Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity
Abstract
:1. Introduction
2. Opioid Analgesic Drugs
3. The Blood-Brain Barrier (BBB)
4. ABC Transporters and Opioid Transport at the Blood-Brain Barrier
5. Opioids Modulate ABC Transporter Functional Expression at the BBB
6. Pain Modulates ABC Transporter Expression and Trafficking at the BBB
7. Modulation of ABC Transporter Expression in Other CNS Diseases
8. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chou, R.; Fanciullo, G.J.; Fine, P.G.; Adler, J.A.; Ballantyne, J.C.; Davies, P.; Donovan, M.I.; Fishbain, D.A.; Foley, K.M.; Fudin, J.; et al. Clinical Guidelines for the use of Chronic Opioid Therapy in Chronic Noncancer Pain. J. Pain 2009, 10, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Jones, M.R.; Kaye, A.M.; Ripoll, J.G.; Galan, V.; Beakley, B.D.; Calixto, F.; Bolden, J.L.; Urman, R.D.; Manchikanti, L. Prescription Opioid Abuse in Chronic Pain: An Updated Review of Opioid Abuse Predictors and Strategies to Curb Opioid Abuse: Part 1. Pain Physician 2017, 20, S93. [Google Scholar] [PubMed]
- Shei, A.; Rice, J.B.; Kirson, N.Y.; Bodnar, K.; Birnbaum, H.G.; Holly, P.; Ben-Joseph, R. Sources of Prescription Opioids among Diagnosed Opioid Abusers. Curr. Med. Res. Opin. 2015, 31, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Vowles, K.E.; McEntee, M.L.; Julnes, P.S.; Frohe, T.; Ney, J.P.; van der Goes, D.N. Rates of Opioid Misuse, Abuse, and Addiction in Chronic Pain: A Systematic Review and Data Synthesis. Pain 2015, 156, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Maree, R.D.; Marcum, Z.A.; Saghafi, E.; Weiner, D.K.; Karp, J.F. A Systematic Review of Opioid and Benzodiazepine Misuse in Older Adults. Am. J. Geriatr. Psychiatry 2014, 27, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Hamabe, W.; Maeda, T.; Kiguchi, N.; Yamamoto, C.; Tokuyama, S.; Kishioka, S. Negative Relationship between Morphine Analgesia and P-Glycoprotein Expression Levels in the Brain. J. Pharm. Sci. 2007, 105, 353–360. [Google Scholar] [CrossRef]
- Labuz, D.; Mousa, S.A.; Schäfer, M.; Stein, C.; Machelska, H. Relative Contribution of Peripheral Versus Central Opioid Receptors to Antinociception. Brain Res. 2007, 1160, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, C.P.; Tome, M.E.; Davis, T.P. The Opioid Epidemic: A Central Role for the Blood Brain Barrier in Opioid Analgesia and Abuse. Fluids Barriers CNS 2017, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Hammarlund-Udenaes, M. Blood-Brain Barrier Equilibration of Codeine in Rats Studied with Microdialysis. Pharm. Res. 1998, 15, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Hau, V.S.; Huber, J.D.; Campos, C.R.; Davis, R.T.; Davis, T.P. Effect of λ-Carrageenan-Induced Inflammatory Pain on Brain Uptake of Codeine and Antinociception. Brain Res. 2004, 1018, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Peckham, E.M.; Traynor, J.R. Comparison of the Antinociceptive Response to Morphine and Morphine-Like Compounds in Male and Female Sprague-Dawley Rats. J. Pharmacol. Exp. Ther. 2006, 316, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Seelbach, M.J.; Brooks, T.A.; Egleton, R.D.; Davis, T.P. Peripheral Inflammatory Hyperalgesia Modulates Morphine Delivery to the Brain: A Role for P-Glycoprotein. J. Neurochem. 2007, 102, 1677–1690. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Zaima, C.; Moriki, Y.; Fukami, T.; Tomono, K. P-Glycoprotein Mediates Brain-to-Blood Efflux Transport of Buprenorphine across the Blood-Brain Barrier. J. Drug Target. 2007, 15, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Yousif, S.; Saubaméa, B.; Cisternino, S.; Marie-Claire, C.; Dauchy, S.; Scherrmann, J.; Declèves, X. Effect of Chronic Exposure to Morphine on the Rat Blood–brain Barrier: Focus on the P-glycoprotein. J. Neurochem. 2008, 107, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, B.T.; Sykes, D.B.; Miller, D.S. Rapid, Reversible Modulation of Blood-Brain Barrier P-Glycoprotein Transport Activity by Vascular Endothelial Growth Factor. J. Neurosci. 2010, 30, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Ronaldson, P.T.; Finch, J.D.; Demarco, K.M.; Quigley, C.E.; Davis, T.P. Inflammatory Pain Signals an Increase in Functional Expression of Organic Anion Transporting Polypeptide 1a4 at the Blood-Brain Barrier. J. Pharmacol. Exp. Ther. 2011, 336, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Lochhead, J.J.; McCaffrey, G.; Sanchez-Covarrubias, L.; Finch, J.D.; DeMarco, K.M.; Quigley, C.E.; Davis, T.P.; Ronaldson, P.T. Tempol Modulates Changes in Xenobiotic Permeability and Occludin Oligomeric Assemblies at the Blood Brain Barrier during Inflammatory Pain. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H593. [Google Scholar] [CrossRef] [PubMed]
