Clinical and Radiological Predictors for Early Hematoma Expansion After Spontaneous Intracerebral Hemorrhage: A Retrospective Study
Abstract
1. Introduction
2. Methods
2.1. Patient Selection
2.2. Clinical Variables
2.3. Imaging Analysis
2.4. Definition of Hematoma Expansion
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Zhang, Q.; Yang, M. A reliable grading system for prediction of hematoma expansion in intracerebral hemorrhage in the basal ganglia. Biosci. Trends 2018, 12, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Pantoni, L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010, 9, 689–701. [Google Scholar] [CrossRef]
- Fewel, M.E.; Thompson, B.G.; Hoff, J.T. Spontaneous intracerebral hemorrhage: A review. Neurosurg. Focus 2003, 15, 1–16. [Google Scholar] [CrossRef]
- Dennis, M.S.; Burn, J.; Sandercock, P.; Bamford, J.; Wade, D.; Warlow, C. Long-term survival after first-ever stroke: The Oxfordshire Community Stroke Project. Stroke 1993, 24, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Van Asch, C.J.; Luitse, M.J.; Rinkel, G.J.; van der Tweel, I.; Algra, A.; Klijn, C.J. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol. 2010, 9, 167–176. [Google Scholar] [CrossRef]
- Brouwers, H.B.; Chang, Y.; Falcone, G.J.; Cai, X.; Ayres, A.M.; Battey, T.W.; Vashkevich, A.; McNamara, K.A.; Valant, V.; Schwab, K. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014, 71, 158–164. [Google Scholar] [CrossRef]
- Steiner, T.; BÖsel, J. Options to restrict hematoma expansion after spontaneous intracerebral hemorrhage. Stroke 2010, 41, 402–409. [Google Scholar] [CrossRef]
- Du, F.-Z.; Jiang, R.; Gu, M.; He, C.; Guan, J. The accuracy of spot sign in predicting hematoma expansion after intracerebral hemorrhage: A systematic review and meta-analysis. PLoS ONE 2014, 9, e115777. [Google Scholar] [CrossRef] [PubMed]
- Barras, C.D.; Tress, B.M.; Christensen, S.; MacGregor, L.; Collins, M.; Desmond, P.M.; Skolnick, B.E.; Mayer, S.A.; Broderick, J.P.; Diringer, M.N. Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke 2009, 40, 1325–1331. [Google Scholar] [CrossRef]
- Morotti, A.; Brouwers, H.B.; Romero, J.M.; Jessel, M.J.; Vashkevich, A.; Schwab, K.; Afzal, M.R.; Cassarly, C.; Greenberg, S.M.; Martin, R.H. Intensive blood pressure reduction and spot sign in intracerebral hemorrhage: A secondary analysis of a randomized clinical trial. JAMA Neurol. 2017, 74, 950–960. [Google Scholar] [CrossRef]
- Boulouis, G.; Morotti, A.; Brouwers, H.B.; Charidimou, A.; Jessel, M.J.; Auriel, E.; Pontes-Neto, O.; Ayres, A.; Vashkevich, A.; Schwab, K.M. Association between hypodensities detected by computed tomography and hematoma expansion in patients with intracerebral hemorrhage. JAMA Neurol. 2016, 73, 961–968. [Google Scholar] [CrossRef]
- Morotti, A.; Boulouis, G.; Romero, J.M.; Brouwers, H.B.; Jessel, M.J.; Vashkevich, A.; Schwab, K.; Afzal, M.R.; Cassarly, C.; Greenberg, S.M. Blood pressure reduction and noncontrast CT markers of intracerebral hemorrhage expansion. Neurology 2017, 89, 548–554. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, G.; Huang, Y.-J.; Dong, M.-X.; Lv, F.-J.; Wei, X.; Chen, J.-J.; Zhang, L.-J.; Qin, X.-Y.; Xie, P. Blend sign on computed tomography: Novel and reliable predictor for early hematoma growth in patients with intracerebral hemorrhage. Stroke 2015, 46, 2119–2123. [Google Scholar] [CrossRef]
