Christophe, D.; Kerkhofs, P.; Burny, A.; et al. Suboptimal enhancer sequences are required for efficient bovine leukemia virus propagation in vivo: Implications for viral latency. J. Virol. 2001, 75, 6977–6988. [Google Scholar] [CrossRef] [PubMed]
- Gillet, N.; Florins, A.; Boxus, M.; Burteau, C.; Nigro, A.; Vandermeers, F.; Balon, H.; Bouzar, A.B.; Defoiche, J.; Burny, A.; et al. Mechanisms of leukemogenesis induced by bovine leukemia virus: Prospects for novel anti-retroviral therapies in human. Retrovirology 2007, 4, 18. [Google Scholar] [CrossRef]
- Lezin, A.; Gillet, N.; Olindo, S.; Signate, A.; Grandvaux, N.; Verlaeten, O.; Belrose, G.; de Carvalho Bittencourt, M.; Hiscott, J.; Asquith, B.; et al. Histone deacetylase mediated transcriptional activation reduces proviral loads in HTLV-1 associated myelopathy/tropical spastic paraparesis patients. Blood 2007, 110, 3722–3728. [Google Scholar] [CrossRef]
- Bouzar, A.B.; Boxus, M.; Defoiche, J.; Berchem, G.; Macallan, D.; Pettengell, R.; Willis, F.; Burny, A.; Lagneaux, L.; Bron, D.; et al. Valproate synergizes with purine nucleoside analogues to induce apoptosis of B-chronic lymphocytic leukaemia cells. Br. J. Haematol. 2009, 144, 41–52. [Google Scholar] [CrossRef]
- Ramos, J.C.; Toomey, N.; Diaz, L.; Ruiz, P.; Barber, G.; Harrington, W., Jr. Targeting HTLV-I latency in Adult T-cell Leukemia/Lymphoma. Retrovirology 2011, 8, A48. [Google Scholar] [CrossRef]
- Olindo, S.; Belrose, G.; Gillet, N.; Rodríguez, S.M.; Asquith, B.; Bangham, C.; Signaté, A.; Smadja, D.; Lezin, A.; Césaire, R.; et al. Safety of long-term treatment of HAM/TSP patients with valproic acid. Blood, 2011; submitted for publication. [Google Scholar]
- Afonso, P.V.; Mekaouche, M.; Mortreux, F.; Toulza, F.; Moriceau, A.; Wattel, E.; Gessain, A.; Bangham, C.R.; Dubreuil, G.; Plumelle, Y.; et al. Highly active antiretroviral treatment against STLV-1 infection combining reverse transcriptase and HDAC inhibitors. Blood 2010, 116, 3802–3808. [Google Scholar] [CrossRef]
- Willems, L.; Portetelle, D.; Kerkhofs, P.; Chen, G.; Burny, A.; Mammerickx, M.; Kettmann, R. In vivo transfection of bovine leukemia provirus into sheep. Virology 1992, 189, 775–7. [Google Scholar] [CrossRef]
- Willems, L.; Kettmann, R.; Dequiedt, F.; Portetelle, D.; Voneche, V.; Cornil, I.; Kerkhofs, P.; Burny, A.; Mammerickx, M. In vivo infection of sheep by bovine leukemia virus mutants. J. Virol. 1993, 67, 4078–4085. [Google Scholar] [CrossRef]
- Willems, L.; Burny, A.; Collete, D.; Dangoisse, O.; Dequiedt, F.; Gatot, J.S.; Kerkhofs, P.; Lefebvre, L.; Merezak, C.; Peremans, T.; et al. Genetic determinants of bovine leukemia virus pathogenesis. AIDS Res. Hum. Retroviruses 2000, 16, 1787–1795. [Google Scholar] [CrossRef]
- Miller, J.M.; Van Der Maaten, M.J. Evaluation of an inactivated bovine leukemia virus preparation as an immunogen in cattle. Ann. Rech. Vet. 1978, 9, 871–877. [Google Scholar]
- Patrascu, I.V.; Coman, S.; Sandu, I.; Stiube, P.; Munteanu, I.; Coman, T.; Ionescu, M.; Popescu, D.; Mihailescu, D. Specific protection against bovine leukemia virus infection conferred on cattle by the Romanian inactivated vaccine BL-VACC-RO. Virologie 1980, 31, 95–102. [Google Scholar]
- Parfanovich, M.I.; Zhdanov, V.M.; Lazarenko, A.A.; Nomm, E.M.; Simovart Yu, A.; Parakin, V.K.; Lemesh, V.M. The possibility of specific protection against bovine leukaemia virus infection and bovine leukaemia with inactivated BLV. Br. Vet. J. 1983, 139, 137–146. [Google Scholar] [CrossRef]
- Miller, J.M.; Van der Maaten, M.J.; Schmerr, M.J. Vaccination of cattle with binary ethylenimine- treated bovine leukemia virus. Am. J. Vet. Res. 1983, 44, 64–67. [Google Scholar]
- Fukuyama, S.; Kodama, K.; Hirahara, T.; Nakajima, N.; Takamura, K.; Sasaki, O.; Imanishi, J. Protection against bovine leukemia virus infection by use of inactivated vaccines in cattle. J. Vet. Med. Sci. 1993, 55, 99–106. [Google Scholar] [CrossRef]
- Ristau, E.; Beier, D.; Wittmann, W. The course of infection with bovine leukosis virus (BLV) in calves after the administration of cell extract from lymph node tumors of BLV-infected cattle. Arch. Exp. Veterinarmed. 1987, 41, 323–331. [Google Scholar]
- Ristau, E.; Beier, D.; Wittmann, W.; Klima, F. Protection of sheep against infection with bovine leukemia virus by vaccination with tumor cells or tumor cell preparations from lymph nodes of leukemic cattle. Arch. Exp. Veterinarmed. 1987, 41, 185–196. [Google Scholar]
- Onuma, M.; Hodatsu, T.; Yamamoto, S.; Higashihara, M.; Masu, S.; Mikami, T.; Izawa, H. Protection by vaccination against bovine leukemia virus infection in sheep. Am. J. Vet. Res. 1984, 45, 1212–1215. [Google Scholar]
- Altaner, C.; Altanerova, V.; Ban, J.; Janik, V.; Volejnicek, V.; Frajs, Z.; Cerny, L. Cell-derived vaccine against bovine leukaemia virus infection. Zentralbl. Veterinarmed. B 1988, 35, 736–746. [Google Scholar] [CrossRef]
- Altaner, C.; Ban, J.; Altanerova, V.; Janik, V. Protective vaccination against bovine leukaemia virus infection by means of cell-derived vaccine. Vaccine 1991, 9, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.M.; Van der Maaten, M.J.; Schmerr, M.J.F. Vaccination with glycosidase-treated glycoprotein antigen does not prevent bovine leukosis virus infection in cattle. In Proceedings of the Fifth International Symposium on Bovine Leukosis, Tubingen, Germany, 19–21 October 1982; Straub, O.C., Ed.; Office for official publications of the European Communities: Luxembourg, 1984. [Google Scholar]
- Burkhardt, H.; Rosenthal, S.; Wittmann, W.; Starick, E.; Scholz, D.; Rosenthal, H.A.; Kluge, K.H. Immunization of young cattle with gp51 of the bovine leukosis virus and the subsequent experimental infection. Arch. Exp. Veterinarmed. 1989, 43, 933–942. [Google Scholar] [PubMed]
- Merza, M.; Sober, J.; Sundquist, B.; Toots, I.; Morein, B. Characterization of purified gp 51 from bovine leukemia virus integrated into iscom. Physicochemical properties and serum antibody response to the integrated gp51. Arch. Virol. 1991, 120, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Kabeya, H.; Ohashi, K.; Ohishi, K.; Sugimoto, C.; Amanuma, H.; Onuma, M. An effective peptide vaccine to eliminate bovine leukaemia virus (BLV) infected cells in carrier sheep. Vaccine 1996, 14, 1118–1122. [Google Scholar] [CrossRef]