- Slosky, L.M.; Thompson, B.J.; Sanchez-Covarrubias, L.; Zhang, Y.; Laracuente, M.; Vanderah, T.W.; Ronaldson, P.T.; Davis, T.P. Acetaminophen Modulates P-Glycoprotein Functional Expression at the Blood-Brain Barrier by a Constitutive Androstane Receptor-Dependent Mechanism. Mol. Pharmacol. 2013, 84, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Chaves, C.; Gómez-Zepeda, D.; Auvity, S.; Menet, M.; Crété, D.; Labat, L.; Remião, F.; Cisternino, S.; Declèves, X. Effect of Subchronic Intravenous Morphine Infusion and Naloxone-Precipitated Morphine Withdrawal on P-Gp and Bcrp at the Rat Bloode-Brain Barrier. J. Pharm. Sci. 2016, 105, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Covarrubias, L.; Slosky, L.M.; Thompson, B.J.; Zhang, Y.; Laracuente, M.; DeMarco, K.M.; Ronaldson, P.T.; Davis, T.P. P-Glycoprotein Modulates Morphine Uptake into the CNS: A Role for the Non-Steroidal Anti-Inflammatory Drug Diclofenac. PLoS ONE 2014, 9, e88516. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, C.P.; Arkwright, N.B.; Jacobs, L.M.; Jarvis, C.K.; Hunn, K.C.; Largent-Milnes, T.M.; Tome, M.E.; Davis, T.P. Chronic Morphine Exposure Potentiates P-Glycoprotein Trafficking from Nuclear Reservoirs in Cortical Rat Brain Microvessels. PLoS ONE 2018, 13, e0192340. [Google Scholar] [CrossRef] [PubMed]
- Schiff, P.L. Opium and its Alkaloids. J. Pharm. Sci. 1980, 69, 619–620. [Google Scholar] [CrossRef]
- Brownstein, M.J. A Brief History of Opiates, Opioid Peptides, and Opioid Receptors. Proc. Natl. Acad. Sci. USA 1993, 90, 5391–5393. [Google Scholar] [CrossRef] [PubMed]
- Manchikanti, L.; Singh, A. Therapeutic Opioids: A Ten-Year Perspective on the Complexities and Complications of the Escalating use, Abuse, and Nonmedical use of Opioids. Pain Physician 2008, 11, S88. [Google Scholar]
- Gahlinger, P.M. Illegal Drugs: A Complete Guide to Their History, Chemistry, Use and Abuse, 2nd ed.; Plume: New York, NY, USA, 2004. [Google Scholar]
- Manchikanti, L.; Benyamin, R.; Datta, S.; Vallejo, R.; Smith, H. Opioids in Chronic Noncancer Pain. Expert Rev. Neurother. 2010, 10, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Gloth, F.M. Pharmacological Management of Persistent Pain in Older Persons: Focus on Opioids and Nonopioids. J. Pain 2011, 12, S20. [Google Scholar] [CrossRef] [PubMed]
- Bedson, J.; Chen, Y.; Hayward, R.A.; Ashworth, J.; Walters, K.; Dunn, K.M.; Jordan, K.P. Trends in Long-Term Opioid Prescribing in Primary Care Patients with Musculoskeletal Conditions: An Observational Database Study. Pain 2016, 157, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.R.; Eades, C.G.; Thompson, J.A.; Huppler, R.E.; Gilbert, P.E. The Effects of Morphine- and Nalorphine-Like Drugs in the Nondependent and Morphine-Dependent Chronic Spinal Dog. J. Pharmacol. Exp. Ther. 1976, 197, 517–532. [Google Scholar] [PubMed]
- Matthes, H.W.; Maldonado, R.; Simonin, F.; Valverde, O.; Slowe, S.; Kitchen, I.; Befort, K.; Dierich, A.; Le Meur, M.; Dollé, P.; et al. Loss of Morphine Induced Analgesia, Reward Effect and Withdrawal Symptoms in Mice Lacking the Mu Opioid Receptor Gene. Nature 1996, 383, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Vadivelu, N.; Mitra, S.; Hines, R.L. Peripheral Opioid Receptor Agonists for Analgesia: A Comprehensive Review. J. Opioid Manag. 2011, 7, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Filizola, M. Opioid Receptors: Structural and Mechanistic Insights into Pharmacology and Signaling. Eur. J. Pharmacol. 2015, 763, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Sternini, C.; Spann, M.; Anton, B.; Keith, D.E.; Bunnett, N.W.; von Zastrow, M.; Evans, C.; Brecha, N.C. Agonist-Selective Endocytosis of Mu-Opioid Receptor by Neurons in Vivo. Proc. Natl. Acad. Sci. USA 1996, 93, 9241–9246. [Google Scholar] [CrossRef] [PubMed]
- Coller, J.; Christrup, L.; Somogyi, A. Role of Active Metabolites in the Use of Opioids. Eur. J. Clin. Pharmacol. 2009, 65, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Haas, D.A. An Update on Analgesics for the Management of Acute Postoperative Dental Pain. J. Can. Dent. Assoc. 2002, 68, 476–482. [Google Scholar] [PubMed]
- Chevillard, L.; Megarbane, B.; Baud, F.J.; Risede, P.; Decleves, X.; Mager, D.; Milan, N.; Ricordel, I. Mechanisms of Respiratory Insufficiency Induced by Methadone Overdose in Rats. Addict. Biol. 2010, 15, 62–80. [Google Scholar] [CrossRef] [PubMed]
- Olofsen, E.; van Dorp, E.; Teppema, L.; Aarts, L.; Smith, T.W.; Dahan, A.; Sarton, E. Naloxone Reversal of Morphine- and Morphine-6-Glucuronide-Induced Respiratory Depression in Healthy Volunteers: A Mechanism-Based Pharmacokinetic-Pharmacodynamic Modeling Study. Anesthesiology 2010, 112, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
- Halls, M.L.; Yeatman, H.R.; Nowell, C.J.; Thompson, G.L.; Gondin, A.B.; Civciristov, S.; Bunnett, N.W.; Lambert, N.A.; Poole, D.P.; Canals, M. Plasma Membrane Localization of the Μ-Opioid Receptor Controls Spatiotemporal Signaling. Sci. Signal 2016, 9, ra16. [Google Scholar] [CrossRef] [PubMed]
- Withey, S.L.; Hill, R.; Lyndon, A.; Dewey, W.L.; Kelly, E.; Henderson, G. Effect of Tamoxifen and Brain-Penetrant Protein Kinase C and C-Jun N-Terminal Kinase Inhibitors on Tolerance to Opioid-Induced Respiratory Depression in Mice. J. Pharmacol. Exp. Ther. 2017, 361, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Watkins, L.R.; Hutchinson, M.R.; Rice, K.C.; Maier, S.F. The “Toll” of Opioid-Induced Glial Activation: Improving the Clinical Efficacy of Opioids by Targeting Glia. Trends Pharmacol. Sci. 2009, 30, 581–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchinson, M.R.; Zhang, Y.; Brown, K.; Coats, B.D.; Shridhar, M.; Sholar, P.W.; Patel, S.J.; Crysdale, N.Y.; Harrison, J.A.; Maier, S.F.; et al. Non-stereoselective Reversal of Neuropathic Pain by Naloxone and Naltrexone: Involvement of Toll-like Receptor 4 (TLR4). Eur. J. Neurosci. 2008, 28, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Lochhead, J.J.; Ronaldson, P.T.; Davis, T.P. Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System. AAPS J. 2017, 19, 910–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-Brain Barrier Dysfunction in Ischemic Stroke: Targeting Tight Junctions and Transporters for Vascular Protection. Am. J. Physiol. Cell Physiol. 2018, 315, C356. [Google Scholar] [CrossRef] [PubMed]
