Pharmacokinetic Changes According to Single or Multiple Oral Administrations of Socheongryong-Tang to Rats: Presented as a Typical Example of Changes in the Pharmacokinetics Following Multiple Exposures to Herbal Medicines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation and Chromatographic Conditions
2.3. Preparation of Calibration Curves and Quality Control Samples
2.4. Extraction Procedure
2.5. Method Validation
2.6. Animal Experiments
2.7. Pharmacokinetic Study
2.8. Statistical Analysis
3. Results and Discussion
3.1. Method Application
3.2. Method Validation
3.3. Pharmacokinetic Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SCRT | Socheongryong-tang |
UHPLC-MS/MS | Ultrahigh-performance liquid chromatography-tandem mass spectrometer |
HPLC | High-performance liquid chromatography |
ESI | Electrospray ionization |
MRM | Multiple reaction monitoring |
LLOQ | Lower limit of quantitation |
IS | Internal standard |
QC | Quality control |
CV | Coefficient of variation |
SD | Standard deviation |
References
- Oh, H.A.; Lee, H.-B.; Kang, K.-W.; Im, J.-H.; Kim, D.-H.; Yang, H.-O.; Jung, B.-H. Identification of interactions between multiple components in Socheongryong-tang using a plant profiling approach. Biomed. Chromatogr. 2019, 33, e4500. [Google Scholar] [CrossRef]
- Kim, Y.-E.; Son, M.J.; Jung, S.Y.; Kwon, O.; Lee, J.-H.; Lee, D.-H. Socheongryong-tang for improving nasal symptoms associated with allergic rhinitis: A study protocol for a randomized, open-label, cetirizine controlled, clinical trial. Medicine 2018, 97, e11812. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Lee, T.H.; Zhao, R.; Kim, Y.S.; Jung, J.Y.; Park, C.A.; Jegal, K.H.; Ku, S.K.; Kim, J.K.; Lee, C.W. Amelioration of inflammatory responses by Socheongryong-Tang, a traditional herbal medicine, in RAW 264.7 cells and rats. Int. J. Mol. Med. 2018, 41, 2771–2783. [Google Scholar]
- Ko, E.; Rho, S.; Lee, E.; Seo, Y.-H.; Cho, C.; Lee, Y.; Min, B.-I.; Shin, M.-K.; Hong, M.-C.; Bae, H. Traditional Korean medicine (SCRT) modulate Th1/Th2 specific cytokine production in mice CD4+ T cell. J. Ethnopharmacol. 2004, 92, 121–128. [Google Scholar] [CrossRef]
- Bae, J.-S.; Kim, I.-S.; Seo, B.-D.; Kim, B.-J. Effects of Socheongryong-Tang, a Traditional Chinese Medicine, on Gastrointestinal Motility Disorders (Diabetic Models) in Mice. J. Korean Med. Obes. Res. 2017, 17, 61–67. [Google Scholar]
- Hwang, W.-S.; Chung, K.-J.; Ju, C.-Y.; Hong, J.-P.; Lee, J.-S.; Jung, H.-J.; Rhee, H.-K.; Jung, S.-K. The Clinical Effects of Socheongryong-tang in Asthmatic Patients. J. Int. Korean Med. 2002, 23, 651–660. [Google Scholar]
- Jeong, S.-H.; Jang, J.-H.; Ham, S.-H.; Yang, S.-J.; Cho, H.-Y.; Lee, Y.-B. Simultaneous UPLC-MS/MS determination of four components of Socheongryong-tang tablet in human plasma: Application to pharmacokinetic study. J. Chromatogr. B 2018, 1095, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-W.; Hwang, I.-H.; Yun, Y.-H.; Jang, B.-H.; Chen, F.-P.; Hwang, S.-J.; Ko, S.-G. Population-based comparison of traditional medicine use in adult patients with allergic rhinitis between South Korea and Taiwan. J. Chin. Med. Assoc. 2018, 81, 708–713. [Google Scholar]
- Baek, K.Y.; Kim, S.J.; Kim, J.B.; Lee, J.H.; Moon, S.O.; Lee, H.D. Comparison of Marker Components and Biological Activities of Socheongryong-tang by Different Extract Methods. Korean J. Pharmacogn. 2018, 49, 349–361. [Google Scholar]