- He, G.-N.; Guo, H.-Z.; Han, X.; Wang, E.-F.; Zhang, Y.-Q. Comparison of CT black hole sign and other CT features in predicting hematoma expansion in patients with ICH. J. Neurol. 2018, 265, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zheng, J.; He, M.; Guo, R.; Ma, L.; You, C.; Li, H. Accuracy of swirl sign for predicting hematoma enlargement in intracerebral hemorrhage: A meta-analysis. J. Neurol. Sci. 2019, 399, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-W.; Yang, M.-F. Combining investigation of imaging markers (island sign and blend sign) and clinical factors in predicting hematoma expansion of intracerebral hemorrhage in the basal ganglia. World Neurosurg. 2018, 120, e1000–e1010. [Google Scholar] [CrossRef] [PubMed]
- VanDerWerf, J.; Kurowski, D.; Siegler, J.; Ganguly, T.; Cucchiara, B. Combination of intra-hematomal hypodensity on CT and BRAIN scoring improves prediction of hemorrhage expansion in ICH. Neurocritical Care 2018, 29, 40–46. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, J.; Xue, Q.; Du, B.; Li, Y.; Chen, T.; Jiang, Y.; Hou, L.; Dong, Y.; Wang, J. Heterogeneity signs on noncontrast computed tomography predict hematoma expansion after intracerebral hemorrhage: A meta-analysis. BioMed Res. Int. 2018, 2018, 6038193. [Google Scholar] [CrossRef]
- Morotti, A.; Phuah, C.-L.; Anderson, C.D.; Jessel, M.J.; Schwab, K.; Ayres, A.M.; Pezzini, A.; Padovani, A.; Gurol, M.E.; Viswanathan, A. Leukocyte count and intracerebral hemorrhage expansion. Stroke 2016, 47, 1473–1478. [Google Scholar] [CrossRef]
- Murthy, S.; Roh, D.J.; Chatterjee, A.; McBee, N.; Parikh, N.S.; Merkler, A.E.; Navi, B.B.; Falcone, G.J.; Sheth, K.N.; Awad, I. Prior antiplatelet therapy and haematoma expansion after primary intracerebral haemorrhage: An individual patient-level analysis of CLEAR III, MISTIE III and VISTA-ICH. J. Neurol. Neurosurg. Psychiatry 2021, 92, 364–369. [Google Scholar] [CrossRef]
- Kothari, R.U.; Brott, T.; Broderick, J.P.; Barsan, W.G.; Sauerbeck, L.R.; Zuccarello, M.; Khoury, J. The ABCs of measuring intracerebral hemorrhage volumes. Stroke 1996, 27, 1304–1305. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Q.-J.; Yang, W.-S.; Wang, X.-C.; Zhao, L.-B.; Xiong, X.; Li, R.; Cao, D.; Zhu, D.; Wei, X. Island sign: An imaging predictor for early hematoma expansion and poor outcome in patients with intracerebral hemorrhage. Stroke 2017, 48, 3019–3025. [Google Scholar] [CrossRef] [PubMed]
- Al-Nakshabandi, N.A. The swirl sign. Radiology 2001, 218, 433. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, G.; Xiong, X.; Wang, X.-C.; Yang, W.-S.; Li, K.-W.; Wei, X.; Xie, P. Black hole sign: Novel imaging marker that predicts hematoma growth in patients with intracerebral hemorrhage. Stroke 2016, 47, 1777–1781. [Google Scholar] [CrossRef]
- Macellari, F.; Paciaroni, M.; Agnelli, G.; Caso, V. Neuroimaging in intracerebral hemorrhage. Stroke 2014, 45, 903–908. [Google Scholar] [CrossRef]
- Schlunk, F.; Greenberg, S.M. The pathophysiology of intracerebral hemorrhage formation and expansion. Transl. Stroke Res. 2015, 6, 257–263. [Google Scholar] [CrossRef]