- Ronaldson, P.T.; Davis, T.P. Targeting Blood-Brain Barrier Changes during Inflammatory Pain: An Opportunity for Optimizing CNS Drug Delivery. Ther. Deliv. 2011, 2, 1015–1041. [Google Scholar] [CrossRef] [PubMed]
- Ronaldson, P.T.; Davis, T.P. Blood-Brain Barrier Integrity and Glial Support: Mechanisms that can be Targeted for Novel Therapeutic Approaches in Stroke. Curr. Pharm. Des. 2012, 18, 3624–3644. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Covarrubias, L.; Slosky, L.M.; Thompson, B.J.; Davis, T.P.; Ronaldson, P.T. Transporters at CNS Barrier Sites: Obstacles or Opportunities for Drug Delivery? Curr. Pharm. Des. 2014, 20, 1422–1449. [Google Scholar] [CrossRef] [PubMed]
- Leslie, E.M.; Deeley, R.G.; Cole, S.P.C. Multidrug Resistance Proteins: Role of P-Glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in Tissue Defense. Toxicol. Appl. Pharmacol. 2005, 204, 216–237. [Google Scholar] [CrossRef] [PubMed]
- Chaves, C.; Shawahna, R.; Jacob, A.; Scherrmann, J.; Declèves, X. Human ABC Transporters at Blood-CNS Interfaces as Determinants of CNS Drug Penetration. Curr. Pharm. Des. 2014, 20, 1450–1462. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.; Rodriguez-Cruz, V.; Felmlee, M. SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers. AAPS J. 2017, 19, 1317–1331. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.W.; To, K.K.K.; Polgar, O.; Dohse, M.; Fetsch, P.; Dean, M.; Bates, S.E. ABCG2: A Perspective. Adv. Drug Deliv. Rev. 2009, 61, 3–13. [Google Scholar] [CrossRef] [PubMed]
- De Vries, N.A.; Zhao, J.; Kroon, E.; Buckle, T.; Beijnen, J.H.; van Tellingen, O. P-Glycoprotein and Breast Cancer Resistance Protein: Two Dominant Transporters Working Together in Limiting the Brain Penetration of Topotecan. Clin. Cancer Res. 2007, 13, 6440–6449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polli, J.W.; Olson, K.L.; Chism, J.P.; John-Williams, L.S.; Yeager, R.L.; Woodard, S.M.; Otto, V.; Castellino, S.; Demby, V.E. An Unexpected Synergist Role of P-Glycoprotein and Breast Cancer Resistance Protein on the Central Nervous System Penetration of the Tyrosine Kinase Inhibitor Lapatinib (N-{3-Chloro-4-[(3-Fluorobenzyl)Oxy]Phenyl}-6-[5-({[2-(Methylsulfonyl)Ethyl]Amino}Methyl)-2-Furyl]-4-Quinazolinamine; GW572016). Drug Metab. Dispos. 2009, 37, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Elmquist, W.F. Insight into the Cooperation of P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) at the Blood–Brain Barrier: A Case Study Examining Sorafenib Efflux Clearance. Mol. Pharm. 2012, 9, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Oberoi, R.K.; Mittapalli, R.K.; Elmquist, W.F. Pharmacokinetic Assessment of Efflux Transport in Sunitinib Distribution to the Brain. J. Pharmacol. Exp. Ther. 2013, 347, 755–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sane, R.; Agarwal, S.; Mittapalli, R.K.; Elmquist, W.F. Saturable Active Efflux by P-Glycoprotein and Breast Cancer Resistance Protein at the Blood-Brain Barrier Leads to Nonlinear Distribution of Elacridar to the Central Nervous System. J. Pharmacol. Exp. Ther. 2013, 345, 111–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juliano, R.L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 1976, 455, 152–162. [Google Scholar] [CrossRef]
- Gottesman, M.M.; Hrycyna, C.A.; Schoenlein, P.V.; Germann, U.A.; Pastan, I. Genetic Analysis of the Multidrug Transporter. Annu. Rev. Genet. 1995, 29, 607–649. [Google Scholar] [CrossRef] [PubMed]
- Letrent, S.P.; Pollack, G.M.; Brouwer, K.R.; Brouwer, K.L. Effect of GF120918, a Potent P Glycoprotein Inhibitor, on Morphine Pharmacokinetics and Pharmacodynamics in the Rat. Pharm. Res. 1998, 15, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Lötsch, J.; Schmidt, R.; Vetter, G.; Schmidt, H.; Niederberger, E.; Geisslinger, G.; Tegeder, I. Increased CNS Uptake and Enhanced Antinociception of Morphine-6-glucuronide in Rats After Inhibition of P-glycoprotein. J. Neurochem. 2002, 83, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Bauer, B.; Yang, X.; Hartz, A.M.; Olson, E.R.; Zhao, R.; Kalvass, J.C.; Pollack, G.M.; Miller, D.S. In Vivo Activation of Human Pregnane X Receptor Tightens the Blood-Brain Barrier to Methadone through P-Glycoprotein Up-Regulation. Mol. Pharmacol. 2006, 70, 1212–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercer, S.L.; Coop, A. Opioid Analgesics and P-Glycoprotein Efflux Transporters: A Potential Systems-Level Contribution to Analgesic Tolerance. Curr. Top. Med. Chem. 2011, 11, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Tournier, N.; Declèves, X.; Saubaméa, B.; Scherrmann, J.M.; Cisternino, S. Opioid Transport by ATP-Binding Cassette Transporters at the Blood-Brain Barrier: Implications for Neuropsychopharmacology. Curr. Pharm. Des. 2011, 17, 2829–2842. [Google Scholar] [CrossRef] [PubMed]