- White, L.M.; Gardner, S.F.; Gurley, B.J.; Marx, M.A.; Wang, P.L.; Estes, M. Pharmacokinetics and cardiovascular effects of ma-huang (Ephedra sinica) in normotensive adults. J. Clin. Pharmacol. 1997, 37, 116–122. [Google Scholar] [PubMed]
- Tang, N.-Y.; Liu, C.-H.; Hsieh, C.-T.; Hsieh, C.-L. The anti-inflammatory effect of paeoniflorin on cerebral infarction induced by ischemia-reperfusion injury in Sprague-Dawley rats. Am. J. Chin. Med. 2010, 38, 51–64. [Google Scholar] [CrossRef]
- Liu, L.; Hudgins, W.R.; Shack, S.; Yin, M.Q.; Samid, D. Cinnamic acid: A natural product with potential use in cancer intervention. Int. J. Cancer 1995, 62, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Jang, J.H.; Cho, H.Y.; Lee, Y.B. Simultaneous determination of asarinin, β-eudesmol, and wogonin in rats using ultraperformance liquid chromatography–tandem mass spectrometry and its application to pharmacokinetic studies following administration of standards and Gumiganghwal-tang. Biomed. Chromatogr. 2020, e5021. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Jang, J.-H.; Lee, G.-Y.; Yang, S.-J.; Cho, H.-Y.; Lee, Y.-B. Simultaneous determination of fourteen components of Gumiganghwal-tang tablet in human plasma by UPLC-ESI-MS/MS and its application to pharmacokinetic study. J. Pharm. Anal. 2020. [Google Scholar] [CrossRef]
- Jeong, S.H.; Jang, J.H.; Cho, H.Y.; Lee, Y.B. Simultaneous determination of three iridoid glycosides of Rehmannia glutinosa in rat biological samples using a validated hydrophilic interaction–UHPLC–MS/MS method in pharmacokinetic and in vitro studies. J. Sep. Sci. 2020, 43, 4148–4161. [Google Scholar] [CrossRef]
- Muhamad, N.; Plengsuriyakarn, T.; Na-Bangchang, K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int. J. Nanomed. 2018, 13, 3921. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry: Bioanalytical Method Validation; US Department of Health and Human Services, F.a.D.A., Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM): Rockville, MD, USA, 2018. [Google Scholar]
- Jeong, S.-H.; Jang, J.-H.; Cho, H.-Y.; Oh, I.-J.; Lee, Y.-B. A sensitive UPLC–ESI–MS/MS method for the quantification of cinnamic acid in vivo and in vitro: Application to pharmacokinetic and protein binding study in human plasma. J. Pharm. Investig. 2020, 50, 159–172. [Google Scholar] [CrossRef]
- Deventer, K.; Pozo, O.; Van Eenoo, P.; Delbeke, F. Development and validation of an LC–MS/MS method for the quantification of ephedrines in urine. J. Chromatogr. B 2009, 877, 369–374. [Google Scholar] [CrossRef]
- Tong, L.; Wan, M.; Zhou, D.; Gao, J.; Zhu, Y.; Bi, K. LC-MS/MS determination and pharmacokinetic study of albiflorin and paeoniflorin in rat plasma after oral administration of Radix Paeoniae Alba extract and Tang-Min-Ling-Wan. Biomed. Chromatogr. 2010, 24, 1324–1331. [Google Scholar] [CrossRef]
- Wan, H.; Pan, L.; Wang, Y.; Li, C.; Yu, L.; Zhou, H.; Wan, H.; He, Y. Pharmacokinetics of seven major active components of Mahuang decoction in rat blood and brain by LC–MS/MS coupled to microdialysis sampling. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 1559–1571. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zheng, M.; Chen, Y.-L.; Chen, J.; He, Y. Pharmacokinetic effects of cinnamic acid, amygdalin, glycyrrhizic acid and liquiritin on ephedra alkaloids in rats. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-W.; Chiang, M.-H.; Lu, C.-M.; Tsai, T.-H. Determination the active compounds of herbal preparation by UHPLC–MS/MS and its application on the preclinical pharmacokinetics of pure ephedrine, single herbal extract of Ephedra, and a multiple herbal preparation in rats. J. Chromatogr. B 2016, 1026, 152–161. [Google Scholar] [CrossRef]