- Morotti, A.; Boulouis, G.; Dowlatshahi, D.; Li, Q.; Shamy, M.; Salman, R.A.-S.; Rosand, J.; Cordonnier, C.; Goldstein, J.N.; Charidimou, A. Intracerebral haemorrhage expansion: Definitions, predictors, and prevention. Lancet Neurol. 2023, 22, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Marini, S.; Morotti, A.; Ayres, A.M.; Crawford, K.; Kourkoulis, C.E.; Lena, U.K.; Gurol, E.M.; Viswanathan, A.; Goldstein, J.N.; Greenberg, S.M. Sex differences in intracerebral hemorrhage expansion and mortality. J. Neurol. Sci. 2017, 379, 112–116. [Google Scholar] [CrossRef]
- Chen, C.-J.; Ding, D.; Ironside, N.; Buell, T.J.; Elder, L.J.; Warren, A.; Adams, A.P.; Ratcliffe, S.J.; James, R.F.; Naval, N.S. Statins for neuroprotection in spontaneous intracerebral hemorrhage. Neurology 2019, 93, 1056–1066. [Google Scholar] [CrossRef]
- Ironside, N.; El Naamani, K.; Rizvi, T.; E-Rabbi, M.S.; Kundu, S.; Becceril-Gaitan, A.; Pas, K.; Snyder, H.; Chen, C.-J.; Langefeld, C.D. Predictive modeling of hematoma expansion from non-contrast computed tomography in spontaneous intracerebral hemorrhage patients. medRxiv 2024. medRxiv:2024.2005.2014.24307384. [Google Scholar] [CrossRef]
- Li, Z.; You, M.; Long, C.; Bi, R.; Xu, H.; He, Q.; Hu, B. Hematoma expansion in intracerebral hemorrhage: An update on prediction and treatment. Front. Neurol. 2020, 11, 702. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Toyoda, K. Clinical strategies against early hematoma expansion following intracerebral hemorrhage. Front. Neurosci. 2021, 15, 677744. [Google Scholar] [CrossRef]
- Leasure, A.C.; Qureshi, A.I.; Murthy, S.B.; Kamel, H.; Goldstein, J.N.; Woo, D.; Ziai, W.C.; Hanley, D.F.; Salman, R.A.-S.; Matouk, C.C. Association of intensive blood pressure reduction with risk of hematoma expansion in patients with deep intracerebral hemorrhage. JAMA Neurol. 2019, 76, 949–955. [Google Scholar] [CrossRef]
- Morotti, A.; Li, Q.; Nawabi, J.; Busto, G.; Mazzacane, F.; Cavallini, A.; Shoamanesh, A.; Morassi, M.; Schlunk, F.; Piccolo, L. Predictors of severe intracerebral hemorrhage expansion. Eur. Stroke J. 2024, 9, 623–629. [Google Scholar] [CrossRef]
- Yogendrakumar, V.; Ramsay, T.; Fergusson, D.A.; Demchuk, A.M.; Aviv, R.I.; Rodriguez-Luna, D.; Molina, C.A.; Silva, Y.; Dzialowski, I.; Kobayashi, A. Redefining hematoma expansion with the inclusion of intraventricular hemorrhage growth. Stroke 2020, 51, 1120–1127. [Google Scholar] [CrossRef]
- Roh, D.; Boehme, A.; Young, C.; Roth, W.; Gutierrez, J.; Flaherty, M.; Rosand, J.; Testai, F.; Woo, D.; Elkind, M.S. Hematoma expansion is more frequent in deep than lobar intracerebral hemorrhage. Neurology 2020, 95, e3386–e3393. [Google Scholar] [CrossRef]
- Miyahara, M.; Noda, R.; Yamaguchi, S.; Tamai, Y.; Inoue, M.; Okamoto, K.; Hara, T. New prediction score for hematoma expansion and neurological deterioration after spontaneous intracerebral hemorrhage: A hospital-based retrospective cohort study. J. Stroke Cerebrovasc. Dis. 2018, 27, 2543–2550. [Google Scholar] [CrossRef]
- Sakuta, K.; Sato, T.; Komatsu, T.; Sakai, K.; Terasawa, Y.; Mitsumura, H.; Iguchi, Y. The NAG scale: Noble predictive scale for hematoma expansion in intracerebral hemorrhage. J. Stroke Cerebrovasc. Dis. 2018, 27, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chang, J.; Liu, J.; Ye, Z.; Tian, F.; Ma, W.; Wei, J.; Feng, M.; Wang, R. Validation of perihematomal edema expansion as a new imaging biomarker to predict clinical outcome in patients with intracerebral hemorrhage. J. Stroke Cerebrovasc. Dis. 2022, 31, 106692. [Google Scholar] [CrossRef]