- Mamoun, R.Z.; Morisson, M.; Rebeyrotte, N.; Busetta, B.; Couez, D.; Kettmann, R.; Hospital, M.; Guillemain, B. Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins. J. Virol. 1990, 64, 4180–4188. [Google Scholar] [CrossRef]
- Willems, L.; Thienpont, E.; Kerkhofs, P.; Burny, A.; Mammerickx, M.; Kettmann, R. Bovine leukemia virus, an animal model for the study of intrastrain variability. J. Virol. 1993, 67, 1086–1089. [Google Scholar] [CrossRef]
- Fechner, H.; Blankenstein, P.; Looman, A.C.; Elwert, J.; Geue, L.; Albrecht, C.; Kurg, A.; Beier, D.; Marquardt, O.; Ebner, D. Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle. Virology 1997, 237, 261–269. [Google Scholar] [CrossRef]
- Beier, D.; Blankenstein, P.; Marquardt, O.; Kuzmak, J. Identification of different BLV provirus isolates by PCR, RFLPA and DNA sequencing. Berl. Munch. Tierarztl. Wochenschr. 2001, 114, 252–256. [Google Scholar]
- Camargos, M.F.; Pereda, A.; Stancek, D.; Rocha, M.A.; dos Reis, J.K.; Greiser-Wilke, I.; Leite, R.C. Molecular characterization of the env gene from Brazilian field isolates of Bovine leukemia virus. Virus Genes 2007, 34, 343–350. [Google Scholar] [CrossRef]
- Licursi, M.; Inoshima, Y.; Wu, D.; Yokoyama, T.; González, E.T.; Sentsui, H. Provirus variants of bovine leukemia virus in naturally infected cattle from Argentina and Japan. Vet. Microbiol. 2003, 96, 17–23. [Google Scholar] [CrossRef]
- Felmer, R.; Munoz, G.; Zuniga, J.; Recabal, M. Molecular analysis of a 444 bp fragment of the bovine leukaemia virus gp51 env gene reveals a high frequency of non-silent point mutations and suggests the presence of two subgroups of BLV in Chile. Vet. Microbiol. 2005, 108, 39–47. [Google Scholar] [CrossRef]
- Hemmatzadeh, F. Sequencing and phylogenetic analysis of gp51 gene of bovine leukaemia virus in Iranian isolates. Vet. Res. Commun. 2007, 31, 783–789. [Google Scholar] [CrossRef]
- Zhao, X.; Buehring, G.C. Natural genetic variations in bovine leukemia virus envelope gene: possible effects of selection and escape. Virology 2007, 366, 150–165. [Google Scholar] [CrossRef]
- Rodríguez, S.M.; Golemba, M.D.; Campos, R.H.; Trono, K.; Jones, L.R. Bovine leukemia virus can be classified into seven genotypes: evidence for the existence of two novel clades. J. Gen. Virol. 2009, 90, 2788–2797. [Google Scholar] [CrossRef]
- Moratorio, G.; Obal, G.; Dubra, A.; Correa, A.; Bianchi, S.; Buschiazzo, A.; Cristina, J.; Pritsch, O. Phylogenetic analysis of bovine leukemia viruses isolated in South America reveals diversification in seven distinct genotypes. Arch. Virol. 2010, 155, 481–489. [Google Scholar] [CrossRef]
- Matsumura, K.; Inoue, E.; Osawa, Y.; Okazaki, K. Molecular epidemiology of bovine leukemia virus associated with enzootic bovine leukosis in Japan. Virus Res. 2011, 155, 343–348. [Google Scholar] [CrossRef]
- Bruck, C.; Mathot, S.; Portetelle, D.; Berte, C.; Franssen, J.D.; Herion, P.; Burny, A. Monoclonal antibodies define eight independent antigenic regions on the bovine leukemia virus (BLV) envelope glycoprotein gp51. Virology 1982, 122, 342–352. [Google Scholar] [CrossRef]
- Bruck, C.; Portetelle, D.; Burny, A.; Zavada, J. Topographical analysis by monoclonal antibodies of BLV-gp51 epitopes involved in viral functions. Virology 1982, 122, 353–362. [Google Scholar] [CrossRef]
- Bruck, C.; Portetelle, D.; Mammerickx, M.; Mathot, S.; Burny, A. Epitopes of bovine leukemia virus glycoprotein gp51 recognized by sera of infected cattle and sheep. Leuk. Res. 1984, 8, 315–321. [Google Scholar] [CrossRef]
- Bruck, C.; Rensonnet, N.; Portetelle, D.; Cleuter, Y.; Mammerickx, M.; Burny, A.; Mamoun, R.; Guillemain, B.; van der Maaten, M.J.; Ghysdael, J. Biologically active epitopes of bovine leukemia virus glycoprotein gp51: Their dependence on protein glycosylation and genetic variability. Virology 1984, 136, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Portetelle, D.; Bruck, C.; Mammerickx, M.; Burny, A. In animals infected by bovine leukemia virus (BLV) antibodies to envelope glycoprotein gp51 are directed against the carbohydrate moiety. Virology 1980, 105, 223–233. [Google Scholar] [CrossRef]
- Portetelle, D.; Couez, D.; Bruck, C.; Kettmann, R.; Mammerickx, M.; Van der Maaten, M.; Brasseur, R.; Burny, A. Antigenic variants of bovine leukemia virus (BLV) are defined by amino acid substitutions in the NH2 part of the envelope glycoprotein gp51. Virology 1989, 169, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Portetelle, D.; Dandoy, C.; Burny, A.; Zavada, J.; Siakkou, H.; Gras-Masse, H.; Drobecq, H.; Tartar, A. Synthetic peptides approach to identification of epitopes on bovine leukemia virus envelope glycoprotein gp51. Virology 1989, 169, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Thurmond, M.C.; Carter, R.L.; Puhr, D.M.; Burridge, M.J. Decay of colostral antibodies to bovine leukemia virus with application to detection of calfhood infection. Am. J. Vet. Res. 1982, 43, 1152–1155. [Google Scholar]
- Jacobsen, K.L.; Bull, R.W.; Miller, J.M.; Herdt, T.H.; Kaneene, J.B. Transmission of bovine leukemia virus: prevalence of antibodies in precolostral calves. Prev. Vet. Med. 1983, 1, 265–272. [Google Scholar] [CrossRef]
- Lassauzet, M.L.; Johnson, W.O.; Thurmond, M.C.; Stevens, F. Factors associated with decay of colostral antibodies to bovine leukemia virus infection. Prev. Vet. Med. 1990, 9, 45–58. [Google Scholar] [CrossRef]
- Nagy, D.W.; Tyler, J.W.; Kleiboeker, S.B. Decreased periparturient transmission of bovine leukosis virus in colostrum-fed calves. J. Vet. Intern. Med. 2007, 21, 1104–1107. [Google Scholar] [CrossRef]
- Kono, Y.; Arai, K.; Sentsui, H.; Matsukawa, S.; Itohara, S. Protection against bovine leukemia virus infection in sheep by active and passive immunization. Nippon Juigaku Zasshi 1986, 48, 117–125. [Google Scholar] [CrossRef]
