Gaps Analysis and Requirements Specification for the Evolution of Copernicus System for Polar Regions Monitoring: Addressing the Challenges in the Horizon 2020–2030
Abstract
:1. Introduction
2. Requirements Specifications and Measurements Gaps
3. Sea Ice Monitoring and Marine Weather Forecast over Polar Regions as an Emerging Need for Future Copernicus Missions
4. Instrumentation and Remote Sensing Technologies Required to Cover the Future Measurement Gaps over Polar Regions
4.1. Ocean Surface Currents
4.2. Dominant Wave Direction and Significant Wave Height
4.3. Wind Speed
4.4. Sea Ice Type
4.5. Sea Ice Cover
4.6. Sea Ice Extent
4.7. Iceberg Tracking
4.8. Sea Ice Drift
4.9. Sea Ice Thickness
4.10. Atmospheric Pressure over the Sea Surface
4.11. Sea Surface Temperature
4.12. Surface Soil Moisture
4.13. Monitoring System: Vessel and Fish Farming Cage Position Tracking
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matevosyan, H.; Lluch, I.; Poghosyan, A.; Golkar, A. A Value-Chain Analysis for the Copernicus Earth Observation Infrastructure Evolution: A Knowledgebase of Users, Needs, Services, and Products. IEEE Geosci. Remote Sens. Mag. 2017, 5, 19–35. [Google Scholar] [CrossRef]
- World Meteorological Organization Observational Requirements and Capabilities. Available online: https://www.wmo-sat.info/oscar/requirements (accessed on 21 June 2018).
- A Survey into the State & Health of the European EO Services Industry. Available online: http://earsc.org/news/results-eo-industry-survey-september-2017 (accessed on 29 May 2018).
- Lancheros, E.; Park, H.; Camps, A.; Di Simone, A.; Matevosyan, H.; Lluch, I. Analysis of the potential of small satellites to cover the sea ice data products gap. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1173–1176. [Google Scholar] [CrossRef]
- Tobehn, C.; Schönenberg, A.; Bolea, A.; Coppola, D.; Ginesi, A.; Ginati, A.; Bal, L.; Sciberras, L. Joint EMSA/ESA initiative for innovative AIS satellites, technologies, applications and services. In Proceedings of the 64th International Astronautical Congress 2013, Beijing, China, 23–27 September 2013; Volume 5, pp. 4077–4086. [Google Scholar]
- Sat-AIS: Satellite-Based Automatic Identification System. Available online: https://esamultimedia.esa.int/docs/telecom/SAT-AIS-factsheet{_}WEB.pdf (accessed on 28 May 2018).
- Selva, D.; Krejci, D. A survey and assessment of the capabilities of Cubesats for Earth observation. Acta Astronaut. 2012, 74, 50–68. [Google Scholar] [CrossRef]
- Cosine: HyperScout. Available online: http://hyperscout.nl/ (accessed on 28 May 2018).
- European Space Agency: Copernicus Observing the Earth. Available online: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4 (accessed on 9 July 2018).
- Copernicus Space Component Data Access: Contributing Missions. Available online: https://spacedata.copernicus.eu/web/cscda/missions (accessed on 9 July 2018).
- Lang, A.; Yang, S.; Kaas, E. Sea ice thickness and recent Arctic warming. Geophys. Res. Lett. 2017, 44, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Wickert, J.; Cardellach, E.; Martin-Neira, M.; Bandeiras, J.; Bertino, L.; Andersen, O.B.; Camps, A.; Catarino, N.; Chapron, B.; Fabra, F.; et al. GEROS-ISS: GNSS REflectometry, Radio Occultation, and Scatterometry Onboard the International Space Station. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1552–4581. [Google Scholar] [CrossRef]
- Park, H.; Camps, A.; Pascual, D.; Kang, Y.; Onrubia, R.; Querol, J.; Alonso-Arroyo, A. A Generic Level 1 Simulator for Spaceborne GNSS-R Missions and Application to GEROS-ISS Ocean Reflectometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4645–4659. [Google Scholar] [CrossRef]
- Klemas, V. Remote Sensing Techniques for Studying Coastal Ecosystems: An Overview. J. Coast. Res. 2112. [Google Scholar] [CrossRef]
- Halpern, D.; Hollingsworth, A.; Wentz, F. ECMWF and SSM/I Global Surface Wind Speeds. J. Atmos. Oceanic Technol. 1994, 11, 779–788. [Google Scholar] [CrossRef] [Green Version]
- Wentz, F.J.; Ricciardulli, L.; Gentemann, C.; Meissner, T.; Hilburn, K.; Scott, J. The accuracy of Preliminary WindSat Vector Wind Measurements: Comparisons With NDBC Buoys and QuikSCAT. Available online: http:www.remss.com/missions/windsat (accessed on 29 May 2018).