- De Gregori, S.; De Gregori, M.; Ranzani, G.; Allegri, M.; Minella, C.; Regazzi, M. Morphine Metabolism, Transport and Brain Disposition. Metab. Brain Dis. 2012, 27, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Yuan, M.; Yang, H.; Zhuang, X.; Li, H. P-Glycoprotein on Blood-Brain Barrier Plays a Vital Role in Fentanyl Brain Exposure and Respiratory Toxicity in Rats. Toxicol. Sci. Toxicol. 2018, 164, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, P.; Unadkat, J.D. P-Glycoprotein-Based Loperamide-Cyclosporine Drug Interaction at the Rat Blood-Brain Barrier: Prediction from in Vitro Studies and Extrapolation to Humans. Mol. Pharm. 2012, 9, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Boström, E.; Simonsson, U.S.H.; Hammarlund-Udenaes, M. Oxycodone Pharmacokinetics and Pharmacodynamics in the Rat in the Presence of the P-Glycoprotein Inhibitor PSC833. J. Pharm. Sci. 2005, 94, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Somogyi, A.; Coller, J.; Barratt, D. Pharmacogenetics of Opioid Response. Clin. Pharmacol. Ther. 2015, 97, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C.W.; Mercer, S.L.; Hassan, H.E.; Traynor, J.R.; Eddington, N.D.; Coop, A. Opioids and Efflux Transporters. Part 2: P-Glycoprotein Substrate Activity of 3- and 6-Substituted Morphine Analogs. J. Med. Chem. 2008, 51, 2316–2320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, M.W.; Uchida, Y.; Hoshi, Y.; Tachikawa, M.; Terasaki, T.; Hammarlund-Udenaes, M. Validation of a P-Glycoprotein (P-Gp) Humanized Mouse Model by Integrating Selective Absolute Quantification of Human MDR1, Mouse Mdr1a and Mdr1b Protein Expressions with in Vivo Functional Analysis for Blood-Brain Barrier Transport. PLoS ONE 2015, 10, e0118638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Gupta, P.; Chen, Z. Multidrug Resistance Proteins (MRPs) and Cancer Therapy. AAPS J. 2015, 17, 802–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, D.S.; Nobmann, S.N.; Gutmann, H.; Toeroek, M.; Drewe, J.; Fricker, G. Xenobiotic Transport Across Isolated Brain Microvessels Studied by Confocal Microscopy. Mol. Pharmacol. 2000, 58, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Leggas, M.; Adachi, M.; Scheffer, G.L.; Sun, D.; Wielinga, P.; Du, G.; Mercer, K.E.; Zhuang, Y.; Panetta, J.C.; Johnston, B.; et al. Mrp4 Confers Resistance to Topotecan and Protects the Brain from Chemotherapy. Mol. Cell. Biol. 2004, 24, 7612–7621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Schuetz, J.D.; Elmquist, W.F.; Miller, D.W. Plasma Membrane Localization of Multidrug Resistance-Associated Protein Homologs in Brain Capillary Endothelial Cells. J. Pharmacol. Exp. Ther. 2004, 311, 449–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandler, P.E.; Westlake, C.J.; Grant, C.E.; Cole, S.P.C.; Deeley, R.G. Identification of Regions Required for Apical Membrane Localization of Human Multidrug Resistance Protein 2. Mol. Pharmacol. 2008, 74, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, B.; Hartz, A.M.S.; Lucking, J.R.; Yang, X.; Pollack, G.M.; Miller, D.S. Coordinated Nuclear Receptor Regulation of the Efflux Transporter, Mrp2, and the Phase-II Metabolizing Enzyme, GST, at the Blood-Brain Barrier. J. Cereb. Blood Flow Metab. 2008, 28, 1222–1234. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Ohtsuki, S.; Katsukura, Y.; Ikeda, C.; Suzuki, T.; Kamiie, J.; Terasaki, T. Quantitative Targeted Absolute Proteomics of Human Blood–brain Barrier Transporters and Receptors. J. Neurochem. 2011, 117, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Ibbotson, K.; Yell, J.; Ronaldson, P.T. Nrf2 Signaling Increases Expression of ATP-Binding Cassette Subfamily C mRNA Transcripts at the Blood–brain Barrier Following Hypoxia-Reoxygenation Stress. Fluids Barriers CNS 2017, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Dauchy, S.; Miller, F.; Couraud, P.; Weaver, R.J.; Weksler, B.; Romero, I.; Scherrmann, J.; De Waziers, I.; Declèves, X. Expression and Transcriptional Regulation of ABC Transporters and Cytochromes P450 in hCMEC/D3 Human Cerebral Microvascular Endothelial Cells. Biochem. Pharmacol. 2009, 77, 897–909. [Google Scholar] [CrossRef] [PubMed]
- Calatozzolo, C.; Pollo, B.; Botturi, A.; Dinapoli, L.; Carosi, M.; Salmaggi, A.; Maschio, M. Multidrug Resistance Proteins Expression in Glioma Patients with Epilepsy. J. Neurooncol. 2012, 110, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Pasternak, G.W. The Role of Multidrug Resistance-associated Protein in the Blood–brain Barrier and Opioid Analgesia. Synapse 2013, 67, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.M.; Black, D.S.; Raman, C.; Woodford, K.; Zhou, M.; Haggerty, J.E.; Yan, A.T.; Cwirla, S.E.; Grindstaff, K.K. Subcellular Localization of Transporters Along the Rat Blood–brain Barrier and Blood–cerebral-Spinal Fluid Barrier by in Vivo Biotinylation. Neuroscience 2008, 155, 423–438. [Google Scholar] [CrossRef] [PubMed]