- Portetelle, D.; Limbach, K.; Burny, A.; Mammerickx, M.; Desmettre, P.; Riviere, M.; Zavada, J.; Paoletti, E. Recombinant vaccinia virus expression of the bovine leukaemia virus envelope gene and protection of immunized sheep against infection. Vaccine 1991, 9, 194–200. [Google Scholar] [CrossRef]
- Gatei, M.H.; Naif, H.M.; Kumar, S.; Boyle, D.B.; Daniel, R.C.; Good, M.F.; Lavin, M.F. Protection of sheep against bovine leukemia virus (BLV) infection by vaccination with recombinant vaccinia viruses expressing BLV envelope glycoproteins: Correlation of protection with CD4 T-cell response to gp51 peptide 51-70. J. Virol. 1993, 67, 1803–1810. [Google Scholar] [CrossRef]
- Burny, A. Comparative approach to retroviral vaccines. AIDS Res. Hum. Retroviruses 1996, 12, 389–392. [Google Scholar] [CrossRef]
- Kumar, S.; Andrew, M.E.; Boyle, D.B.; Brandon, R.B.; Lavin, M.F.; Daniel, R.C. Expression of bovine leukaemia virus envelope gene by recombinant vaccinia viruses. Virus Res. 1990, 17, 131–142. [Google Scholar] [CrossRef]
- Ohishi, K.; Suzuki, H.; Maruyama, T.; Yamamoto, T.; Funahashi, S.; Miki, K.; Ikawa, Y.; Sugimoto, M. Induction of neutralizing antibodies against bovine leukosis virus in rabbits by vaccination with recombinant vaccinia virus expressing bovine leukosis virus envelope glycoprotein. Am. J. Vet. Res. 1990, 51, 1170–1173. [Google Scholar]
- Ohishi, K.; Suzuki, H.; Yamamoto, T.; Maruyama, T.; Miki, K.; Ikawa, Y.; Numakunai, S.; Okada, K.; Ohshima, K.; Sugimoto, M. Protective immunity against bovine leukaemia virus (BLV) induced in carrier sheep by inoculation with a vaccinia virus-BLV env recombinant: association with cell-mediated immunity. J. Gen. Virol. 1991, 72, 1887–1892. [Google Scholar] [CrossRef]
- Okada, K.; Ikeyama, S.; Ohishi, K.; Suzuki, H.; Sugimoto, M.; Numakunai, S.; Chiba, T.; Murakami, K.; Davis, W.C.; Ohshima, K.; et al. Involvement of CD8+ T cells in delayed-type hypersensitivity responses against bovine leukemia virus (BLV) induced in sheep vaccinated with recombinant vaccinia virus expressing BLV envelope glycoprotein. Vet. Pathol. 1993, 30, 104–110. [Google Scholar] [CrossRef]
- Ohishi, K.; Ikawa, Y. T cell-mediated destruction of bovine leukemia virus-infected peripheral lymphocytes by bovine leukemia virus env-vaccinia recombinant vaccine. AIDS Res. Hum. Retroviruses 1996, 12, 393–398. [Google Scholar] [CrossRef]
- Ohishi, K.; Suzuki, H.; Yasutomi, Y.; Onuma, M.; Okada, K.; Numakunai, S.; Ohshima, K.; Ikawa, Y.; Sugimoto, M. Augmentation of bovine leukemia virus (BLV)-specific lymphocyte proliferation responses in ruminants by inoculation with BLV env-recombinant vaccinia virus: their role in the suppression of BLV replication. Microbiol. Immunol. 1992, 36, 1317–1323. [Google Scholar] [CrossRef]
- Cherney, T.M.; Schultz, R.D. Viral status and antibody response in cattle inoculated with recombinant bovine leukemia virus-vaccinia virus vaccines after challenge exposure with bovine leukemia virus-infected lymphocytes. Am. J. Vet. Res. 1996, 57, 812–818. [Google Scholar]
- Von Beust, B.R.; Brown, W.C.; Estes, D.M.; Zarlenga, D.S.; McElwain, T.F.; Palmer, G.H. Development and in vitro characterization of recombinant vaccinia viruses expressing bovine leukemia virus gp51 in combination with bovine IL4 or IL12. Vaccine 1999, 17, 384–395. [Google Scholar] [CrossRef]
- Callebaut, I.; Mornon, J.P.; Burny, A.; Portetelle, D. The bovine leukemia virus (BLV) envelope glycoprotein gp51 as a general model for the design of a subunit vaccine against retroviral infection: Mapping of functional sites through immunological and structural data. Leukemia 1994, 8, 218–221. [Google Scholar]
- Ohishi, K.; Kabeya, H.; Amanuma, H.; Onuma, M. Induction of bovine leukaemia virus Env-specific Th-1 type immunity in mice by vaccination with short synthesized peptide-liposome. Vaccine 1996, 14, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, K.; Kabeya, H.; Amanuma, H.; Onuma, M. Peptide-based bovine leukemia virus (BLV) vaccine that induces BLV-Env specific Th-1 type immunity. Leukemia 1997, 11, 223–226. [Google Scholar]
- Okada, K.; Sonoda, K.; Koyama, M.; Yin, S.; Ikeda, M.; Goryo, M.; Chen, S.L.; Kabeya, H.; Ohishi, K.; Onuma, M. Delayed-type hypersensitivity in sheep induced by synthetic peptides of bovine leukemia virus encapsulated in mannan-coated liposome. J. Vet. Med. Sci. 2003, 65, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Hislop, A.D.; Good, M.F.; Mateo, L.; Gardner, J.; Gatei, M.H.; Daniel, R.C.; Meyers, B.V.; Lavin, M.F.; Suhrbier, A. Vaccine-induced cytotoxic T lymphocytes protect against retroviral challenge. Nat. Med. 1998, 4, 1193–1196. [Google Scholar] [CrossRef]
- Mateo, L.; Gardner, J.; Suhrbier, A. Delayed emergence of bovine leukemia virus after vaccination with a protective cytotoxic T cell-based vaccine. AIDS Res. Hum. Retroviruses. 2001, 17, 1447–1453. [Google Scholar] [CrossRef]
- Brillowska, A.; Dabrowski, S.; Rulka, J.; Kubis, P.; Buzala, E.; Kur, J. Protection of cattle against bovine leukemia virus (BLV) infection could be attained by DNA vaccination. Acta Biochim. Pol. 1999, 46, 971–976. [Google Scholar] [CrossRef]
- Usui, T.; Konnai, S.; Tajima, S.; Watarai, S.; Aida, Y.; Ohashi, K.; Onuma, M. Protective effects of vaccination with bovine leukemia virus (BLV) Tax DNA against BLV infection in sheep. J. Vet. Med. Sci. 2003, 65, 1201–1205. [Google Scholar] [CrossRef]
- Sakakibara, N.; Kabeya, H.; Ohashi, K.; Sugimoto, C.; Onuma, M. Epitope mapping of bovine leukemia virus transactivator protein tax. J. Vet. Med. Sci. 1998, 60, 599–605. [Google Scholar] [CrossRef]
- Van den Broeke, A.; Oumouna, M.; Beskorwayne, T.; Szynal, M.; Cleuter, Y.; Babiuk, S.; Bagnis, C.; Martiat, P.; Burny, A.; Griebel, P. Cytotoxic responses to BLV tax oncoprotein do not prevent leukemogenesis in sheep. Leuk. Res. 2010, 34, 1663–1669. [Google Scholar] [CrossRef]
- Boris-Lawrie, K.; Temin, H.M. Genetically simpler bovine leukemia virus derivatives can replicate independently of Tax and Rex. J. Virol. 1995, 69, 1920–1924. [Google Scholar] [CrossRef]