- Wentz, F.J.; Ricciardulli, L.; Gentemann, C.; Meissner, T.; Hilburn, K.A.; Scott, J. Remote Sensing Systems Coriolis WindSat. Available online: http:www.remss.com/missions/windsat (accessed on 29 May 2018).
- Freilich, M.H.; Vanhoff, B.A. The accuracy of preliminary WindSat vector wind measurements: Comparisons with NDBC buoys and QuikSCAT. IEEE Trans. Geosci. Remote Sens. 2006, 44, 622–637. [Google Scholar] [CrossRef]
- La, T.V.; Khenchaf, A.; Comblet, F.; Nahum, C. Comparison Of Inversion Models of Wind Speed Retrieval From C-Band Sentinel-1 and X-Band TerraSAR-X Data. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; 9584; pp. 2261–2264. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Rius, A.; Ribó, S.; Martín-Neira, M. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals. Geophys. Res. Lett. 2017, 44, 8369–8376. [Google Scholar] [CrossRef]
- Schiavulli, D.; Nunziata, F.; Migliaccio, M.; Frappart, F.; Ramilien, G.; Darrozes, J. Reconstruction of the Radar Image from Actual DDMs Collected by TechDemoSat-1 GNSS-R Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4700–4708. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Sea ice detection from GNSS-R Delay-Doppler Map. In Proceedings of the 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics, ANTEM, Montreal, QC, Canada, 10–13 July 2016. [Google Scholar] [CrossRef]
- Blackwell, W.J. New Small Satellite Capabilities for Microwave Atmospheric Remote Sensing (Conference Presentation). In Proceedings of the SPIE, CubeSats and NanoSats for Remote Sensing, San Diego, CA, USA, 7 December 2016; Volume 997807. [Google Scholar] [CrossRef]
- Remote Sensing Systems: Microwave OI SST Product Description. Available online: http://www.remss.com/measurements/sea-surface-temperature/oisst-description/ (accessed on 29 May 2018).
- Robinson, I.S. Measuring the Oceans from Space: The Principles and Methods Of Satellite Oceanography; Springer Praxis Books in Geophysical Sciences: Berlin, Germany, 2004; p. 669. [Google Scholar]
- Ocean and Sea Ice: Global Sea Ice Concentration Data Record Relase 1.2 (SSMI/SSMIS). Available online: http://www.osi-saf.org/?q=content/global-sea-ice-concentration-data-record-ssmissmis (accessed on 29 May 2018).
- Pațilea, C.; Heygster, G.; Huntemann, M.; Spreen, G. Combined SMAP/SMOS Thin Sea Ice Thickness Retrieval. Cryosphere Discuss. 2017, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Universität Bremen: Sea Ice Remote Sensing: SMOS Thin Ice Thickness—Data Browser. Available online: https://seaice.uni-bremen.de/databrowser/#p=smos (accessed on 21 June 2018).
- Oceanic Surface Air: Via Oxygen Band Radar. Available online: http://technology.nasa.gov//t2media/tops/pdf/LAR-TOPS-102.pdf (accessed on 30 May 2018).
- Peral, E.; Tanelli, S.; Haddad, Z.; Sy, O.; Stephens, G.; Im, E. Raincube: A proposed constellation of precipitation profiling radars in CubeSat. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; Volume 2015, pp. 1261–1264. [Google Scholar] [CrossRef]
- OSISAF: MetOp-A ASCAT Coastal Winds. Available online: http://www.osi-saf.org/?q=content/MetOp-ascat-coastal-winds (accessed on 29 May 2018).