- Morotti, A.; Dowlatshahi, D.; Boulouis, G.; Al-Ajlan, F.; Demchuk, A.M.; Aviv, R.I.; Yu, L.; Schwab, K.; Romero, J.M.; Gurol, M.E.; et al. Predicting intracerebral hemorrhage expansion with noncontrast computed tomography: The BAT score. Stroke 2018, 49, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, H.; Chen, Q.; Zhang, T.; Sheng, W.; Huang, Q.; Song, J.; Huang, D.; Lan, L.; Li, Y.; et al. Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine. EBioMedicine 2019, 43, 454–459. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Numbers (% of Cases or Range) |
---|---|
Total | 581 |
Age (mean ± SD, years) | 61.6 ± 13.8 (27–92) |
Sex | |
Male | 347 (59.7%) |
Female | 234 (40.3%) |
Symptom to CT (mean ± SD, hours) | 2.8 ± 4.1 (0.5–24) |
Hematoma volume (mean ± SD, cm3) | 29.8 ± 161.4 (0.1–3857.8) |
Hematoma location | |
Basal ganglia | 287 (49.4%) |
Thalamus | 130 (22.4%) |
Brain stem | 43 (7.4%) |
Cerebellum | 40 (6.9%) |
Lobar | 135 (23.2%) |
Etc. | 20 (3.4%) |
Multiple | 18 (3.1%) |
HU (mean ± SD) | 61.5 ± 6.2 (34.8–80.4) |
Radiological markers | |
Spot sign in the CT angiography † | 70 (15.4%) |
Island sign | 152 (26.2%) |
Margin irregularity | |
Category 1 | 161 (27.7%) |
Category 2 | 167 (28.7%) |
Category 3 | 127 (21.9%) |
Category 4 | 52 (9.0%) |
Category 5 | 74 (12.7%) |
Hypodensities | |
Type 1 | 182 (31.3%) |
Type 2 | 180 (31.0%) |
Type 3 | 10 (1.7%) |
Type 4 | 13 (2.2%) |
No hypodensity | 196 (33.7%) |
Density heterogeneity | |
Category 1 | 186 (32.0%) |
Category 2 | 176 (30.3%) |
Category 3 | 113 (19.4%) |
Category 4 | 54 (9.3%) |
Category 5 | 46 (7.9%) |
Swirl sign | 185 (31.8%) |
Black hole | 78 (13.4%) |
Blend sign | 73 (12.6%) |
Fluid level | 13 (2.2%) |
Preoperative CT findings | |
IVH | 221 (38.0%) |
Midline shifting | 97 (16.7%) |
White matter change | 153 (26.3%) |
SAH | 67 (11.5%) |
GCS at admission (mean ± SD) | 11.8 ± 3.6 (3–15) |
Comorbid diseases or lifestyle factors | |
Systemic hypertension | 294 (50.6%) |
Diabetes | 99 (17.0%) |
Liver disease | 22 (3.8%) |
Heart disease | 27 (4.6%) |
Chronic renal failure | 10 (1.7%) |
Smoking | 146 (25.1%) |
Alcohol consumption | 232 (39.9%) |
Familial history of ICH | 123 (21.2%) |
CVA history | 69 (11.9%) |
Cancer history | 23 (4.0%) |
Laboratory findings | |
Leukocytosis (WBC ≥ 10,000) | 183 (31.5%) |
Thrombocytopenia (Platelet count < 100 × 109/L) | 30 (5.2%) |
aPTT ≥ 40 | 73 (12.6%) |
INR ≥ 1.5 | 31 (5.3%) |
SBP ≥ 180 | 92 (15.8%) |
DBP ≥ 100 | 120 (20.7%) |
Medication | |
Antiplatelet agents | 38 (6.5%) |
Anticoagulant agents | 27 (4.6%) |
Lipid lowering agents | 64 (11.0%) |
BMI (mean ± SD) ‡ | 23.8 ± 3.7 (13.3–41.2) |
Early hematoma expansion | 78 (13.4%) (13.3–41.2) |
Characteristics | Total (n = 581) | Hematoma Expansion (n = 78) | No Expansion (n = 503) | p Value |
---|---|---|---|---|
Age ≥ 65 | 237 | 34 (14.3%) | 203 (85.7%) | 0.589 |
Sex | 0.037 * | |||
Male | 347 | 55 (15.9%) | 292 (84.1%) | |
Female | 234 | 23 (9.8%) | 211 (90.2%) | |
Symptom to CT time | 0.039 * | |||
Symptom to CT < 2.5 h | 437 | 66 (15.1%) | 371 (84.9%) | |
Symptom to CT ≥ 2.5 h | 144 | 12 (8.3%) | 132 (91.7%) | |
Hematoma ≥ 30 cm3 | 488 | 73 (15.0%) | 415 (85.0%) | 0.013 * |
Hematoma location | 0.005 * | |||