- Boris-Lawrie, K.; Altanerova, V.; Altaner, C.; Kucerova, L.; Temin, H.M. In vivo study of genetically simplified bovine leukemia virus derivatives that lack tax and rex. J. Virol. 1997, 71, 1514–1520. [Google Scholar] [CrossRef]
- Kucerova, L.; Altanerova, V.; Altaner, C.; Boris-Lawrie, K. Bovine leukemia virus structural gene vectors are immunogenic and lack pathogenicity in a rabbit model. J. Virol. 1999, 73, 8160–8166. [Google Scholar] [CrossRef]
- Kerkhofs, P.; Gatot, J.S.; Knapen, K.; Mammerickx, M.; Burny, A.; Portetelle, D.; Willems, L.; Kettmann, R. Long-term protection against bovine leukaemia virus replication in cattle and sheep. J. Gen. Virol. 2000, 81, 957–963. [Google Scholar] [CrossRef]
- Reichert, M.; Cantor, G.H.; Willems, L.; Kettmann, R. Protective effects of a live attenuated bovine leukaemia virus vaccine with deletion in the R3 and G4 genes. J. Gen. Virol. 2000, 81, 965–969. [Google Scholar] [CrossRef]
- Altanerova, V.; Holicova, D.; Kucerova, L.; Altaner, C.; Lairmore, M.D.; Boris-Lawrie, K. Long-term infection with retroviral structural gene vector provides protection against bovine leukemia virus disease in rabbits. Virology 2004, 329, 434–439. [Google Scholar] [CrossRef]
- Debacq, C.; Sanchez Alcaraz, M.T.; Mortreux, F.; Kerkhofs, P.; Kettmann, R.; Willems, L. Reduced proviral loads during primo-infection of sheep by Bovine Leukemia virus attenuated mutants. Retrovirology 2004, 1, 31. [Google Scholar] [CrossRef]
- Florins, A.; Gillet, N.; Boxus, M.; Kerkhofs, P.; Kettmann, R.; Willems, L. Even attenuated bovine leukemia virus proviruses can be pathogenic in sheep. J. Virol. 2007, 81, 10195–10200. [Google Scholar] [CrossRef]
- Willems, L.; Kerkhofs, P.; Attenelle, L.; Burny, A.; Portetelle, D.; Kettmann, R. The major homology region of bovine leukaemia virus p24gag is required for virus infectivity in vivo. J. Gen. Virol. 1997, 78, 637–640. [Google Scholar] [CrossRef]
- Willems, L.; Gatot, J.S.; Mammerickx, M.; Portetelle, D.; Burny, A.; Kerkhofs, P.; Kettmann, R. The YXXL signalling motifs of the bovine leukemia virus transmembrane protein are required for in vivo infection and maintenance of high viral loads. J. Virol. 1995, 69, 4137–4141. [Google Scholar] [CrossRef] [PubMed]
- Willems, L.; Kerkhofs, P.; Dequiedt, F.; Portetelle, D.; Mammerickx, M.; Burny, A.; Kettmann, R. Attenuation of bovine leukemia virus by deletion of R3 and G4 open reading frames. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 11532–11536. [Google Scholar] [CrossRef] [PubMed]
- Bartoe, J.T.; Albrecht, B.; Collins, N.D.; Robek, M.D.; Ratner, L.; Green, P.L.; Lairmore, M.D. Functional role of pX open reading frame II of human T-lymphotropic virus type 1 in maintenance of viral loads in vivo. J. Virol. 2000, 74, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.D.; Newbound, G.C.; Albrecht, B.; Beard, J.L.; Ratner, L.; Lairmore, M.D. Selective ablation of human T-cell lymphotropic virus type 1 p12I reduces viral infectivity in vivo. Blood 1998, 91, 4701–4707. [Google Scholar] [CrossRef] [PubMed]
- Silverman, L.R.; Phipps, A.J.; Montgomery, A.; Ratner, L.; Lairmore, M.D. Human T-cell lymphotropic virus type 1 open reading frame II-encoded p30II is required for in vivo replication: evidence of in vivo reversion. J. Virol. 2004, 78, 3837–3845. [Google Scholar] [CrossRef] [PubMed]
- Seiki, M.; Hattori, S.; Hirayama, Y.; Yoshida, M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc. Natl. Acad. Sci. U. S. A. 1983, 80, 3618–3622. [Google Scholar] [CrossRef]
- Sagata, N.; Yasunaga, T.; Tsuzuku-Kawamura, J.; Ohishi, K.; Ogawa, Y.; Ikawa, Y. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 677–681. [Google Scholar] [CrossRef]
- Matsuoka, M.; Jeang, K.T. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat. Rev. Cancer 2007, 7, 270–280. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Nosaka, K.; Yasunaga, J.; Maeda, M.; Mueller, N.; Okayama, A.; Matsuoka, M. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. Retrovirology 2005, 2, 64. [Google Scholar] [CrossRef]
- Wattel, E.; Cavrois, M.; Gessain, A.; Wain-Hobson, S. Clonal expansion of infected cells: a way of life for HTLV-I. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1996, 13, 92–99. [Google Scholar] [CrossRef]
- Mortreux, F.; Leclercq, I.; Gabet, A.S.; Leroy, A.; Westhof, E.; Gessain, A.; Wain-Hobson, S.; Wattel, E. Somatic mutation in human T-cell leukemia virus type 1 provirus and flanking cellular sequences during clonal expansion in vivo. J. Natl. Cancer Inst. 2001, 93, 367–377. [Google Scholar] [CrossRef]
- Sibon, D.; Gabet, A.S.; Zandecki, M.; Pinatel, C.; Thete, J.; Delfau-Larue, M.H.; Rabaaoui, S.; Gessain, A.; Gout, O.; Jacobson, S.; Mortreux, F.; Wattel, E. HTLV-1 propels untransformed CD4 lymphocytes into the cell cycle while protecting CD8 cells from death. J. Clin. Invest. 2006, 116, 974–983. [Google Scholar] [CrossRef]
- Willems, L.; Gegonne, A.; Chen, G.; Burny, A.; Kettmann, R.; Ghysdael, J. The bovine leukemia virus p34 is a transactivator protein. EMBO J. 1987, 6, 3385–3389. [Google Scholar] [CrossRef]
- Willems, L.; Heremans, H.; Chen, G.; Portetelle, D.; Billiau, A.; Burny, A.; Kettmann, R. Cooperation between bovine leukaemia virus transactivator protein and Ha-ras oncogene product in cellular transformation. EMBO J. 1990, 9, 1577–1581. [Google Scholar] [CrossRef]
- Burny, A.; Cleuter, Y.; Couez, D.; Dandoy, C.; Gras-Masse, H.; Gregoire, D.; Kettmann, R.; Mammerickx, M.; Marbaix, G.; Portetelle, D.; et al. Bovine leukemia Virus (BLV) as a model system for human lymphotropic virus (HTLV) and HTLV as a model for BLV. In Proceedings of the XIIth Symposium for Comparative Research on Leukemia and Related Diseases, Hamburg, Germany, 7–11 July 1985; pp. 336–348. [Google Scholar]
- Willems, L.; Burny, A.; Dangoisse, O.; Dequiedt, F.; Gatot, J.S.; Kerkhofs, P.; Lefebvre, L.; Merezak, C.; Portatelle, D.; Twizere, J.C.; Kettmann, R. Bovine leukemia virus as a model for the human T-cell leukemia. Curr. Top. Virol. 1999, 16, 1787–1795. [Google Scholar]
- Willems, L. Bovine leukemia virus as a model for studying human leukemias. Bull. Mem. Acad. R. Med. Belg. 2004, 159, 473–478. [Google Scholar]