- Van de Wetering, K.; Zelcer, N.; Kuil, A.; Feddema, W.; Hillebrand, M.; Vlaming, M.L.H.; Schinkel, A.H.; Beijnen, J.H.; Borst, P. Multidrug Resistance Proteins 2 and 3 Provide Alternative Routes for Hepatic Excretion of Morphine-Glucuronides. Mol. Pharmacol. 2007, 72, 387–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, Y.; Kishimoto, S.; Takahashi, H.; Inotsume, N.; Takeuchi, Y.; Fukushima, S. Altered Expression of MRP2, MRP3 and UGT2B1 in the Liver Affects the Disposition of Morphine and its Glucuronide Conjugate in a Rat Model of Cholestasis. J. Pharm. Pharmacol. 2009, 61, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- Penson, R.T.; Joel, S.P.; Gloyne, A.; Clark, S.; Slevin, M.L. Morphine Analgesia in Cancer Pain: Role of the Glucuronides. J. Opioid Manag. 2005, 1, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Penson, R.T.; Joel, S.P.; Bakhshi, K.; Clark, S.J.; Langford, R.M.; Slevin, M.L. Randomized Placebo-Controlled Trial of the Activity of the Morphine Glucuronides. Clin. Pharmacol. Ther. 2000, 68, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Cooray, H.; Blackmore, C.; Maskell, L.; Barrand, M. Localisation of Breast Cancer Resistance Protein in Microvessel Endothelium of Human Brain. Neuroreport 2002, 13, 2059–2063. [Google Scholar] [CrossRef] [PubMed]
- Hori, S.; Ohtsuki, S.; Hosoya, K.; Nakashima, E.; Terasaki, T. A Pericyte-derived Angiopoietin-1 Multimeric Complex Induces Occludin Gene Expression in Brain Capillary Endothelial Cells through Tie-2 Activation in Vitro. J. Neurochem. 2004, 89, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuki, S.; Ikeda, C.; Uchida, Y.; Sakamoto, Y.; Miller, F.; Glacial, F.; Decleves, X.; Scherrmann, J.; Couraud, P.; Kubo, Y.; et al. Quantitative Targeted Absolute Proteomic Analysis of Transporters, Receptors and Junction Proteins for Validation of Human Cerebral Microvascular Endothelial Cell Line hCMEC/D3 as a Human Blood-Brain Barrier Model. Mol. Pharm. 2013, 10, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.T.; Shah, A.; More, V.; Miller, D.S.; Bendayan, R. In Vivo and Ex Vivo Regulation of Breast Cancer Resistant Protein (Bcrp) by Peroxisome Proliferator-Activated Receptor Alpha (Pparα) at the Blood–brain Barrier. J. Neurochem. 2015, 135, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Bakhsheshian, J.; Wei, B.; Hall, M.D.; Simpson, R.M.; Gottesman, M.M. In Vivo Bioluminescent Imaging of ATP-Binding Cassette Transporter-Mediated Efflux at the Blood–Brain Barrier. Methods Mol. Biol. 2016, 1461, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Tournier, N.; Chevillard, L.; Megarbane, B.; Pirnay, S.; Scherrmann, J.; Declèves, X. Interaction of Drugs of Abuse and Maintenance Treatments with Human P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2). Int. J. Neuropsychopharmacol. 2010, 13, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Yousif, S.; Chaves, C.; Potin, S.; Margaill, I.; Scherrmann, J.M.; Decleves, X. Induction of P-glycoprotein and Bcrp at the rat blood-brain barrier following a subchronic morphine treatment is mediated through NMDA/COX-2 activation. J. Neurochem. 2012, 123, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.E.; Myers, A.L.; Lee, I.J.; Coop, A.; Eddington, N.D. Oxycodone Induces Overexpression of P-glycoprotein (ABCB1) and Affects Paclitaxel’s Tissue Distribution in Sprague Dawley Rats. J. Pharm. Sci. 2007, 96, 2494–2506. [Google Scholar] [CrossRef] [PubMed]
- Kullak-Ublick, G.A.; Becker, M.B. Regulation of Drug and Bile Salt Transporters in Liver and Intestine. Drug Metab. Rev. 2003, 35, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Bauer, B.; Hartz, A.M.S.; Fricker, G.; Miller, D.S. Pregnane X Receptor Up-Regulation of P-Glycoprotein Expression and Transport Function at the Blood-Brain Barrier. Mol. Pharmacol. 2004, 66, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, L.; Pellitteri, R.; Balazy, M.; Cardile, V. Induction of Nuclear Receptors and Drug Resistance in the Brain Microvascular Endothelial Cells Treated with Antiepileptic Drugs. Curr. Neurovasc. Res. 2008, 5, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Narang, V.S.; Fraga, C.; Kumar, A.; Shen, J.; Throm, S.; Stewart, C.F.; Waters, C.M. Dexamethasone Increases Expression and Activity of Multidrug Resistance Transporters at the Rat Blood Brain Barrier. Am. J. Physiol. Cell Physiol. 2008, 295, C440–C450. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sykes, D.B.; Miller, D.S. Constitutive Androstane Receptor-Mediated Up-Regulation of ATP-Driven Xenobiotic Efflux Transporters at the Blood-Brain Barrier. Mol. Pharmacol. 2010, 78, 376–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, G.N.Y.; Saldivia, V.; Yang, Y.; Pang, H.; Lannoy, I.; Bendayan, R. In Vivo Induction of P-Glycoprotein Expression at the Mouse Blood–Brain Barrier: An Intracerebral Microdialysis Study. J. Neurochem. 2013, 127, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, B.; Tirona, R.; Kim, R. Nuclear Receptors and the Regulation of Drug-Metabolizing Enzymes and Drug Transporters: Implications for Interindividual Variability in Response to Drugs. J. Clin. Pharmacol. 2007, 47, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Matheny, C.J.; Ali, R.Y.; Yang, X.; Pollack, G.M. Effect of Prototypical Inducing Agents on P-Glycoprotein and CYP3A Expression in Mouse Tissues. Drug Metab. Dispos. 2004, 32, 1008–1014. [Google Scholar] [PubMed]
- Stein, A.; Stein, C.; Yassouridis, A.; Szopko, C.; Helmke, K. Intraarticular Morphine versus Dexamethasone in Chronic Arthritis. Pain 1999, 83, 525–532. [Google Scholar] [CrossRef]