- Song, Y.; Su, D.; Lu, T.; Mao, C.; Ji, D.; Liu, Y.; Wei, B.; Fan, R. Differential pharmacokinetics and the brain distribution of morphine and ephedrine constitutional isomers in rats after oral administration with Keke capsule using rapid-resolution LC–MS/MS. J. Sep. Sci. 2014, 37, 352–359. [Google Scholar] [CrossRef]
- Wei, P.; Huo, H.-l.; Ma, Q.; Li, H.; Xing, X.; Tan, X.; Luo, J. Pharmacokinetic comparisons of five ephedrine alkaloids following oral administration of four different Mahuang–Guizhi herb-pair aqueous extracts ratios in rats. J. Ethnopharmacol. 2014, 155, 642–648. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, J.; Zhang, L.L.; Wei, W. Pharmacokinetic comparisons of Paeoniflorin and Paeoniflorin-6’O-benzene sulfonate in rats via different routes of administration. Xenobiotica 2016, 46, 1142–1150. [Google Scholar] [CrossRef]
- Wang, X.; Ma, X.; Li, W.; Chu, Y.; Guo, J.; Li, S.; Wang, J.; Zhang, H.; Zhou, S.; Zhu, Y. Simultaneous determination of five phenolic components and paeoniflorin in rat plasma by liquid chromatography–tandem mass spectrometry and pharmacokinetic study after oral administration of Cerebralcare granule®. J. Pharm. Biomed. Anal. 2013, 86, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.-H.; Wang, P.; Wang, Y.; Yang, Y.; Li, D.-H.; Li, H.-F.; Sun, S.-Q.; Wu, X.-Z. Pharmacokinetic comparisons of two different combinations of Shaoyao-Gancao Decoction in rats: Competing mechanisms between paeoniflorin and glycyrrhetinic acid. J. Ethnopharmacol. 2013, 149, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhao, Y.; Wang, J.; Wei, S.; Wei, Z.; Li, R.; Zhu, Y.; Sun, Z.; Xiao, X. Comparative pharmacokinetic study of paeoniflorin and albiflorin after oral administration of Radix Paeoniae Rubra in normal rats and the acute cholestasis hepatitis rats. Fitoterapia 2012, 83, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-H.; Kim, T.; Cho, W.-K.; Jang, D.; Ha, J.-H.; Ma, J.Y. Food-and gender-dependent pharmacokinetics of paeoniflorin after oral administration with Samul-tang in rats. J. Ethnopharmacol. 2012, 142, 161–167. [Google Scholar] [CrossRef]
- Gan, P.; Zhong, M.; Huang, X.; Sun, M.; Wang, Y.; Xiao, Y.; Zeng, C.; Yuan, Q.; Liu, Z.; Zhou, H. Pharmacokinetic comparisons of albiflorin and paeoniflorin after oral administration of Shaoyao-Gancao-Tang and single herb Paeony decoction to rats. Planta. Med. 2012, 78, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.-S.; Kong, L.-Y. Comparative pharmacokinetics of paeoniflorin in plasma of vascular dementia and normal rats orally administrated with Danggui-Shaoyao-San or pure paeoniflorin. Fitoterapia 2011, 82, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Liu, M.; Shi, X.; Yang, W.; Kong, D.; Duan, K.; Wang, Q. Pharmacokinetic properties of paeoniflorin, albiflorin and oxypaeoniflorin after oral gavage of extracts of Radix Paeoniae Rubra and Radix Paeoniae Alba in rats. J. Ethnopharmacol. 2010, 130, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhu, Z.; Zhang, G.; Zhao, L.; Zhang, H.; Zhu, D.; Chai, Y. Comparative pharmacokinetic study of paeoniflorin after oral administration of pure paeoniflorin, extract of Cortex Moutan and Shuang-Dan prescription to rats. J. Ethnopharmacol. 2009, 125, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, R.; Cheng, X.; He, Y.; Wang, Z.; Wu, C.; Cao, J. Comparative pharmacokinetic study of paeoniflorin after oral administration of decoction of Radix Paeoniae Rubra and Radix Paeoniae Alba in rats. J. Ethnopharmacol. 2008, 117, 467–472. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhou, H.; Liu, L.; Jiang, Z.H.; Wong, Y.F.; Xie, Y.; Cai, X.; Xu, H.X.; Chan, K. Influence of co-administrated sinomenine on pharmacokinetic fate of paeoniflorin in unrestrained conscious rats. J. Ethnopharmacol. 2005, 99, 61–67. [Google Scholar] [CrossRef]