- Lezin, A.; Olindo, S.; Belrose, G.; Signate, A.; Cesaire, R.; Smadja, D.; Macallan, D.; Asquith, B.; Bangham, C.; Bouzar, A.; et al. Gene activation therapy: from the BLV model to HAM/TSP patients. Front. Biosci. 2009, 1, 205–215. [Google Scholar] [CrossRef]
- Boxus, M.; Willems, L. Mechanisms of HTLV-1 persistence and transformation. Br. J. Cancer 2009, 101, 1497–1501. [Google Scholar] [CrossRef]
- Diamond, G.A.; Denton, T.A. Alternative perspectives on the biased foundations of medical technology assessment. Ann. Intern. Med. 1993, 118, 455–464. [Google Scholar] [CrossRef]
- Nakano, S.; Ando, Y.; Saito, K.; Moriyama, I.; Ichijo, M.; Toyama, T.; Sugamura, K.; Imai, J.; Hinuma, Y. Primary infection of Japanese infants with adult T-cell leukaemia-associated retrovirus (ATLV): evidence for viral transmission from mothers to children. J. Infect. 1986, 12, 205–212. [Google Scholar] [CrossRef]
- Hino, S.; Yamaguchi, K.; Katamine, S.; Sugiyama, H.; Amagasaki, T.; Kinoshita, K.; Yoshida, Y.; Doi, H.; Tsuji, Y.; Miyamoto, T. Mother-to-child transmission of human T-cell leukemia virus type-I. Jpn. J. Cancer Res. 1985, 76, 474–480. [Google Scholar]
- Ando, Y.; Nakano, S.; Saito, K.; Shimamoto, I.; Ichijo, M.; Toyama, T.; Hinuma, Y. Transmission of adult T-cell leukemia retrovirus (HTLV-I) from mother to child: Comparison of bottle- with breast-fed babies. Jpn. J. Cancer Res. 1987, 78, 322–324. [Google Scholar] [PubMed]
- Kusuhara, K.; Sonoda, S.; Takahashi, K.; Tokugawa, K.; Fukushige, J.; Ueda, K. Mother-to-child transmission of human T-cell leukemia virus type I (HTLV-I): A fifteen-year follow-up study in Okinawa, Japan. Int. J. Cancer 1987, 40, 755–757. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, K.; Hino, S.; Amagaski, T.; Ikeda, S.; Yamada, Y.; Suzuyama, J.; Momita, S.; Toriya, K.; Kamihira, S.; Ichimaru, M. Demonstration of adult T-cell leukemia virus antigen in milk from three sero-positive mothers. Gann 1984, 75, 103–105. [Google Scholar] [PubMed]
- Takeuchi, H.; Takahashi, M.; Norose, Y.; Takeshita, T.; Fukunaga, Y.; Takahashi, H. Transformation of breast milk macrophages by HTLV-I: Implications for HTLV-I transmission via breastfeeding. Biomed. Res. 2010, 31, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Takezaki, T.; Oki, T.; Kawakami, K.; Yashiki, S.; Fujiyoshi, T.; Usuku, K.; Mueller, N.; Osame, M.; Miyata, K.; et al. Inhibitory effect of maternal antibody on mother-to- child transmission of human T-lymphotropic virus type I. The Mother-to-Child Transmission Study Group. Int. J. Cancer 1991, 49, 673–677. [Google Scholar] [CrossRef]
- Takezaki, T.; Tajima, K.; Ito, M.; Ito, S.; Kinoshita, K.; Tachibana, K.; Matsushita, Y. Short-term breast-feeding may reduce the risk of vertical transmission of HTLV-I. The Tsushima ATL Study Group. Leukemia 1997, 11, 60–62. [Google Scholar]
- Wiktor, S.Z.; Pate, E.J.; Rosenberg, P.S.; Barnett, M.; Palmer, P.; Medeiros, D.; Maloney, E. M.; Blattner, W.A. Mother-to-child transmission of human T-cell lymphotropic virus type I associated with prolonged breast-feeding. J. Hum. Virol. 1997, 1, 37–44. [Google Scholar]
- Ando, Y.; Nakano, S.; Saito, K.; Shimamoto, I.; Ichijo, M.; Toyama, T.; Hinuma, Y. Prevention of HTLV-I transmission through the breast milk by a freeze-thawing process. Jpn. J. Cancer Res. 1986, 77, 974–977. [Google Scholar]
- Ando, Y.; Kakimoto, K.; Tanigawa, T.; Furuki, K.; Saito, K.; Nakano, S.; Hashimoto, H.; Moriyama, I.; Ichijo, M.; Toyama, T. Effect of freeze-thawing breast milk on vertical HTLV-I transmission from seropositive mothers to children. Jpn. J. Cancer Res. 1989, 80, 405–407. [Google Scholar] [CrossRef]
- Yamato, K.; Taguchi, H.; Yoshimoto, S.; Fujishita, M.; Yamashita, M.; Ohtsuki, Y.; Hoshino, H.; Miyoshi, I. Inactivation of lymphocyte-transforming activity of human T-cell leukemia virus type I by heat. Jpn. J. Cancer Res. 1986, 77, 13–15. [Google Scholar]
- Saito, S.; Furuki, K.; Ando, Y.; Tanigawa, T.; Kakimoto, K.; Moriyama, I.; Ichijo, M. Identification of HTLV-I sequence in cord blood mononuclear cells of neonates born to HTLV-I antigen/antibody-positive mothers by polymerase chain reaction. Jpn. J. Cancer Res. 1990, 81, 890–895. [Google Scholar] [CrossRef]
- Tajima, K.; Tominaga, S.; Suchi, T.; Kawagoe, T.; Komoda, H.; Hinuma, Y.; Oda, T.; Fujita, K. Epidemiological analysis of the distribution of antibody to adult T-cell leukemia-virus-associated antigen: Possible horizontal transmission of adult T-cell leukemia virus. Gann 1982, 73, 893–901. [Google Scholar]
- Kajiyama, W.; Kashiwagi, S.; Ikematsu, H.; Hayashi, J.; Nomura, H.; Okochi, K. Intrafamilial transmission of adult T cell leukemia virus. J. Infect. Dis. 1986, 154, 851–857. [Google Scholar] [CrossRef]
- Murphy, E.L.; Figueroa, J.P.; Gibbs, W.N.; Brathwaite, A.; Holding-Cobham, M.; Waters, D.; Cranston, B.; Hanchard, B.; Blattner, W.A. Sexual transmission of human T-lymphotropic virus type I (HTLV-I). Ann. Intern. Med. 1989, 111, 555–560. [Google Scholar] [CrossRef]
- Stuver, S.O.; Tachibana, N.; Okayama, A.; Shioiri, S.; Tsunetoshi, Y.; Tsuda, K.; Mueller, N. E. Heterosexual transmission of human T cell leukemia/lymphoma virus type I among married couples in southwestern Japan: an initial report from the Miyazaki Cohort Study. J. Infect. Dis. 1993, 167, 57–65. [Google Scholar] [CrossRef]
- Okochi, K.; Sato, H.; Hinuma, Y. A retrospective study on transmission of adult T cell leukemia virus by blood transfusion: Seroconversion in recipients. Vox Sang 1984, 46, 245–253. [Google Scholar] [CrossRef]
- Sato, H.; Okochi, K. Transmission of human T-cell leukemia virus (HTLV-I) by blood transfusion: demonstration of proviral DNA in recipients’ blood lymphocytes. Int. J. Cancer 1986, 37, 395–400. [Google Scholar] [CrossRef]
- Larson, C.J.; Taswell, H.F. Human T-cell leukemia virus type I (HTLV-I) and blood transfusion. Mayo Clin. Proc. 1988, 63, 869–875. [Google Scholar] [CrossRef]
- Lee, H.; Swanson, P.; Shorty, V.S.; Zack, J.A.; Rosenblatt, J.D.; Chen, I.S. High rate of HTLV-II infection in seropositive i.v. drug abusers in New Orleans. Science 1989, 244, 471–475. [Google Scholar] [CrossRef]
