Self-Dictionary Regression for Hyperspectral Image Super-Resolution
Abstract
:1. Introduction
2. Related Work
3. Problem Formulation
4. Proposed Method
4.1. Self-Dictionary Sparse Regression
4.2. Sparse Codes Estimation via Constrained Least Squares and Consistent Constraints
Algorithm 1 The proposed method |
Input: - the observed hyperspectral image; - the observed multispectral image; Parameter , and .
Output: - the high-resolution hyperspectral image. |
5. Experiments
5.1. Datasets
5.2. Competitors and Evaluation Indexes
- Greedy simultaneous orthogonal matching pursuit (GSOMP) (GSOMP) (http://www.csse.uwa.edu.au/~ajmal/code/HSISuperRes.zip) [37] is a constrained sparse representation by imposing non-negativity and the spatial structure.
- Coupled nonnegative matrix factorization (CNMF) [31] achieves the high-resolution HSI by alternately unmixing the observed HSI and MSI. The endmember dictionary and abundance code are estimated from HSI and MSI, respectively.
- Bayesian sparse representation (BSR) (http://staffhome.ecm.uwa.edu.au/~00053650/code.html) [50] performs comparably to GSOMP because BSR exploits the non-parametric Bayesian framework without requiring explicit parameter tuning.
- Hyperspectral SuperResolution (HySure) (https://github.com/alfaiate/HySure) [26] formulates HSI super-resolution as a convex subspace-based optimization problem. A total variation abundance regularization is considered to promote piecewise-smooth. In addition, the spectral responses of the sensors are estimated by assuming relative smooth.
- Convolutional neural network collaborative nonnegative matrix factorization (CNNCNMF) [28] employs the convolutional neural network to learn the spatial mapping between the observed HSI and MSI. In addition, the collaborative nonnegative matrix factorization is introduced to explore the spectral characteristic between the observed HSI and MSI.
- Proximal alternating linearized minimisation (PALM) (https://github.com/lanha/SupResPALM) [49] obtains the high-resolution HSI by jointly unmixing the observed HSI and MSI.
5.3. Parameter Determination
5.4. Experimental Results
5.4.1. Comparison to the State-of-the-Art Methods
5.4.2. Effectiveness of Concatenation in the Proposed SDSR Method
- The concatenation proposed method simultaneously estimate the endmember dictionary and from the concatenation of observed HSI and MSI.
- The coupling proposed method refers to first estimating the endmember dictionary from the observed HSI, and then utilizing the estimated and spectral response to calculate the .
- The uncoupling proposed method refers to estimating the endmember dictionary and from the observed HSI and MSI, respectively.
5.4.3. Computational Complexity
5.4.4. Hyperspectral Classification
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lu, X.; Wang, B.; Zheng, X.; Li, X. Exploring Models and Data for Remote Sensing Image Caption Generation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2183–2195. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zheng, X.; Lu, X. Spectral–Spatial Kernel Regularized for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3815–3832. [Google Scholar] [CrossRef]
- Tan, K.; Li, E.; Du, Q.; Du, P. Hyperspectral Image Classification Using Band Selection and Morphological Profiles. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 40–48. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, X.; Yuan, Y. Remote Sensing Scene Classification by Unsupervised Representation Learning. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5148–5157. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, X.; Lu, X. Discovering Diverse Subset for Unsupervised Hyperspectral Band Selection. IEEE Trans. Image Process. 2017, 26, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.M.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Lu, X.; Yuan, Y.; Zheng, X. Joint dictionary learning for multispectral change detection. IEEE Trans. Cybern. 2017, 47, 884–897. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yuan, Y.; Lu, X. A target detection method for hyperspectral image based on mixture noise model. Neurocomputing 2016, 216, 331–341. [Google Scholar] [CrossRef]