- Kardash, K.J.; Sarrazin, F.; Tessler, M.J.; Velly, A.M. Single-Dose Dexamethasone Reduces Dynamic Pain after Total Hip Arthroplasty. Anesth. Analg. 2008, 106, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Pieretti, S.; Giannuario, A.D.; Domenici, M.R.; Sagratella, S.; Capasso, A.; Sorrentino, L.; Loizzo, A. Dexamethasone-Induced Selective Inhibition of the Central It Opioid Receptor: Functional in Vivo and in Vitro Evidence in Rodents. Br. J. Pharmacol. 1994, 113, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Capasso, A.; Loizzo, A. Functional Interference of Dexamethasone on Some Morphine Effects: Hypothesis for the Steroid-Opioid Interaction. Recent Pat. CNS Drug Discov. 2008, 3, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, W.; Chua, S.S.; Wei, P.; Moore, D.D. Modulation of Acetaminophen-Induced Hepatotoxicity by the Xenobiotic Receptor CAR. Science 2002, 298, 422–424. [Google Scholar] [CrossRef] [PubMed]
- Hoban, B.; Larance, B.; Gisev, N.; Nielsen, S.; Cohen, M.; Bruno, R.; Shand, F.; Lintzeris, N.; Hall, W.; Farrell, M.; et al. The use of Paracetamol (Acetaminophen) among a Community Sample of People with Chronic Non-cancer Pain Prescribed Opioids. Int. J. Clin. Pract. 2015, 69, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Paulozzi, L.J.; Strickler, G.K.; Kreiner, P.W.; Koris, C.M.; Centers for Disease Control and Prevention (CDC). Controlled Substance Prescribing Patterns—Prescription Behavior Surveillance System, Eight States, 2013. MMWR Surveill. Summ. 2015, 64, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Koons, A.L.; Rayl Greenberg, M.; Cannon, R.D.; Beauchamp, G.A. Women and the Experience of Pain and Opioid Use Disorder: A Literature-Based Commentary. Clin. Ther. 2018, 40, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Bond, G.; Ho, M.; Woodward, R. Trends in Hepatic Injury Associated with Unintentional Overdose of Paracetamol (Acetaminophen) in Products with and without Opioid. Drug Saf. 2012, 35, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Pu, H.; Tian, J.; Andras, I.E.; Lee, Y.W.; Hennig, B.; Toborek, M. HIV-Tat Protein Induces P-glycoprotein Expression in Brain Microvascular Endothelial Cells. J. Neurochem. 2005, 93, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, T.; Ronaldson, P.T.; Persidsky, Y.; Bendayan, R. Regulation of P-glycoprotein by Human Immunodeficiency Virus-1 in Primary Cultures of Human Fetal Astrocytes. J. Neurosci. Res. 2011, 89, 1773–1782. [Google Scholar] [CrossRef] [PubMed]
- Robillard, K.R.; Hoque, M.T.; Bendayan, R. Expression of ATP-Binding Cassette Membrane Transporters in a HIV-1 Transgenic Rat Model. Biochem. Biophys. Res. Commun. 2014, 444, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Hartz, A.M.S.; Bauer, B.; Fricker, G.; Miller, D.S. Rapid Modulation of P-Glycoprotein-Mediated Transport at the Blood-Brain Barrier by Tumor Necrosis Factor- and Lipopolysaccharide. Mol. Pharm. 2007, 69, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Salkeni, M.; Lynch, J.; Otamis-Price, T.; Banks, W. Lipopolysaccharide Impairs Blood–Brain Barrier P-Glycoprotein Function in Mice through Prostaglandin- and Nitric Oxide-Independent Pathways. J. Neuroimmune Pharmacol. 2009, 4, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Ohtsuki, S.; Terasaki, T. Pharmacoproteomics-Based Reconstruction of in Vivo P-Glycoprotein Function at Blood-Brain Barrier and Brain Distribution of Substrate Verapamil in Pentylenetetrazole-Kindled Epilepsy, Spontaneous Epilepsy, and Phenytoin Treatment Models. Drug Metab. Dispos. 2014, 42, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- McCaffrey, G.; Staatz, W.D.; Sanchez-Covarrubias, L.; Finch, J.D.; DeMarco, K.; Laracuente, M.; Ronaldson, P.T.; Davis, T.P. P-glycoprotein Trafficking at the Blood–brain Barrier Altered by Peripheral Inflammatory Hyperalgesia. J. Neurochem. 2012, 122, 962–975. [Google Scholar] [CrossRef] [PubMed]
- Ossipov, M.H.; Kovelowski, C.J.; Porreca, F. The Increase in Morphine Antinociceptive Potency Produced by Carrageenan-Induced Hindpaw Inflammation Is Blocked by Naltrindole, a Selective Δ-Opioid Antagonist. Neurosci. Lett. 1995, 184, 173–176. [Google Scholar] [CrossRef]
- Cui, Y.J.; Cheng, X.; Weaver, Y.M.; Klaassen, C.D. Tissue Distribution, Gender-Divergent Expression, Ontogeny, and Chemical Induction of Multidrug Resistance Transporter Genes (Mdr1a, Mdr1b, Mdr2) in Mice. Drug Metab. Dispos. 2009, 37, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Tome, M.E.; Herndon, J.M.; Schaefer, C.P.; Jacobs, L.M.; Zhang, Y.; Jarvis, C.K.; Davis, T.P. P-Glycoprotein Traffics from the Nucleus to the Plasma Membrane in Rat Brain Endothelium during Inflammatory Pain. J. Cereb. Blood Flow Metab. 2016, 36, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Tome, M.E.; Jarvis, C.K.; Schaefer, C.P.; Jacobs, L.M.; Herndon, J.M.; Hunn, K.C.; Arkwright, N.B.; Kellohen, K.L.; Mierau, P.C.; Davis, T.P. Acute pain alters P-glycoprotein-containing protein complexes in rat cerebral microvessels: Implications for P-glycoprotein trafficking. J. Cereb. Blood Flow Metab. 2018, in press. [Google Scholar]