- Kwok, S.; Gallo, D.; Hanson, C.; McKinney, N.; Poiesz, B.; Sninsky, J.J. High prevalence of HTLV-II among intravenous drug abusers: PCR confirmation and typing. AIDS Res. Hum. Retroviruses 1990, 6, 561–565. [Google Scholar] [CrossRef]
- Zella, D.; Mori, L.; Sala, M.; Ferrante, P.; Casoli, C.; Magnani, G.; Achilli, G.; Cattaneo, E.; Lori, F.; Bertazzoni, U. HTLV-II infection in Italian drug abusers. Lancet 1990, 336, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Khabbaz, R.F.; Hartel, D.; Lairmore, M.; Horsburgh, C.R.; Schoenbaum, E.E.; Roberts, B.; Hartley, T.M.; Friedland, G. Human T lymphotropic virus type II (HTLV-II) infection in a cohort of New York intravenous drug users: An old infection? J. Infect. Dis. 1991, 163, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Pepin, J.; Labbe, A.C.; Mamadou-Yaya, F.; Mbelesso, P.; Mbadingai, S.; Deslandes, S.; Locas, M.C.; Frost, E. Iatrogenic transmission of human T cell lymphotropic virus type 1 and hepatitis C virus through parenteral treatment and chemoprophylaxis of sleeping sickness in colonial Equatorial Africa. Clin. Infect. Dis. 2010, 51, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, K.; Kuroda, M.; Tofuku, Y.; Uehara, H.; Akizawa, T.; Kitaoka, T.; Koshikawa, S.; Sugimoto, H.; Hashimoto, K. Prevalence of HTLV-1 antibodies in hemodialysis patients in Japan. Am. J. Kidney Dis. 1988, 12, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, H.M.; Taranto, S.E. Human T-cell lymphotrophic virus type-1 and organ donors. Transplantation 2003, 76, 745–746. [Google Scholar] [CrossRef]
- González-Pérez, M.P.; Munoz-Juárez, L.; Cárdenas, F.C.; Zarranz Imirizaldu, J.J.; Carranceja, J.C.; García-Saiz, A. Human T-cell leukemia virus type I infection in various recipients of transplants from the same donor. Transplantation 2003, 75, 1006–1011. [Google Scholar] [CrossRef]
- Zarranz Imirizaldu, J.J.; Gomez Esteban, J.C.; Rouco Axpe, I.; Perez Concha, T.; Velasco Juanes, F.; Allue Susaeta, I.; Corral Carranceja, J.M. Post-transplantation HTLV-1 myelopathy in three recipients from a single donor. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1080–1084. [Google Scholar] [CrossRef]
- Arjmand, B.; Aghayan, S.H.; Goodarzi, P.; Farzanehkhah, M.; Mortazavi, S.M.; Niknam, M.H.; Jafarian, A.; Arjmand, F.; Jebellyfar, S. Seroprevalence of human T lymphtropic virus (HTLV) among tissue donors in Iranian tissue bank. Cell Tissue Bank 2009, 10, 247–252. [Google Scholar] [CrossRef]
- Khameneh, Z.R.; Sepehrvand, N.; Masudi, S.; Taghizade-Afshari, A. Seroprevalence of HTLV-1 among kidney graft recipients: A single-center study. Exp. Clin. Transplant. 2010, 8, 146–149. [Google Scholar]
- Clark, J.; Saxinger, C.; Gibbs, W.N.; Lofters, W.; Lagranade, L.; Deceulaer, K.; Ensroth, A.; Robert-Guroff, M.; Gallo, R.C.; Blattner, W.A. Seroepidemiologic studies of human T-cell leukemia/lymphoma virus type I in Jamaica. Int. J. Cancer 1985, 36, 37–41. [Google Scholar] [CrossRef]
- de The, G.; Gessain, A. Seroepidemiologic data on viral infections (HTLV-I and LAV/HTLV-III) in the Caribbean region and intertropical Africa. Ann. Pathol. 1986, 6, 261–264. [Google Scholar]
- Iwanaga, M.; Chiyoda, S.; Kusaba, E.; Kamihira, S. Trends in the seroprevalence of HTLV-1 in Japanese blood donors in Nagasaki Prefecture, 2000–2006. Int. J. Hematol. 2009, 90, 186–190. [Google Scholar] [CrossRef]
- Galvao-Castro, B.; Loures, L.; Rodriques, L.G.; Sereno, A.; Ferreira Junior, O.C.; Franco, L.G.; Muller, M.; Sampaio, D.A.; Santana, A.; Passos, L.M.; et al. Distribution of human T-lymphotropic virus type I among blood donors: A nationwide Brazilian study. Transfusion 1997, 37, 242–243. [Google Scholar] [CrossRef]
- Kazanji, M.; Gessain, A. Human T-cell Lymphotropic Virus types I and II (HTLV-I/II) in French Guiana: Clinical and molecular epidemiology. Cad. Saude Publica 2003, 19, 1227–1240. [Google Scholar] [CrossRef]
- Leon, G.; Quiros, A.M.; Lopez, J.L.; Hung, M.; Diaz, A.M.; Goncalves, J.; Da Costa, O.; Hernandez, T.; Chirinos, M.; Gomez, R. Seropositivity for human T-lymphotropic virus types I and II among donors at the Municipal Blood Bank of Caracas and associated risk factors. Rev. Panam. Salud Publica 2003, 13, 117–123. [Google Scholar] [CrossRef]
- Sanchez-Palacios, C.; Gotuzzo, E.; Vandamme, A.M.; Maldonado, Y. Seroprevalence and risk factors for human T-cell lymphotropic virus (HTLV-I) infection among ethnically and geographically diverse Peruvian women. Int. J. Infect. Dis. 2003, 7, 132–137. [Google Scholar] [CrossRef]
- Gastaldello, R.; Hall, W.W.; Gallego, S. Seroepidemiology of HTLV-I/II in Argentina: an overview. J. Acquir. Immune Defic. Syndr. 2004, 35, 301–308. [Google Scholar] [CrossRef]
- Biglione, M.M.; Astarloa, L.; Salomon, H.E. High prevalence of HTLV-I and HTLV-II among blood donors in Argentina: A South American health concern. AIDS Res. Hum. Retroviruses 2005, 21, 1–4. [Google Scholar] [CrossRef]
- Chandia, L.; Sotomayor, C.; Ordenes, S.; Salas, P.; Navarrete, M.; Lopez, M.; Otth, C. Seroprevalence of human T-cell lymphotropic virus type 1 and 2 in blood donors from the regional hospital of Valdivia, Chile. Med. Microbiol. Immunol. 2010, 199, 341–344. [Google Scholar] [CrossRef]
- Osame, M.; Janssen, R.; Kubota, H.; Nishitani, H.; Igata, A.; Nagataki, S.; Mori, M.; Goto, I.; Shimabukuro, H.; Khabbaz, R.; et al. Nationwide survey of HTLV-I-associated myelopathy in Japan: association with blood transfusion. Ann. Neurol. 1990, 28, 50–56. [Google Scholar] [CrossRef]