- Lu, X.; Wu, H.; Yuan, Y. Double constrained NMF for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2746–2758. [Google Scholar] [CrossRef]
- Zheng, X.; Yuan, Y.; Lu, X. Single Image Super-Resolution Restoration Algorithm from External Example to Internal Self-Similarity. Acta Opt. Sin. 2017, 37, 0318006. [Google Scholar] [CrossRef]
- Zheng, X.; Yuan, Y.; Lu, X. Dimensionality Reduction by Spatial-Spectral Preservation in Selected Bands. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5185–5197. [Google Scholar] [CrossRef]
- Mianji, F.A.; Zhang, Y.; Gu, Y.; Babakhani, A. Spatial-spectral data fusion for resolution enhancement of hyperspectral imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 3, pp. III–1011. [Google Scholar]
- Tang, Y.; Li, X. Set-based similarity learning in subspace for agricultural remote sensing classification. Neurocomputing 2016, 173, 332–338. [Google Scholar] [CrossRef]
- Akgun, T.; Altunbasak, Y.; Mersereau, R.M. Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 2005, 14, 1860–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Hu, J.; Zhao, X.; Xie, W.; Li, J. Hyperspectral image super-resolution using deep convolutional neural network. Neurocomputing 2017, 266, 29–41. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, H.; Liu, Z.; Song, B.; Wang, Q. Example-based super-resolution via social images. Neurocomputing 2016, 172, 38–47. [Google Scholar] [CrossRef]
- Tang, Y.; Shao, L. Pairwise operator learning for patch-based single-image super-resolution. IEEE Trans. Image Process. 2017, 26, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, J.; Zhang, Q.; Song, L.; Cheng, Y.; Pan, Q. Hyperspectral imagery super-resolution by sparse representation and spectral regularization. Eurasip J. Adv. Signal Process. 2011, 2011, 87. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Yang, J.; Chan, J.C.W. Hyperspectral imagery super-resolution by spatial–spectral joint nonlocal similarity. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2671–2679. [Google Scholar] [CrossRef]
- Patel, R.C.; Joshi, M.V. Super-resolution of hyperspectral images: Use of optimum wavelet filter coefficients and sparsity regularization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1728–1736. [Google Scholar] [CrossRef]
- Mei, S.; Yuan, X.; Ji, J.; Zhang, Y.; Wan, S.; Du, Q. Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network. Remote Sens. 2017, 9, 1139. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Xie, W. Hyperspectral Image Super-Resolution by Spectral Difference Learning and Spatial Error Correction. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1825–1829. [Google Scholar] [CrossRef]
- Loncan, L.; de Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simoes, M.; et al. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [Google Scholar] [CrossRef]
- Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and Multispectral Data Fusion: A comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [Google Scholar] [CrossRef]
- Li, J.; Yuan, Q.; Shen, H.; Meng, X.; Zhang, L. Hyperspectral image super-resolution by spectral mixture analysis and spatial–spectral group sparsity. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1250–1254. [Google Scholar] [CrossRef]
- Simões, M.; Bioucas-Dias, J.; Almeida, L.B.; Chanussot, J. A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3373–3388. [Google Scholar] [CrossRef]
- Veganzones, M.A.; Simoes, M.; Licciardi, G.; Yokoya, N.; Bioucas-Dias, J.M.; Chanussot, J. Hyperspectral super-resolution of locally low rank images from complementary multisource data. IEEE Trans. Image Process. 2016, 25, 274–288. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zheng, X.; Lu, X. Hyperspectral Image Superresolution by Transfer Learning. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 1963–1974. [Google Scholar] [CrossRef]