Basal ganglia | 287 | 50 (17.4%) | 237 (82.6%) | |
Non-basal ganglia | 294 | 28 (9.5%) | 266 (90.5%) | |
Mean HU < 60 | 219 | 47 (21.5%) | 172 (78.5%) | <0.001 * |
Radiological markers | ||||
Spot sign in CT angiography † | 70 | 28 (40.0%) | 42 (60.0%) | <0.001 * |
Island sign | 152 | 23 (15.1%) | 129 (84.9%) | 0.473 |
Margin irregularity (Regular margin; categories 1, 2) | 328 | 37 (11.3%) | 291 (88.7%) | 0.084 |
Hypodensity | 385 | 66 (17.1%) | 319 (82.9%) | <0.001 * |
Density heterogeneity (Homogenous density; categories 1, 2) | 362 | 35 (9.7%) | 327 (90.3%) | <0.001 * |
Swirl sign | 185 | 35 (18.9%) | 150 (81.1%) | 0.008 * |
Black hole sign | 78 | 18 (23.1%) | 60 (76.9%) | 0.007 * |
Blend sign | 73 | 17 (23.3%) | 56 (76.7%) | 0.008 * |
Fluid level | 13 | 4 (30.8%) | 9 (69.2%) | 0.064 |
Preoperative CT findings | ||||
IVH | 221 | 35 (15.8%) | 186 (84.2%) | 0.182 |
Midline shifting | 97 | 13 (13.4%) | 84 (86.6%) | 0.994 |
White matter change | 153 | 17 (11.1%) | 136 (88.9%) | 0.328 |
SAH | 67 | 9 (13.4%) | 58 (86.6%) | 0.998 |
GCS at admission < 10 | 165 | 30 (18.2%) | 135 (81.8%) | 0.036 * |
Comorbid diseases or lifestyle factors | ||||
Systemic hypertension | 294 | 43 (14.6%) | 251 (85.4%) | 0.390 |
Diabetes | 99 | 11 (11.1%) | 88 (88.9%) | 0.458 |
Liver disease | 22 | 4 (18.2%) | 18 (81.8%) | 0.505 |
Heart disease | 27 | 4 (14.8%) | 23 (85.2%) | 0.828 |
Chronic renal failure | 10 | 1 (10.0%) | 9 (90.0%) | 0.749 |
Smoking | 146 | 24 (16.4%) | 122 (83.6%) | 0.217 |
Alcohol consumption | 232 | 36 (15.5%) | 196 (84.5%) | 0.228 |
Familial history of ICH | 123 | 20 (16.3%) | 103 (83.7%) | 0.299 |
CVA history | 61 | 7 (11.5%) | 54 (88.5%) | 0.637 |
Cancer history | 23 | 2 (8.7%) | 21 (91.3%) | 0.497 |
Laboratory findings | ||||
Leukocytosis (WBC ≥ 10,000) | 183 | 21 (11.5%) | 162 (88.5%) | 0.350 |
Thrombocytopenia (Platelet count < 100 × 109/L) | 30 | 5 (16.7%) | 25 (83.3%) | 0.593 |
aPTT ≥ 40 | 73 | 19 (26.0%) | 54 (74.0%) | <0.001 * |
INR ≥ 1.5 | 30 | 7 (23.3%) | 23 (76.7%) | 0.103 |
SBP ≥ 180 | 91 | 12 (13.2%) | 79 (86.8%) | 0.942 |
DBP ≥ 100 | 123 | 15 (12.2%) | 108 (87.8%) | 0.652 |
Medication | ||||
Antiplatelet agents | 38 | 2 (5.3%) | 36 (94.7%) | 0.127 |
Anticoagulant agents | 27 | 5 (18.5%) | 22 (81.5%) | 0.411 |
Lipid lowering agents | 64 | 10 (15.6%) | 54 (84.4%) | 0.584 |
BMI ≥ 30 ‡ | 32 | 6 (18.8%) | 26 (81.3%) | 0.366 |
Factors | Adjusted Odds Ratio | 95% Confidence Interval | p Value |
---|---|---|---|
Spot sign | 9.00 | 4.41–18.35 | <0.001 |
Blend sign | 3.05 | 1.35–6.91 | 0.007 |
Male | 2.90 | 1.42–5.94 | 0.004 |
Mean HU < 60 | 2.43 | 1.27–4.66 | 0.007 |
Lipid lowering agents | 2.99 | 1.15–7.78 | 0.025 |
Antiplatelet agent | 0.12 | 0.01–0.98 | 0.048 |
Year/Authors | Country | No. of Patients | No. of Hematoma Expansion (% of Total Patients) | Follow-Up CT Time from Onset (Hours) | CT Predictor of Hematoma Expansion | Clinical Predictor of Hematoma Expansion |
---|---|---|---|---|---|---|
Boulouis et al./2016 [11] | USA | 1029 | 224 | Within 48 h from symptom onset | NCCT hypodensity, CTA spot sign, irregular shape, blend sign | Shorter time to CT (<6 h), warfarin use |
Morotti et al./2016 [19] | USA | 1302 | 207 | Not reported | Leukocyte count | |
Li et al./2017 [22] | China | 252 | 85 | Baseline ≤ 6 h | Island sign | |