- Balz, T.; Hammer, H.; Auer, S. Potentials and limitations of SAR image simulators—A comparative study of three simulation approaches. ISPRS J. Photogramm. Remote Sens. 2015, 101, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Ribo, S.; Arco, J.C.; Oliveras, S.; Cardellach, E.; Rius, A.; Buck, C. Experimental results of an x-band PARIS receiver using digital satellite TV opportunity signals scattered on the sea surface. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5704–5711. [Google Scholar] [CrossRef]
- Otosaka, I.; Rivas, M.B.; Stoffelen, A. Bayesian sea ice detection with the ERS scatterometer and sea ice backscatter model at C-band. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2248–2254. [Google Scholar] [CrossRef]
- Shen, X.Y.; Zhang, J.; Zhang, X.; Meng, J.M.; Ke, C.Q. Sea Ice Classification Using Cryosat-2 Altimeter Data by Optimal Classifier–Feature Assembly. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1948–1952. [Google Scholar] [CrossRef]
- Comiso, J.C.; Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. Oceans 2008. [Google Scholar] [CrossRef]
- Beitsch, A.; Kern, S.; Kaleschke, L. Comparison of SSM/I and AMSR-E sea ice concentrations with ASPeCt ship observations around antarctica. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1985–1996. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W.; Moloney, C. Neural Networks Based Sea Ice Detection and Concentration Retrieval from GNSS-R Delay-Doppler Maps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3789–3798. [Google Scholar] [CrossRef]
- Fabra, F.; Cardellach, E.; Rius, A.; Ribó, S.; Oliveras, S.; Nogués-Correig, O.; Belmonte Rivas, M.; Semmling, M.; D’Addio, S. Phase altimetry with dual polarization GNSS-R over sea ice. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2112–2121. [Google Scholar] [CrossRef]
- Belmonte Rivas, M.; Verspeek, J.; Verhoef, A.; Stoffelen, A. Bayesian sea ice detection with the advanced scatterometer ASCAT. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2649–2657. [Google Scholar] [CrossRef]
- Remund, Q.P.; Long, D.G. A decade of QuikSCAT scatterometer sea ice extent data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4281–4290. [Google Scholar] [CrossRef]
- Long, D.G.; Hardin, P.J.; Whiting, P.T. Resolution Enhancement of Spaceborne Scatterometer Data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 700–715. [Google Scholar] [CrossRef]
- Remund, Q.P.; Long, D.G. Sea ice extent mapping using Ku band scatterometer data. J. Geophys. Res. Oceans 1999, 104, 11515–11527. [Google Scholar] [CrossRef] [Green Version]
- Multisensor Analyzed Sea Ice Extent. 2010. Available online: http://dx.doi.org/10.7265/N5GT5K3K (accessed on 7 June 2018).
- Maab, N. Remote Sensing of Sea Ice Thickness Using SMOS Data. Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 2013; doi10.17617/2.1737721. [Google Scholar]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013. [Google Scholar] [CrossRef]
- Pagano, T.S.; Rider, D.; Teixeira, J.; Aumann, H.H.; Rud, M.; Pereira, J.; Furlong, D.; Mamula, D. The CubeSat Infrared Atmospheric Sounder (CIRAS), Pathfinder for the Earth Observing Nanosatellite-Infrared (EON-IR). In Proceedings of the AIAA/USU Conference on Small Satellites, Pasadena, CA, USA, 22–24 March 2016. [Google Scholar]
- Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; et al. SLSTR: A high accuracy dual scan temperature radiometer for sea and land surface monitoring from space. J. Mod. Opt. 2010, 57, 1815–1830. [Google Scholar] [CrossRef]
- Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef] [Green Version]
- Dostálová, A.; Doubková, M.; Sabel, D.; Bauer-Marschallinger, B.; Wagner, W. Seven Years of Advanced Synthetic Aperture Radar (ASAR) Global Monitoring (GM) of Surface Soil Moisture over Africa. Remote Sens. 2014, 6, 7683–7707. [Google Scholar] [CrossRef] [Green Version]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Font, J.; Camps, A.; Borges, A.; Martin-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.H.; Hahne, A.; Mecklenburg, S. SMOS: The challenging sea surface salinity measurement from space. Proc. IEEE 2010, 98, 649–665. [Google Scholar] [CrossRef] [Green Version]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. 2008, 113, F01002. [Google Scholar] [CrossRef]
- Piles, M.; Entekhabi, D.; Camps, A. A change detection algorithm for retrieving high-resolution soil moisture from SMAP radar and radiometer observations. IEEE Trans. Geosci. Remote Sens. 2009. [Google Scholar] [CrossRef]
Need Name | Need Description |
---|---|
Agriculture, Rural Development and Food Security | Estimates of crop production, water satisfaction index, early warning of harvest shortfalls. |
Air Quality and Atmospheric Composition | The quality of air that one directly breathes at the surface. |
Alerting Service | Alert of an ongoing crisis. |