- Takeda, S.; Isono, T.; Wakui, Y.; Matsuzaki, Y.; Sasaki, H.; Amagaya, S.; Maruno, M. Absorption and excretion of paeoniflorin in rats. J. Pharm. Pharmacol. 1995, 47, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Wang, L.; Jin, J.; Chang, S.; Xiao, X.; Feng, B.; Zhu, H. Simultaneous determination of calycosin-7-O-β-D-glucoside, cinnamic acid, paeoniflorin and albiflorin in rat plasma by UHPLC-MS/MS and its application to a pharmacokinetic study of Huangqi Guizhi Wuwu Decoction. J. Pharm. Biomed. Anal. 2019, 170, 1–7. [Google Scholar] [CrossRef]
- Ji, B.; Zhao, Y.; Yu, P.; Yang, B.; Zhou, C.; Yu, Z. LC-ESI-MS/MS method for simultaneous determination of eleven bioactive compounds in rat plasma after oral administration of Ling-Gui-Zhu-Gan Decoction and its application to a pharmacokinetics study. Talanta 2018, 190, 450–459. [Google Scholar] [CrossRef]
- Ji, B.; Zhao, Y.; Zhang, Q.; Wang, P.; Guan, J.; Rong, R.; Yu, Z. Simultaneous determination of cinnamaldehyde, cinnamic acid, and 2-methoxy cinnamic acid in rat whole blood after oral administration of volatile oil of Cinnamoni Ramulus by UHPLC-MS/MS: An application for a pharmacokinetic study. J. Chromatogr. B 2015, 1001, 107–113. [Google Scholar] [CrossRef]
- Zhao, L.; Xiong, Z.; Sui, Y.; Zhu, H.; Zhou, Z.; Wang, Z.; Zhao, Y.; Xiao, W.; Lin, J.; Bi, K. Simultaneous determination of six bioactive constituents of Guizhi Fuling Capsule in rat plasma by UHPLC–MS/MS: Application to a pharmacokinetic study. J. Chromatogr. B 2015, 1001, 49–57. [Google Scholar] [CrossRef]
- Basu, S.; Patel, V.B.; Jana, S.; Patel, H. Liquid chromatography tandem mass spectrometry method (LC–MS/MS) for simultaneous determination of piperine, cinnamic acid and gallic acid in rat plasma using a polarity switch technique. Anal. Methods 2013, 5, 967–976. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Xiao, L.; Jin, X.; Yang, K. Simultaneous determination of harpagoside and cinnamic acid in rat plasma by high-performance liquid chromatography: Application to a pharmacokinetic study. Anal. Bioanal. Chem. 2007, 389, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, Y.; Ma, W. Pharmacokinetics and bioavailability of cinnamic acid after oral administration of Ramulus Cinnamomi in rats. Eur. J. Drug Metab. Pharmacokinet. 2009, 34, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Volpp, M.; Holzgrabe, U. Determination of plasma protein binding for sympathomimetic drugs by means of ultrafiltration. Eur. J. Pharm. Sci. 2019, 127, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Lin, J.; Li, L.; Yang, J.; Jia, W.; Huang, Y.; Du, F.; Wang, F.; Li, M.; Li, Y. Pharmacokinetics and disposition of monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) after intravenous dosing of antiseptic XueBiJing injection in human subjects and rats. Acta Pharmacol. Sin. 2016, 37, 530–544. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Chin, Y.-W. Multifaceted Factors Causing Conflicting Outcomes in Herb-Drug Interactions. Pharmaceutics 2021, 13, 43. [Google Scholar] [CrossRef]
- Rafferty, M.; van Liere, E.J.; Sleeth, C.K. The effect of ephedrine on the secretion of acid by the human stomach. J. Dig. Dis. 1937, 4, 366–368. [Google Scholar] [CrossRef]