- Zou, C.; Xia, Y. Hyperspectral Image Superresolution Based on Double Regularization Unmixing. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1022–1026. [Google Scholar] [CrossRef]
- Dong, W.; Fu, F.; Shi, G.; Cao, X.; Wu, J.; Li, G.; Li, X. Hyperspectral Image Super-Resolution via Non-Negative Structured Sparse Representation. IEEE Trans. Image Process. 2016, 25, 2337–2352. [Google Scholar] [CrossRef] [PubMed]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 2012, 50, 528–537. [Google Scholar] [CrossRef]
- Wei, Q.; Bioucas-Dias, J.; Dobigeon, N.; Tourneret, J.; Chen, M.; Godsill, S. Multiband Image Fusion Based on Spectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7236–7249. [Google Scholar] [CrossRef] [Green Version]
- Ghasrodashti, E.; Karami, A.; Heylen, R.; Scheunders, P. Spatial Resolution Enhancement of Hyperspectral Images Using Spectral Unmixing and Bayesian Sparse Representation. Remote Sens. 2017, 9, 541. [Google Scholar] [CrossRef]
- Guerra, R.; Lopez, S.; Sarmiento, R. A Computationally Efficient Algorithm for Fusing Multispectral and Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5712–5728. [Google Scholar] [CrossRef]
- Thomas, C.; Ranchin, T.; Wald, L.; Chanussot, J. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1301–1312. [Google Scholar] [CrossRef] [Green Version]
- Vivone, G.; Restaino, R.; Licciardi, G.; Mura, M.D.; Chanussot, J. MultiResolution Analysis and Component Substitution techniques for hyperspectral Pansharpening. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2649–2652. [Google Scholar]
- Akhtar, N.; Shafait, F.; Mian, A. Sparse spatio-spectral representation for hyperspectral image super-resolution. In Proceedings of the 13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, 6–12 September 2014; pp. 63–78. [Google Scholar]
- Lanaras, C.; Baltsavias, E.; Schindler, K. Hyperspectral Super-Resolution with Spectral Unmixing Constraints. Remote Sens. 2017, 9, 1196. [Google Scholar] [CrossRef]
- Huang, W.; Xiao, L.; Liu, H.; Wei, Z. Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization. Sensors 2015, 15, 2041–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Song, H.; Cui, H.; Peng, J.; Xu, Z. Spatial and spectral image fusion using sparse matrix factorization. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1693–1704. [Google Scholar] [CrossRef]
- Fu, X.; Ma, W.K.; Chan, T.H.; Bioucas-Dias, J.M. Self-dictionary sparse regression for hyperspectral unmixing: Greedy pursuit and pure pixel search are related. IEEE J. Sel. Top. Signal Process. 2015, 9, 1128–1141. [Google Scholar] [CrossRef]
- Heinz, D.C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef]
- Esser, E.; Moller, M.; Osher, S.; Sapiro, G.; Xin, J. A convex model for nonnegative matrix factorization and dimensionality reduction on physical space. IEEE Trans. Image Process. 2012, 21, 3239–3252. [Google Scholar] [CrossRef] [PubMed]
- Elhamifar, E.; Sapiro, G.; Vidal, R. See all by looking at a few: Sparse modeling for finding representative objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012), Providence, RI, USA, 16–21 June 2012; pp. 1600–1607. [Google Scholar]
- Chan, T.H.; Ma, W.K.; Ambikapathi, A.; Chi, C.Y. A simplex volume maximization framework for hyperspectral endmember extraction. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4177–4193. [Google Scholar] [CrossRef]
- Chen, J.; Huo, X. Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans. Signal Process. 2006, 54, 4634–4643. [Google Scholar] [CrossRef]
- Ma, W.K.; Bioucas-Dias, J.M.; Chan, T.H.; Gillis, N.; Gader, P.; Plaza, A.J.; Ambikapathi, A.; Chi, C.Y. A signal processing perspective on hyperspectral unmixing: Insights from remote sensing. IEEE Signal Process. Mag. 2014, 31, 67–81. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Lanaras, C.; Baltsavias, E.; Schindler, K. Hyperspectral Super-Resolution by Coupled Spectral Unmixing. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2015), Santiago, Chile, 12–16 December 2015; pp. 3586–3594. [Google Scholar]
