Small Volume Dissolution Testing as a Powerful Method during Pharmaceutical Development
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
USP one liter vessel | Small volume Apparatus | |
---|---|---|
Vessel | ||
Height | 168 ± 8 | 185 |
Internal diameter | 102 ± 4 | 40 |
Paddle | ||
Blade Upper chord | 74.0 ± 0.5 | 29 |
Blade Lower chord | 42.0 ± 1.0 | 18 |
Height | 19.0 ± 1.0 | 7.5 |
Distance from the bottom | 25 ± 2 | 10 |
2.3. Model compounds
Product | Strength (mg) | BCSclass | Dissolution method with one liter vessel | Releasemechanism | Tablets types | |
---|---|---|---|---|---|---|
Prednisone Batch :POE203 | 10 mg | 1 | 500 mL | Paddle 50 rpm | IR | Disintegrating |
Salicylic acid Batch :Q0D200 | 300 mg | 3 | 900 mL | Paddle 100 rpm | ER | Non-disintegrating |
ER4H / ER8H | 1 mg | 2* | 500 mL | Paddle 50 rpm | ER | Erosion-Diffusion |
IR(1) | 0.075 mg | 1 | 500 mL | Paddle 50 rpm | IR | Disintegrating |
IR(2) | 50 mg | 2* | 900 mL | Paddle 50 rpm | IR | Disintegrating |
2.4. In vitro dissolution test comparison
3. Results and Discussion
Product | Reference Method | Small vessel rotation speed | |||||
---|---|---|---|---|---|---|---|
50 rpm | 75 rpm | 100 rpm | 110 rpm | 125 pm | 150 rpm | ||
Prednisone | Paddle 50 rpm | 0.39 | 0.48 | 0.67 | 0.85* | 1.05* | - |
Salicylic acid | Paddle 100 rpm | - | - | 0.76* | - | - | 0.96* |
ER4H | Paddle 50 rpm | 0.93* | - | 0.98* | - | - | - |
ER8H | Paddle 50 rpm | 1.01* | - | 1.05* | - | - | - |
IR(1) | Paddle 50 rpm | 0.59 | 0.79 | 0.95* | - | 0.98* | - |
IR(2) | Paddle 50 rpm | 0.57 | 0.71 | 0.86 | - | 0.99* | - |
Tablet type | Product | Dissolution method | Rotation speed using one liter vessel | Rotation speed using small vessel | Rotation speed Factor (sf) |
---|---|---|---|---|---|
disintegrating | Prednisone | Paddle | 50 | 125 | 2.5 |
disintegrating | IR(1) | Paddle | 50 | 125 | 2.5 |
disintegrating | IR(2) | Paddle | 50 | 125 | 2.5 |
Non-disintegrating | Salicylic acid | Paddle | 100 | 150 | 1.5 |
Non disintegrating | ER4H | Paddle | 50 | 50-100 | 1-2 |
Non disintegrating | ER8H | Paddle | 50 | 50-100 | 1-2 |
Equation | Length on top of the paddle | Length on bottom of the paddle | ||||
---|---|---|---|---|---|---|
small | large | small | large | |||
Rotation/rpm | R | 100.00 | 50.00 | 100.00 | 50.00 | |
Frequency/Hz | F | R/60 | 1.67 | 0.83 | 1.67 | 0.83 |
Periodicity/s | T | 1/F | 0.60 | 1.20 | 0.60 | 1.20 |
Angular velocity/rad·s-1 | W | 2pi/T | 10.51 | 5.25 | 10.51 | 5.25 |
1/2 lenght/mm | R | 14.50 | 37.25 | 8.70 | 21.00 | |
Linear speed on top of the paddle/cm·s-1 | V | R*W | 152.33 | 195.66 | 91.40 | 110.31 |
Calculation of the angular velocity for the small paddle/rad·s-1 | W | 13.49 | 12.68 | |||
Periodicity/s | T | 0.47 | 0.50 | |||
Frequency/Hz | F | 2.15 | 2.02 | |||
128.86 | ≥ 129 | 121.07 | ≥ 121 |
4. Conclusion
Conflict of Interest
Acknowledgements
References and Notes
- International committee of harmonisation of technical requirements for registration of pharmaceuticals for human use. In Harmonised Tripartite Guideline. Q8: Pharmaceutical Development. Proceedings of International Conference on Harmonisation, Geneva, Switzerland, 18 November 2004.
- EP, European Pharmacopoeia. 2.9.3: Dissolution for Solid Oral Dosage Forms; The Council of Europe (European Directorate for the Quality of Medicines & Healthcare): Strasbourg, France, 2009.
- USP, The United States Pharmacopeia 2009 (USP 32); Convention, Inc.: Rockville, MD, USA, 2009; Chapter 711; p. 724.
- Gu, C.H.; Gandhi, R.B.; Tay, L.K.; Zhou, S.; Raghavan, K. Importance of using physiologically relevant volume of dissolution medium to correlate the oral exposure of formulations of BMS-480188 mesylate. Int. J. Pharm. 2004, 269, 195–202. [Google Scholar] [CrossRef]
- Avdeef, A. Solubility of Sparingly Soluble Ionizable Drugs. Adv. Drug Deliv. 2007, 59, 568–590. [Google Scholar] [CrossRef]
- Klein, S.; Shah, V. The Mini Paddle Apparatus a Useful Tool in the Early Developmental Stage? Experiences with Immediate-Release Dosage Forms. Dissolution Technol. 2006, 13, 6–11. [Google Scholar]
- Wyttenbach, N.; Alker, A.; Grassmann, O.; Scheubel, E. Tenoxicam-Methhylparaben Cocrystal Formation in Aqueous Suspension Formulation. In Proceedings of 2009 AAPS Annual Meeting and Exposition, Los Angeles, CA, USA, October 7, 2009.