- Astell, K.J.; Mathai, M.L.; Su, X.Q. A review on botanical species and chemical compounds with appetite suppressing properties for body weight control. Plant Foods Hum. Nutr. 2013, 68, 213–221. [Google Scholar] [CrossRef]
- Higgs, J.; Wasowski, C.; Loscalzo, L.M.; Marder, M. In vitro binding affinities of a series of flavonoids for μ-opioid receptors. Antinociceptive effect of the synthetic flavonoid 3, 3-dibromoflavanone in mice. Neuropharmacology 2013, 72, 9–19. [Google Scholar] [CrossRef]
Compound | Polarity | Parent ion (m/z) | Product ion (m/z) | Retention Time (min) | Q1 Pre-Bias (V) | Q3 Pre-Bias (V) | Collision Energy (eV) |
---|---|---|---|---|---|---|---|
Ephedrine | Positive | 166.20 | 148.10 | 2.37 | 22 | 27 | 12 |
Paeoniflorin | Negative | 525.20 | 449.25 | 3.32 | −26 | −24 | −15 |
Cinnamic acid | Negative | 146.80 | 103.00 | 2.42 | −13 | −24 | −13 |
Diphenhydramine (IS) | Positive | 256.10 | 167.05 | 2.57 | 18 | 11 | 19 |
Geniposide (IS) | Negative | 432.90 | 225.00 | 2.88 (for paeoniflorin) 2.17 (for cinnamic acid) | −16 | −26 | −14 |
Parameters | Ephedrine | Paeoniflorin | Cinnamic Acid | |
---|---|---|---|---|
Oral (n = 5) | Oral (n = 5) | Oral (n = 5) | ||
AUC0-12 | ng·h/mL | 54.76 ± 15.09 | 65.72 ± 23.25 | 192.00 ± 59.56 |
AUC0-∞ | ng·h/mL | 57.67 ± 17.68 | 66.33 ± 23.34 | 322.27 ± 182.53 |
t1/2 | h | 1.62 ± 0.74 | 1.27 ± 0.55 | 9.30 ± 8.31 |
Cmax | ng/mL | 20.39 ± 7.83 | 23.54 ± 10.01 | 67.42 ± 23.23 |
Tmax | h | 0.85 ± 0.22 | 1.40 ± 0.55 | 0.35 ± 0.14 |
CL/F | L/h/kg | 9.19 ± 2.97 | 42.52 ± 19.52 | 0.05 ± 0.03 |
Vd/F | L/kg | 20.50 ± 8.22 | 74.05 ± 33.52 | 0.49 ± 0.20 |
R † | - | 1.03 ± 0.01 | 1.01 ± 0.01 | 2.23 ± 0.00 |
Parameters | Ephedrine | Paeoniflorin | Cinnamic Acid | |
---|---|---|---|---|
Oral (n = 5) | Oral (n = 5) | Oral (n = 5) | ||
AUC120–132 | ng·h/mL | 63.84 ± 27.45 | 346.34 ± 81.42 * | 734.64 ± 435.73 * |
AUC120-∞ | ng·h/mL | 77.32 ± 13.98 | 356.97 ± 89.80 * | 1615.84 ± 1904.37 |
t1/2 | h | 2.01 ± 0.35 | 2.33 ± 0.12 * | 11.47 ± 10.54 |
Cmax | ng/mL | 21.06 ± 5.80 | 234.46 ± 57.51 * | 274.66 ± 122.79 * |
Tmax | h | 0.85 ± 0.22 | 0.60 ± 0.14 * | 0.25 ± 0.00 * |
CL/F | L/h/kg | 6.49 ± 1.14 | 7.32 ± 1.92 * | 0.02 ± 0.01 * |
Vd/F | L/kg | 18.66 ± 3.76 | 24.42 ± 5.48 * | 0.20 ± 0.11 * |
AUC120-∞ / AUC0-∞ † | - | 1.34 | 5.38 | 5.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, S.-H.; Jang, J.-H.; Jung, D.-H.; Lee, G.-Y.; Lee, Y.-B. Pharmacokinetic Changes According to Single or Multiple Oral Administrations of Socheongryong-Tang to Rats: Presented as a Typical Example of Changes in the Pharmacokinetics Following Multiple Exposures to Herbal Medicines. Pharmaceutics 2021, 13, 478. https://doi.org/10.3390/pharmaceutics13040478
Jeong S-H, Jang J-H, Jung D-H, Lee G-Y, Lee Y-B. Pharmacokinetic Changes According to Single or Multiple Oral Administrations of Socheongryong-Tang to Rats: Presented as a Typical Example of Changes in the Pharmacokinetics Following Multiple Exposures to Herbal Medicines. Pharmaceutics. 2021; 13(4):478. https://doi.org/10.3390/pharmaceutics13040478
Chicago/Turabian StyleJeong, Seung-Hyun, Ji-Hun Jang, Da-Hwa Jung, Guk-Yeo Lee, and Yong-Bok Lee. 2021. "Pharmacokinetic Changes According to Single or Multiple Oral Administrations of Socheongryong-Tang to Rats: Presented as a Typical Example of Changes in the Pharmacokinetics Following Multiple Exposures to Herbal Medicines" Pharmaceutics 13, no. 4: 478. https://doi.org/10.3390/pharmaceutics13040478