- Akhtar, N.; Shafait, F.; Mian, A. Bayesian sparse representation for hyperspectral image super resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA, 7–12 June 2015; pp. 3631–3640. [Google Scholar]
Bicubic | CNMF | GSOMP | BSR | HySure | CNNCNMF | PALM | SDSR | |
---|---|---|---|---|---|---|---|---|
RMSE | 8.692 | 5.261 | 4.858 | 4.518 | 4.997 | 7.809 | 7.582 | 2.845 |
MPSNR | 28.66 | 30.17 | 31.62 | 33.09 | 33.13 | 33.77 | 32.7 | 32.75 |
MSSIM | 0.7123 | 0.8570 | 0.9142 | 0.9233 | 0.8509 | 0.9149 | 0.9062 | 0.9183 |
ERGAS | 237.52 | 420.68 | 209.79 | 151.93 | 149.24 | 151.48 | 162.1 | 148.75 |
UIQI | 0.5540 | 0.7001 | 0.7921 | 0.7607 | 0.6939 | 0.7962 | 0.7520 | 0.7637 |
SAM | 0.2451 | 0.3809 | 0.3485 | 0.3184 | 0.2068 | 0.3013 | 0.2103 | 0.3723 |
Time | 0.05 | 14.8 | 254.6 | 1650.0 | 142.0 | 139.4 | 62.7 | 20.8 |
Bicubic | CNMF | GSOMP | BSR | HySure | CNNCNMF | PALM | SDSR | |
---|---|---|---|---|---|---|---|---|
RMSE | 13.019 | 4.799 | 4.342 | 5.090 | 7.569 | 4.622 | 3.898 | 2.349 |
MPSNR | 25.96 | 34.76 | 35.77 | 34.58 | 33.99 | 35.32 | 36.54 | 42.04 |
MSSIM | 0.7106 | 0.9683 | 0.9771 | 0.9656 | 0.9463 | 0.9679 | 0.9813 | 0.9908 |
ERGAS | 195.20 | 74.01 | 68.73 | 80.42 | 97.27 | 72.00 | 60.89 | 33.36 |
UIQI | 0.7905 | 0.9754 | 0.9791 | 0.9733 | 0.9563 | 0.9777 | 0.9825 | 0.9941 |
SAM | 0.0960 | 0.0733 | 0.0537 | 0.0788 | 0.0877 | 0.0768 | 0.0492 | 0.0411 |
Time | 0.02 | 3.5 | 27.2 | 249.9 | 35.8 | 34.8 | 19.6 | 58.4 |
Bicubic | CNMF | GSOMP | BSR | HySure | CNNCNMF | PALM | SDSR | |
---|---|---|---|---|---|---|---|---|
RMSE | 13.332 | 12.205 | 8.532 | 12.979 | 8.071 | 8.183 | 8.125 | 7.942 |
MPSNR | 28.21 | 29.48 | 31.90 | 29.36 | 32.41 | 32.29 | 32.35 | 32.50 |
MSSIM | 0.6671 | 0.7521 | 0.8438 | 0.7428 | 0.8381 | 0.8500 | 0.8472 | 0.8466 |
ERGAS | 144.31 | 126.24 | 94.34 | 131.53 | 88.56 | 91.11 | 91.00 | 88.19 |
UIQI | 0.6282 | 0.6565 | 0.7959 | 0.6448 | 0.8132 | 0.8185 | 0.8120 | 0.8209 |
SAM | 0.0598 | 0.0929 | 0.0547 | 0.1009 | 0.0491 | 0.0513 | 0.0492 | 0.0482 |
Time | 0.01 | 0.39 | 2.99 | 21.82 | 1.89 | 1.76 | 4.07 | 1.12 |
Pixels | Bicubic | CNMF | GSOMP | BSR | HySure | CNNCNMF | PALM | SDSR |
---|---|---|---|---|---|---|---|---|
Balloons (50,50) | 0.0484 | 0.0869 | 0.0856 | 0.0985 | 0.0847 | 0.0863 | 0.0735 | 0.0403 |
Balloons (300,300) | 0.0355 | 0.1352 | 0.0342 | 0.0741 | 0.0492 | 0.1247 | 0.0352 | 0.0239 |
Pavia (50,50) | 0.4804 | 0.1578 | 0.0888 | 0.2233 | 0.1041 | 0.1592 | 0.0815 | 0.0685 |
Pavia (100,100) | 0.2849 | 0.1768 | 0.1336 | 0.1490 | 0.5853 | 0.1673 | 0.1245 | 0.1145 |
Paris (50,50) | 0.3685 | 0.5281 | 0.2884 | 0.6893 | 0.2318 | 0.2719 | 0.2241 | 0.2162 |
Paris (70,70) | 0.1564 | 0.4119 | 0.1677 | 0.3918 | 0.1626 | 0.1774 | 0.1622 | 0.1361 |
Coupling SDSR | Uncoupling SDSR | Concatenation SDSR | |
---|---|---|---|
CAVE | 4.1175 | 10.1147 | 2.2835 |
Pavia | 2.6015 | 31.604 | 2.3488 |
Paris | 8.3705 | 19.7726 | 8.0685 |
Original | Bicubic | CNMF | GSOMP | BSR | HySure | CNNCNMF | PALM | SDSR | |
---|---|---|---|---|---|---|---|---|---|
OA | 95.51% | 99.87% | 87.80% | 90.20% | 87.58% | 99.52% | 87.98% | 97.40% | 99.11% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, D.; Hu, Z.; Ye, R. Self-Dictionary Regression for Hyperspectral Image Super-Resolution. Remote Sens. 2018, 10, 1574. https://doi.org/10.3390/rs10101574
Gao D, Hu Z, Ye R. Self-Dictionary Regression for Hyperspectral Image Super-Resolution. Remote Sensing. 2018; 10(10):1574. https://doi.org/10.3390/rs10101574
Chicago/Turabian StyleGao, Dongsheng, Zhentao Hu, and Renzhen Ye. 2018. "Self-Dictionary Regression for Hyperspectral Image Super-Resolution" Remote Sensing 10, no. 10: 1574. https://doi.org/10.3390/rs10101574
APA StyleGao, D., Hu, Z., & Ye, R. (2018). Self-Dictionary Regression for Hyperspectral Image Super-Resolution. Remote Sensing, 10(10), 1574. https://doi.org/10.3390/rs10101574