Morotti et al./2017 [12] | USA et al. | 989 | 186 (21.4%) | Baseline CT ≤ 4.5 h, follow-up CT 24 h | Hypodensities, blend sign, irregular hematoma shape, heterogeneous density | |
Huang et al./2018 [16] | China | 266 | 99 (37.22%) | Within 24 h | Blend sign, island sign, swirl sign, IVH | Time to baseline CT scan, baseline hematoma volume, anticoagulants use or INR > 1.5 |
Miyahara et al./2018 [37] | Japan | 622 | 10.8% | Not reported | HEAVN score: Heterogeneity, Niveau (fluid–blood level), Edema, Volume > 30 mL, Anticoagulant | |
Sakuta et al./2018 [38] | China | 382 | 6 h: 57/380 24 h: 44/381 | 6 h, 24 h, 7 days | NAG score: Niveau (fluid–blood level), Anticoagulant, Globular density | |
Morotti et al./2018 [40] | Italy et al. | 1539 | Not reported | Within 24–48 h | BAT score = Blend sign (1) + Any hypodensity (2) + Time < 2.5 h | |
Liu et al./2019 [41] | China | 1157 | 246 | ≤72 h | SVM mode: male, time to initial CT scan, GCS, fibrinogen, black hole sign, blend sign | |
Roh et al./2020 [36] | USA | 1457 | Not reported | Within 2 days | Deep hematoma location | |
Yogendrakumar et al./2020 [35] | Canada et al. | 256 | 80 | 24 h | IVH expansion | |
Murthy et al./2021 [20] | USA et al. | 1420 | 279 (19.6%) | 72 h | Prior antiplatelet therapy (not associated with hematoma expansion) | |
Chen et al./2022 [39] | China | 223 | 27 (12.1%) | Within 48–72 h | Perihematomal edema expansion | Age, female sex, lower GCS, higher SBP, larger hematoma volume |
Morotti et al./2024 [34] | Italy et al. | 1472 | 223 (15.2%) | Within 24–72 h | NCCT hypodensities, blend sign, heterogeneous density, irregular shape, CTA spot sign | Age, anticoagulants use, lower GCS, shorter time from symptom to CT, larger hematoma volume, ultra-early hematoma growth |
Ironside N et al./2024 [30] | USA et al. | 340 | 112 (32.9%) | 24 ± 6 h | Larger hematoma size, density heterogeneity, shape irregularity, peripheral density distribution | |
Present study | South Korea | 581 | 78 (13.4%) | Within 24 h | Blend sign, mean HU < 60 | Male sex, lipid-lowering drugs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.; Wee, J.H.; Choi, Y.H.; Rim, H.; Chang, I.B.; Song, J.H.; Hong, Y.G.; Kim, J.H. Clinical and Radiological Predictors for Early Hematoma Expansion After Spontaneous Intracerebral Hemorrhage: A Retrospective Study. Neurol. Int. 2025, 17, 170. https://doi.org/10.3390/neurolint17100170
Kim E, Wee JH, Choi YH, Rim H, Chang IB, Song JH, Hong YG, Kim JH. Clinical and Radiological Predictors for Early Hematoma Expansion After Spontaneous Intracerebral Hemorrhage: A Retrospective Study. Neurology International. 2025; 17(10):170. https://doi.org/10.3390/neurolint17100170
Chicago/Turabian StyleKim, EJun, Jee Hye Wee, Yi Hwa Choi, Hyuntaek Rim, In Bok Chang, Joon Ho Song, Yong Gil Hong, and Ji Hee Kim. 2025. "Clinical and Radiological Predictors for Early Hematoma Expansion After Spontaneous Intracerebral Hemorrhage: A Retrospective Study" Neurology International 17, no. 10: 170. https://doi.org/10.3390/neurolint17100170
APA StyleKim, E., Wee, J. H., Choi, Y. H., Rim, H., Chang, I. B., Song, J. H., Hong, Y. G., & Kim, J. H. (2025). Clinical and Radiological Predictors for Early Hematoma Expansion After Spontaneous Intracerebral Hemorrhage: A Retrospective Study. Neurology International, 17(10), 170. https://doi.org/10.3390/neurolint17100170