- Inaba, S.; Okochi, K.; Sato, H.; Fukada, K.; Kinukawa, N.; Nakata, H.; Kinjyo, K.; Fujii, F.; Maeda, Y. Efficacy of donor screening for HTLV-I and the natural history of transfusion- transmitted infection. Transfusion 1999, 39, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Polizzotto, M.N.; Wood, E.M.; Ingham, H.; Keller, A.J. Reducing the risk of transfusion- transmissible viral infection through blood donor selection: The Australian experience 2000 through 2006. Transfusion 2008, 48, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Berini, C.A.; Gendler, S.A.; Pascuccio, S.; Eirin, M.E.; McFarland, W.; Page, K.; Carnevali, L.; Murphy, E.; Biglione, M.M. Decreasing trends in HTLV-1/2 but stable HIV-1 infection among replacement donors in Argentina. J. Med. Virol. 2010, 82, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.M.; Eustaquio, J.M.; Martins, R.A.; Josahkian, J.A.; Pereira Gde, A.; Moraes-Souza, H.; Martins, P.R. Decline in the prevalence of HTLV-1/2 among blood donors at the Regional Blood Center of the City of Uberaba, State of Minas Gerais, from 1995 to 2008. Rev. Soc. Bras. Med. Trop. 2010, 43, 421–424. [Google Scholar] [CrossRef]
- Bitar, N.; Hajj, H.E.; Houmani, Z.; Sabbah, A.; Otrock, Z.K.; Mahfouz, R.; Zaatari, G.; Bazarbachi, A. Adult T-cell leukemia/lymphoma in the Middle East: first report of two cases from Lebanon. Transfusion 2009, 49, 1859–1864. [Google Scholar] [CrossRef]
- Stienlauf, S.; Yahalom, V.; Schwartz, E.; Shinar, E.; Segal, G.; Sidi, Y. Epidemiology of human T-cell lymphotropic virus type 1 infection in blood donors, Israel. Emerg. Infect. Dis. 2009, 15, 1116–1118. [Google Scholar] [CrossRef]
- de The, G.; Bomford, R. An HTLV-I vaccine: Why, how, for whom? AIDS Res. Hum. Retroviruses 1993, 9, 381–386. [Google Scholar] [CrossRef]
- Bomford, R.; Kazanji, M.; De The, G. Vaccine against human T cell leukemia-lymphoma virus type I: progress and prospects. AIDS Res. Hum. Retroviruses 1996, 12, 403–405. [Google Scholar] [CrossRef]
- Takehara, N.; Iwahara, Y.; Uemura, Y.; Sawada, T.; Ohtsuki, Y.; Iwai, H.; Hoshino, H. Miyoshi, Effect of immunization on HTLV-I infection in rabbits. Int. J. Cancer 1989, 44, 332–336. [Google Scholar] [CrossRef]
- Nakamura, H.; Hayami, M.; Ohta, Y.; Ishikawa, K.; Tsujimoto, H.; Kiyokawa, T.; Yoshida, M.; Sasagawa, A.; Honjo, S. Protection of cynomolgus monkeys against infection by human T-cell leukemia virus type-I by immunization with viral env gene products produced in Escherichia coli. Int. J. Cancer 1987, 40, 403–407. [Google Scholar] [CrossRef]
- Ohashi, T.; Hanabuchi, S.; Kato, H.; Tateno, H.; Takemura, F.; Tsukahara, T.; Koya, Y.; Hasegawa, A.; Masuda, T.; Kannagi, M. Prevention of adult T-cell leukemia-like lymphoproliferative disease in rats by adoptively transferred T cells from a donor immunized with human T-cell leukemia virus type 1 Tax-coding DNA vaccine. J. Virol. 2000, 74, 9610–9616. [Google Scholar] [CrossRef]
- Kazanji, M.; Tartaglia, J.; Franchini, G.; de Thoisy, B.; Talarmin, A.; Contamin, H.; Gessain, A.; de The, G. Immunogenicity and protective efficacy of recombinant human T-cell leukemia/lymphoma virus type 1 NYVAC and naked DNA vaccine candidates in squirrel monkeys (Saimiri sciureus). J. Virol. 2001, 75, 5939–5948. [Google Scholar] [CrossRef]
- Baba, E.; Nakamura, M.; Ohkuma, K.; Kira, J.; Tanaka, Y.; Nakano, S.; Niho, Y. A peptide-based human T cell leukemia virus type I vaccine containing T and B cell epitopes that induces high titers of neutralizing antibodies. J. Immunol. 1995, 154, 399–412. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tanaka, R.; Terada, E.; Koyanagi, Y.; Miyano-Kurosaki, N.; Yamamoto, N.; Baba, E.; Nakamura, M.; Shida, H. Induction of antibody responses that neutralize human T-cell leukemia virus type I infection in vitro and in vivo by peptide immunization. J. Virol. 1994, 68, 6323–6331. [Google Scholar] [CrossRef]
- Hanabuchi, S.; Ohashi, T.; Koya, Y.; Kato, H.; Hasegawa, A.; Takemura, F.; Masuda, T.; Kannagi, M. Regression of human T-cell leukemia virus type I (HTLV-I)-associated lymphomas in a rat model: Peptide-induced T-cell immunity. J. Natl. Cancer Inst. 2001, 93, 1775–1783. [Google Scholar] [CrossRef]
- Sundaram, R.; Lynch, M.P.; Rawale, S.; Dakappagari, N.; Young, D.; Walker, C.M.; Lemonnier, F.; Jacobson, S.; Kaumaya, P.T. Protective efficacy of multiepitope human leukocyte antigen- A*0201 restricted cytotoxic T-lymphocyte peptide construct against challenge with human T-cell lymphotropic virus type 1 Tax recombinant vaccinia virus. J. Acquir. Immune Defic. Syndr. 2004, 37, 1329–1339. [Google Scholar] [CrossRef]
- Sundaram, R.; Sun, Y.; Walker, C.M.; Lemonnier, F.A.; Jacobson, S.; Kaumaya, P.T. A novel multivalent human CTL peptide construct elicits robust cellular immune responses in HLA- A*0201 transgenic mice: implications for HTLV-1 vaccine design. Vaccine 2003, 21, 2767–2781. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ngato, T.; Sato, K.; Aoki, N.; Kimura, S.; Tanaka, Y.; Aizawa, H.; Tateno, M.; Celis, E. In vitro peptide immunization of target tax protein human T-cell leukemia virus type 1- specific CD4+ helper T lymphocytes. Clin. Cancer Res. 2006, 12, 3814–3822. [Google Scholar] [CrossRef]
- Kozako, T.; Hirata, S.; Shimizu, Y.; Satoh, Y.; Yoshimitsu, M.; White, Y.; Lemonnier, F.; Shimeno, H.; Soeda, S.; Arima, N. Oligomannose-coated liposomes efficiently induce human T- cell leukemia virus-1-specific cytotoxic T lymphocytes without adjuvant. FEBS J. 2011, 278, 1358–1366. [Google Scholar] [CrossRef]
- Kozako, T.; Fukada, K.; Hirata, S.; White, Y.; Harao, M.; Nishimura, Y.; Kino, Y.; Soeda, S.; Shimeno, H.; Lemonnier, F.; Sonoda, S.; Arima, N. Efficient induction of human T-cell leukemia virus-1-specific CTL by chimeric particle without adjuvant as a prophylactic for adult T-cell leukemia. Mol. Immunol. 2009, 47, 606–613. [Google Scholar] [CrossRef]
- Conrad, S.F.; Byeon, I.J.; DiGeorge, A.M.; Lairmore, M.D.; Tsai, M.D.; Kaumaya, P.T. Immunogenicity and conformational properties of an N-linked glycosylated peptide epitope of human T-lymphotropic virus type 1 (HTLV-I). Biomed. Pept. Proteins Nucleic Acids 1995, 1, 83–92. [Google Scholar] [PubMed]
- Frangione-Beebe, M.; Albrecht, B.; Dakappagari, N.; Rose, R.T.; Brooks, C.L.; Schwendeman, S.P.; Lairmore, M.D.; Kaumaya, P.T. Enhanced immunogenicity of a conformational epitope of human T-lymphotropic virus type 1 using a novel chimeric peptide. Vaccine 2000, 19, 1068–1081. [Google Scholar] [CrossRef] [PubMed]