- United States Pharmacopeia. Prednisone tablets RS. Available online: http://www.usp.org/pdf/EN/referenceStandards/prednisoneLot-P0E203.pdf/ (accessed on 21 October 2010).
- United States Pharmacopeia. Salicylic Acid Tablets RS. Available online: http://www.usp.org/pdf/EN/reference-Standards/salicylicAcidTabletsLotQ0D200.pdf/ (accessed on October 21, 2010).
- Amidon, G.; Lennernas, L.H.; Shah, V.P.; Crison, J.R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of In Vitro Drug Product Dissolution and In Vivo Bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef]
- FDA, Guidance for Industry. Immediate Release Solid Oral Dosage Forms. Scale-up and Postapproval Changes: Chemistry, Manufacturing, and Controls, In vitro Dissolution Testing and In vivo Bioequivalence Documentation; US Food and Drug Administration, Center for Drug Evaluation and Research: Washington, D.C., USA, 1995; Available online: http://www.fda.gov/downloads/-Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070636.pdf.
- Lentner, C. Units of Measurement, Body Fluid, Composition of Body, and Nutrition. In Geigy Scientific Tables, 8 Sub ed.; Ciba Pharmaceutical Co.: Basel, Switzerland, 1981; Volume 1. [Google Scholar]
- Noyes, A.; Whithney, W.R. The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 1897, 19, 930–934. [Google Scholar] [CrossRef]
- Brunner, E. Velocity of reaction in non-homogeneous systems. Zeit. physikal. Chem. 1904, 47, 56–102. [Google Scholar]
- Emami, J. In vitro - in vivo correlation: from theory to applications. J. Pharm. Pharm. Sci. 2006, 9, 169–189. [Google Scholar]
- Royce, A.; Li, S.; Weaver, M.; Shah, U. In vivo and in vitro evaluation of three controlled release principles of 6-N-cyclohexyl-2'-O-methyladenosine. J. Control. Release 2004, 97, 79–90. [Google Scholar] [CrossRef]
- Morihara, M.; Aoyagi, N.; Kaniwa, N.; Katori, N.; Kojim, S. Hydrodynamic flows around tablets in different pharmacopeias dissolution tests. Drug Dev. Ind. Pharm. 2002, 28, 655–662. [Google Scholar] [CrossRef]
- D’Arcy, D.M.; Corrigan, O.I.; Healy, A.M. Hydrodynamic simulation (CFD) of asymmetrically positioned tablets in the paddle dissolution apparatus: impact on dissolution rate and variability. J. Pharm. Pharmacol. 2005, 57, 1243–1250. [Google Scholar] [CrossRef]
- D’Arcy, D.M.; Corrigan, O.I.; Healy, A.M. Evaluation of hydrodynamics in the basket dissolution apparatus using computational fluid dynamics-Dissolution rate implications. Eur. J. Pharm. Sci. 2006, 27, 259–267. [Google Scholar] [CrossRef]
- Royce, A. In vivo and in vitro evaluation of three controlled release principles of 6-N-cyclohexyl-2'-O-methyladenosine. J. Control. Release 2004, 97, 79–90. [Google Scholar] [CrossRef]
- Dickinson, P.A.; Lee, W.W.; Stott, P.W.; Townsend, A.I.; Smart, J.P.; Ghahramani, P.; Hammett, T.; Billett, L.; Behn, S.; Gibb, R.C.; Abrahamsson, B. Clinical relevance of dissolution testing in quality by design. AAPS J. 2008, 10(2), 380–390. [Google Scholar] [CrossRef]
- Takano, R.; Sugano, K.; Higashida, A.; Hayashi, Y.; Machida, M.; Aso, Y.; Yamashita, S. Oral absorption of poorly water-soluble drugs: computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm. Res. 2006, 23, 1144–1156. [Google Scholar] [CrossRef]
- Crist, G.B. Trends in small-Volume Dissolution Apparatus for Low Dose Compounds. Dissolution Technol. 2009, 16, 1. [Google Scholar]
- Deng, G.; Ashley, A.J.; Brown, W.E.; Eaton, J.W.; Hauck, W.W.; Kikwai, L.C.; Liddell, M.R.; Manning, R.G.; Munoz, J.M.; Nithyanandan, P.; Glasgow, M.J.; Stippler, E.; Wahab, S.Z.; Williams, R.L. The USP Performance Verification Test, Part I: USP Lot P Prednisone Tablets: quality attributes and experimental variables contributing to dissolution variance. Pharm Res. 2008, 25, 1100–1109. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Scheubel, E.; Lindenberg, M.; Beyssac, E.; Cardot, J.-M. Small Volume Dissolution Testing as a Powerful Method during Pharmaceutical Development. Pharmaceutics 2010, 2, 351-363. https://doi.org/10.3390/pharmaceutics2040351
Scheubel E, Lindenberg M, Beyssac E, Cardot J-M. Small Volume Dissolution Testing as a Powerful Method during Pharmaceutical Development. Pharmaceutics. 2010; 2(4):351-363. https://doi.org/10.3390/pharmaceutics2040351
Chicago/Turabian StyleScheubel, Emmanuel, Marc Lindenberg, Eric Beyssac, and Jean-Michel Cardot. 2010. "Small Volume Dissolution Testing as a Powerful Method during Pharmaceutical Development" Pharmaceutics 2, no. 4: 351-363. https://doi.org/10.3390/pharmaceutics2040351
APA StyleScheubel, E., Lindenberg, M., Beyssac, E., & Cardot, J. -M. (2010). Small Volume Dissolution Testing as a Powerful Method during Pharmaceutical Development. Pharmaceutics, 2(4), 351-363. https://doi.org/10.3390/pharmaceutics2040351