- Bendayan, R.; Ronaldson, P.T.; Gingras, D.; Bendayan, M. In Situ Localization of P-Glycoprotein (ABCB1) in Human and Rat Brain. J. Histochem. Cytochem. 2006, 54, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Tome, M.E.; Schaefer, C.P.; Jacobs, L.M.; Zhang, Y.; Herndon, J.M.; Matty, F.O.; Davis, T.P. Identification of P-glycoprotein Co-fractionating Proteins and Specific Binding Partners in Rat Brain Microvessels. J. Neurochem. 2015, 134, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Huber, J.D.; Witt, K.A.; Hom, S.; Egleton, R.D.; Mark, K.S.; Davis, T.P. Inflammatory Pain Alters Blood-Brain Barrier Permeability and Tight Junctional Protein Expression. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- McCaffrey, G.; Willis, C.L.; Staatz, W.D.; Nametz, N.; Quigley, C.A.; Hom, S.; Lochhead, J.J.; Davis, T.P. Occludin Oligomeric Assemblies at Tight Junctions of the Blood-Brain Barrier are Altered by Hypoxia and Reoxygenation Stress. J. Neurochem. 2009, 110, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Ronaldson, P.T.; DeMarco, K.M.; Sanchez-Covarrubias, L.; Solinsky, C.M.; Davis, T.P. Transforming Growth Factor-Β Signaling Alters Substrate Permeability and Tight Junction Protein Expression at the Blood-Brain Barrier during Inflammatory Pain. J. Cereb. Blood Flow Metab. 2009, 29, 1084–1098. [Google Scholar] [CrossRef] [PubMed]
- Gordh, T.; Sharma, H.S. Chronic Spinal Nerve Ligation Induces Microvascular Permeability Disturbances, Astrocytic Reaction, and Structural Changes in the Rat Spinal Cord. Acta Neurochir. Suppl. 2006, 96, 335–340. [Google Scholar] [PubMed]
- Beggs, S.; Liu, X.J.; Kwan, C.; Salter, M.W. Peripheral Nerve Injury and TRPV1-Expressing Primary Afferent C-Fibers Cause Opening of the Blood-Brain Barrier. Mol. Pain 2010, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.R.; Ocheltree, S.M.; Hom, S.; Egleton, R.D.; Davis, T.P. Nociceptive Inhibition Prevents Inflammatory Pain Induced Changes in the Blood–brain Barrier. Brain Res. 2008, 1221, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Husain, S.; Abdul, Y.; Potter, D.E. Non-analgesic effects of opioids: Neuroprotection in the retina. Curr. Pharm. Des. 2012, 18, 6101–6108. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Guo, J.; Zhu, M.; Li, M.; Wu, G.; Xia, Y. δ-Opioid receptor activation rescues the functional TrkB receptor and protects the brain from ischemia-reperfusion injury in the rat. PLoS ONE 2013, 8, e69252. [Google Scholar] [CrossRef] [PubMed]
- Crowley, M.G.; Liska, M.G.; Lippert, T.; Corey, S.; Borlongan, C.V. Utilizing delta opioid receptors and peptides for cytoprotection: Implications in stroke and other neurological disorders. CNS Neurol. Disord. Drug Targets 2017, 16, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, B.; Sifat, A.E.; Karamyan, V.T.; Abbruscato, T.J. The neuroprotective role of the brain opioid system in stroke injury. Drug Discov. Today 2018, 23, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shah, K.; Wang, H.; Karamyan, V.T.; Abbruscato, T.J. Characterization of neuroprotective effects of biphalin, an opioid receptor agonist, in a model of focal brain ischemia. J. Pharmacol. Exp. Ther. 2011, 339, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, H.; Shah, K.; Karamyan, V.T.; Abbruscato, T.J. Opioid receptor agonists reduce brain edema in stroke. Brain Res. 2011, 1383, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Islam, M.R.; Karamyan, V.T.; Abbruscato, T.J. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment. Brain Res. 2015, 1609, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Liska, M.G.; Crowley, M.; Xu, K.; Acosta, S.A.; Borlongan, C.V.; Guedes, V.A. Multifaceted effects of delta opioid receptors and DADLE in diseases of the nervous system. Curr. Drug Discov. Technol. 2018, 15, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Yang, L.; Lee, Y.S.; Hruby, V.J.; Karamyan, V.T.; Abbruscato, T.J. Enkephalin-fentanyl multifunctional opioids as potential neuroprotectants for ischemic stroke treatment. Curr. Pharm. Des. 2016, 22, 6459–6468. [Google Scholar] [CrossRef] [PubMed]
- Zohar, O.; Getslev, V.; Miller, A.L.; Schreiber, S.; Pick, C.G. Morphine protects for head trauma induced cognitive deficits in mice. Neurosci. Lett. 2006, 394, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Lesniak, A.; Pick, C.G.; Misicka, A.; Lipkowski, A.W.; Sacharczuk, M. Biphalin protects against cognitive deficits in a mouse model of mild traumatic brain injury (mTBI). Neuropharmacology 2016, 101, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Statler, K.D.; Alexander, H.; Vagni, V.; Dixon, C.E.; Clark, R.S.; Jenkins, L.; Kochanek, P.M. Comparison of seven anesthetic agents on outcome after experimental traumatic brain injury in adult, male rats. J. Neurotrauma 2006, 23, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.S.; Cen, J.; He, L.; Liu, M.; Liu, Y.Q.; Liu, L. Modulation of P-glycoprotein in rat brain microvessel endothelial cells under oxygen glucose deprivation. J. Pharm. Pharmacol. 2013, 65, 1508–1517. [Google Scholar] [CrossRef] [PubMed]
- Dazert, P.; Suofu, Y.; Grube, M.; Popa-Wagner, A.; Kroemer, H.K.; Jedlitschky, G.; Kessler, C. Differential regulation of transport proteins in the periinfarct region following reversible middle cerebral artery occlusion in rats. Neuroscience 2006, 142, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Spudich, A.; Kilic, E.; Xing, H.; Kilic, U.; Rentsch, K.M.; Wunderli-Allenspach, H.; Bassetti, C.L.; Hermann, D.M. Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. Nat. Neurosci. 2006, 9, 487–488. [Google Scholar] [CrossRef] [PubMed]