- Kazanji, M.; Heraud, J.M.; Merien, F.; Pique, C.; de The, G.; Gessain, A.; Jacobson, S. Chimeric peptide vaccine composed of B- and T-cell epitopes of human T-cell leukemia virus type 1 induces humoral and cellular immune responses and reduces the proviral load in immunized squirrel monkeys (Saimiri sciureus). J. Gen. Virol. 2006, 87, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Shida, H.; Tochikura, T.; Sato, T.; Konno, T.; Hirayoshi, K.; Seki, M.; Ito, Y.; Hatanaka, M.; Hinuma, Y.; Sugimoto, M.; et al. Effect of the recombinant vaccinia viruses that express HTLV-I envelope gene on HTLV-I infection. EMBO J. 1987, 6, 3379–3384. [Google Scholar] [CrossRef]
- Hakoda, E.; Machida, H.; Tanaka, Y.; Morishita, N.; Sawada, T.; Shida, H.; Hoshino, H.; Miyoshi, I. Vaccination of rabbits with recombinant vaccinia virus carrying the envelope gene of human T-cell lymphotropic virus type I. Int. J. Cancer 1995, 60, 567–570. [Google Scholar] [CrossRef]
- Franchini, G.; Benson, J.; Gallo, R.; Paoletti, E.; Tartaglia, J. Attenuated poxvirus vectors as carriers in vaccines against human T cell leukemia-lymphoma virus type I. AIDS Res. Hum. Retroviruses 1996, 12, 407–408. [Google Scholar] [CrossRef]
- Franchini, G.; Tartaglia, J.; Markham, P.; Benson, J.; Fullen, J.; Wills, M.; Arp, J.; Dekaban, G.; Paoletti, E.; Gallo, R.C. Highly attenuated HTLV type Ienv poxvirus vaccines induce protection against a cell-associated HTLV type I challenge in rabbits. AIDS Res. Hum. Retroviruses 1995, 11, 307–313. [Google Scholar] [CrossRef]
- Ibuki, K.; Funahashi, S.I.; Yamamoto, H.; Nakamura, M.; Igarashi, T.; Miura, T.; Ido, E.; Hayami, M.; Shida, H. Long-term persistence of protective immunity in cynomolgus monkeys immunized with a recombinant vaccinia virus expressing the human T cell leukaemia virus type I envelope gene. J. Gen. Virol. 1997, 78, 147–152. [Google Scholar] [CrossRef]
- Kazanji, M.; Bomford, R.; Bessereau, J.L.; Schulz, T.; de The, G. Expression and immunogenicity in rats of recombinant adenovirus 5 DNA plasmids and vaccinia virus containing the HTLV-I env gene. Int. J. Cancer 1997, 71, 300–307. [Google Scholar] [CrossRef]
- Kchour, G.; Makhoul, N.J.; Mahmoudi, M.; Kooshyar, M.M.; Shirdel, A.; Rastin, M.; Rafatpanah, H.; Tarhini, M.; Zalloua, P.A.; Hermine, O.; Farid, R.; Bazarbachi, A. Zidovudine and interferon- alpha treatment induces a high response rate and reduces HTLV-1 proviral load and VEGF plasma levels in patients with adult T-cell leukemia from North East Iran. Leuk. Lymphoma 2007, 48, 330–336. [Google Scholar] [CrossRef]
- Tsukasaki, K.; Hermine, O.; Bazarbachi, A.; Ratner, L.; Ramos, J.C.; Harrington, W., Jr.; O’Mahony, D.; Janik, J.E.; Bittencourt, A.L.; Taylor, G.P.; et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: A proposal from an international consensus meeting. J. Clin. Oncol. 2009, 27, 453–459. [Google Scholar] [CrossRef]
APPROACH | BASIS OF THECONTROL PROGRAM | ADVANTAGES | DISADVANTAGES |
---|---|---|---|
TEST ANDELIMINATE | Identify BLV-infected cattle and slaughter positive reactors | Efficient Requires only minimalinvestment on facilities BLV-free status mightbe achieved in arelatively short period | May become cost-prohibitive andimpracticable depending on theinitial prevalence levels Needs constant surveillance Requires official compensatorypolicies to be successful |
TEST ANDSEGREGATE | Detect and isolateBLV-infected cattle inseparate herds Manage separatelyinfected and non-infectedcattle in the same housingfacilities | Does not needreplacement of culledBLV-infected cattle | Needs structural and operationalaccommodation of infected andnon-infected cattle in strictlyseparated areas Increases costs due to duplicatedhousing facilities and equipment Requires permanent surveillance Needs long-term commitment tothe program |
TEST ANDMANAGE | Take biosafety andmanagement measures tominimize exposure ofanimals to the infectiousagent | Cost-effective Requires only minimalinvestment on facilities Does not needreplacement of culledBLV-infected cattle | Intensively laborious Requires strict adherence to therigorous implemented measures Needs long-term commitment to the program Susceptible to human andenvironmental factors Needs adequate training of personnel |
BOVINE LEUKEMIA VIRUS (BLV) | HUMAN T-CELL LEUKEMIA VIRUS (HTLV-1) | |
---|---|---|
PREVENTIVE MEASURES | ||
Avoid or minimize viral transmission through infected- cells present in blood, secretions or excretions Avoid or minimize viral transmission through sexual contact Avoid or minimize viral transmission through infected- cells present in milk |
|
|
VACCINATION | ||
Not available | Not available | |
SELECTION | ||
Not efficient | Not applicable | |
COMPETITIVE INFECTION | ||
Currently tested | Not applicable | |
TREATMENT | ||
VPA but not cost-efficient | AZT+IFN in acute ATL AZT+IFN+VPA in acute ATL and lymphoma? AZT+VPA in HAM/TSP? |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2011 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, S.M.; Florins, A.; Gillet, N.; De Brogniez, A.; Sánchez-Alcaraz, M.T.; Boxus, M.; Boulanger, F.; Gutiérrez, G.; Trono, K.; Alvarez, I.; et al. Preventive and Therapeutic Strategies for Bovine Leukemia Virus: Lessons for HTLV. Viruses 2011, 3, 1210-1248. https://doi.org/10.3390/v3071210
Rodríguez SM, Florins A, Gillet N, De Brogniez A, Sánchez-Alcaraz MT, Boxus M, Boulanger F, Gutiérrez G, Trono K, Alvarez I, et al. Preventive and Therapeutic Strategies for Bovine Leukemia Virus: Lessons for HTLV. Viruses. 2011; 3(7):1210-1248. https://doi.org/10.3390/v3071210
Chicago/Turabian StyleRodríguez, Sabrina M., Arnaud Florins, Nicolas Gillet, Alix De Brogniez, María Teresa Sánchez-Alcaraz, Mathieu Boxus, Fanny Boulanger, Gerónimo Gutiérrez, Karina Trono, Irene Alvarez, and et al. 2011. "Preventive and Therapeutic Strategies for Bovine Leukemia Virus: Lessons for HTLV" Viruses 3, no. 7: 1210-1248. https://doi.org/10.3390/v3071210
APA StyleRodríguez, S. M., Florins, A., Gillet, N., De Brogniez, A., Sánchez-Alcaraz, M. T., Boxus, M., Boulanger, F., Gutiérrez, G., Trono, K., Alvarez, I., Vagnoni, L., & Willems, L. (2011). Preventive and Therapeutic Strategies for Bovine Leukemia Virus: Lessons for HTLV. Viruses, 3(7), 1210-1248. https://doi.org/10.3390/v3071210