- Cen, J.; Liu, L.; Li, M.S.; He, L.; Wang, L.J.; Liu, Y.Q.; Liu, M.; Ji, B.S. Alteration in P-glycoprotein at the blood-brain barrier in the early period of MCAO in rats. J. Pharm. Pharmacol. 2013, 65, 665–672. [Google Scholar] [CrossRef] [PubMed]
- DeMars, K.M.; Yang, C.; Hawkins, K.E.; McCrea, A.O.; Siwarski, D.M.; Candelario-Jalil, E. Spatiotemporal changes in P-glycoprotein levels in brain and peripheral tissues following ischemic stroke in rats. J. Exp. Neurosci. 2017, 11, 1179069517701741. [Google Scholar] [CrossRef] [PubMed]
- Kilic, E.; Spudich, A.; Kilic, U.; Rentsch, K.M.; Vig, R.; Matter, C.M.; Wunderli-Allenspach, H.; Fritschy, J.M.; Bassetti, C.L.; Hermann, D.M. ABCC1: A gateway for pharmacological compounds to the ischemic brain. Brain 2008, 131, 2679–2689. [Google Scholar] [CrossRef] [PubMed]
- Pop, V.; Sorensen, D.W.; Kamper, J.E.; Ajao, D.O.; Murphy, M.P.; Head, E.; Hartman, R.E.; Badaut, J. Early brain injury alters the blood-brain barrier phenotype in parallel with β-amyloid and cognitive changes in adulthood. J. Cereb. Blood Flow Metab. 2013, 33, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Willyerd, F.A.; Empey, P.E.; Philbrick, A.; Ikonomovic, M.D.; Puccio, A.M.; Kochanek, P.M.; Okonkwo, D.O.; Clark, R.S. Expression of ATP-binding cassette transporters B1 and C1 after severe traumatic brain injury in humans. J. Neurotrauma 2016, 33, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.; Rude, M.L.; Stagg, N.J.; Mata, H.P.; Lai, J.; Vanderah, T.W.; Porreca, F.; Buckley, N.E.; Makriyannis, A.; Malan, T.P. CB2 Cannabinoid Receptor Mediation of Antinociception. Pain 2007, 122, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lund, D.M.; Ciccone, H.A.; Staatz, W.D.; Ibrahim, M.M.; Largent-Milnes, T.M.; Seltzman, H.H.; Spigelman, I.; Vanderah, T.W. Peripherally Restricted Cannabinoid 1 Receptor Agonist as a Novel Analgesic in Cancer-Induced Bone Pain. Pain 2018, 159, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.K.S.; Seymour, R.A.; Lirk, P.; Merry, A.F. Combining Paracetamol (Acetaminophen) with Nonsteroidal Antiinflammatory Drugs: A Qualitative Systematic Review of Analgesic Efficacy for Acute Postoperative Pain. Anesth. Analg. 2010, 110, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Bannister, K.; Qu, C.; Navratilova, E.; Oyarzo, J.; Xie, J.Y.; King, T.; Dickenson, A.H.; Porreca, F. Multiple Sites and Actions of Gabapentin-Induced Relief of Ongoing Experimental Neuropathic Pain. Pain 2017, 158, 2386–2395. [Google Scholar] [CrossRef] [PubMed]
- Serpell, M.; Latymer, M.; Almas, M.; Ortiz, M.; Parsons, B.; Prieto, R. Neuropathic Pain Responds Better to Increased Doses of Pregabalin: An In-Depth Analysis of Flexible-Dose Clinical Trials. J. Pain Res. 2017, 10, 1769–1776. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, L.; Iannitelli, A.; Garrett, N.L.; Moger, J.; Imbert, I.; King, T.; Porreca, F.; Soundararajan, R.; Lalatsa, A.; Schätzlein, A.G.; et al. Nanoparticulate Peptide Delivery Exclusively to the Brain Produces Tolerance Free Analgesia. J. Control. Release 2018, 270, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Hayden, J.A.; van Tulder, M.W.; Tomlinson, G. Systematic Review: Strategies for using Exercise Therapy to Improve Outcomes in Chronic Low Back Pain. Ann. Intern. Med. 2005, 142, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.; Patwardhan, A.; Gilbraith, K.B.; Moutal, A.; Yang, X.; Chew, L.A.; Largent-Milnes, T.; Malan, T.P.; Vanderah, T.W.; Porreca, F.; et al. Long-Lasting Antinociceptive Effects of Green Light in Acute and Chronic Pain in Rats. Pain 2017, 158, 347–360. [Google Scholar] [CrossRef] [PubMed]
P-gp | Multidrug Resistance Proteins (MRPs) | Breast Cancer Resistance Protein (BCRP) | |
---|---|---|---|
Opioid Analgesic | |||
Alfentanil | S | ||
Buprenorphine | S (−) | (−) | |
Codeine | N | ||
Fentanyl | S | ||
Hydrocodone | N | ||
Loperamide | S | ||
Meperidine | S | ||
Methadone | S (−) | ||
Morphine | S (+) | S (+) | (+) |
(M3G) | S | S | |
(M6G) | S | S | |
Norbuprenorphine | S | (−) | |
Oxycodone | N (+) | (+) | |
Oxymorphone | S | ||
Sufentanil | N | ||
Tramadol | S | ||
Opioid Peptide | |||
Biphalin | N | ||
Deltorphin II | S | ||
[D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) | S | ||
[D-Pen2,D-Pen5]enkephalin (DPDPE) | S | ||
β-endorphin | S | ||
Leu-enkephalin | N | ||
Met-enkephalin | N |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Reilly, B.G.; Davis, T.P.; Ronaldson, P.T. Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics 2018, 10, 192. https://doi.org/10.3390/pharmaceutics10040192
Yang J, Reilly BG, Davis TP, Ronaldson PT. Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics. 2018; 10(4):192. https://doi.org/10.3390/pharmaceutics10040192
Chicago/Turabian StyleYang, Junzhi, Bianca G. Reilly, Thomas P. Davis, and Patrick T. Ronaldson. 2018. "Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity" Pharmaceutics 10, no. 4: 192. https://doi.org/10.3390/pharmaceutics10040192
APA StyleYang, J., Reilly, B. G., Davis, T. P., & Ronaldson, P. T. (2018). Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics, 10(4), 192. https://doi.org/10.3390/pharmaceutics10040192