Animal Migration Maps | Track for animal migration. |
Assessment of Renewable Energies Potential | Provide meteorological (cloud, water vapor) and atmospheric (aerosol, ozone) data; and solar irradiance maps. |
Basic Maps | Base layer information with key geographical features. |
Biodiversity Assessment | Vegetation indices, information on habitat deterioration, evolution of vegetation parameters. |
Climate Evolution | Assess long-term climate evolution. |
Climate Forcing | Monitoring human-forced climate change. |
Climate Policy Development | Informing policy development to protect citizens from climate-related hazards such as high-impact weather events. |
Communication/Reporting Resources | Context/supporting and justifying operations. |
Crisis and Damage Mapping | Updated (24 h) geographical information. |
Emission and Surface Flux Assessment | Anthropogenic emissions, greenhouse gases. |
Fish Stock Management | Analysis and forecasting of fish stocks. |
Forest Resources Assessment | Deforestation rates, forest intactness. |
In-Field Data Collection | Locally-sampled information. |
Infrastructure Status Assessment | Roads, railroads, buildings, power lines, pipelines and others. |
Inland Water Management Maps | Measure quantity, quality (acidity) and track for algae. |
Land Degradation and Desertification Assessment | Degradation risk index, degradation hot spots, etc. |
Maintenance information | Estimation of the required ship maintenance date |
Marine Operations Safety | Oil spill combat, ship routing, weather forecasting, defense, search and rescue |
Mining | Focused on information for the mining industry |
Mitigation and Adaptation | Improving planning of mitigation and adaptation practices for key human and societal activities. |
Ocean Color Maps | Track for algae, bloom, toxicity, “red tide” and acidity. |
Oil and Gas Assessment | Focused on information retrieval for the oil and gas industry. |
On time operation | Optimized routing and ship speed. |
Ozone Layer and UV | Archive and forecast information on ozone layer and UV. |
Ports Monitoring | Monitoring of ports and facilitate traffic management. |
Refugee Support Mapping | Snapshot of temporary settlements and internally-displaced people. |
Ship Positioning Mapping | Monitoring ship positions and information. |
Situation Mapping | After crisis mapping. |
Solar Radiation | The amount of solar radiation coming to Earth. |
Thematic Mapping | Focused on the spatial variation of a theme. |
Urban and Regional Development | Monitoring of settlements, land losses or gain. |
Water quality | Water quality and pollution both in high seas and coast. |
Water Resources | Erosion risk maps, average water available for watershed. |
Weather Forecast | Climate monitoring, ice seasonal forecast. |
Measurements | Use Cases | Requirements [2] | (2020–2030) | ||
---|---|---|---|---|---|
Copernicus Instruments/Mission [9] | Contributing Instruments/Mission [10] | Gap | |||
Ocean surface currents | 1. Marine weather forecast 2. Sea ice monitoring 7. Sea ice melting emissions | Spatial resolution: 1–25 km Revisit time <3 h 0.5 m/s and accuracy | SAR-C/Sentinel-1 SRAL/Sentinel-3 Poseidon-4/Sentinel-6 | Karin/SWOT SWIM/CFOSAT SAR-2000 S.G/CSG SAR / HRWS SAR-X / TSX-NG SAR-X/PAZ | Revisit time <3 h Latency time <1 h |
Dominant wave direction | 1. Marine weather forecast 2. Sea ice monitoring | Spatial resolution: 1–15 km Revisit time <3 h accuracy | Revisit time <3 h Latency time <1 h | ||
Significant wave height | Marine weather forecast Sea ice monitoring | Spatial resolution: 1–25 km Revisit time <3 h 0.1 m accuracy | Revisit time <3 h Latency time <1 h | ||
Wind speed over sea surface (horizontal) | 1. Marine weather forecast 2. Sea ice monitoring 8. Atmospheric for weather forecast | Spatial resolution: 1–10 km Revisit time <3 h 0.5 m/s accuracy Latency time <1 h | ASCAT/MetOp SCA/MetOp-SG Karin/SWOT SAR-2000 S.G/CSG SAR/HRWS SAR-X/TSX-NG SAR-X/PAZ | Revisit time <3 h Latency time <1 h | |
Sea ice type | 2. Sea ice monitoring 7. Sea ice melting emissions | Spatial resolution: 10 m Revisit time <3 h 0.25/classes accuracy Latency time <1 h | Revisit time <3 h Latency time <1 h | ||
Iceberg tracking | 2. Sea ice monitoring | Spatial resolution: 10 m Revisit time <3 h 5% accuracy Latency time <1 h | Revisit time <3 h Latency time <1 h | ||
Sea ice cover | 2. Sea ice monitoring 7. Sea ice melting emissions | Spatial resolution: 12 km–10 m Revisit time <3 h 5% accuracy Latency time <1 h | SAR-2000 S.G/CSG SAR/HRWS SAR-X/TSX-NG SAR-X/PAZ MSI/Earth-CARE FLORIS/FLEX | Revisit time <3 h | |
Sea ice extent | 2. Sea ice monitoring | Spatial resolution: 12 km–10 m Revisit time <3 h 5% accuracy Latency time <1 h | Revisit time <3 h Latency time <1 h | ||
Sea ice drift | 2. Sea ice monitoring | Spatial resolution: 10 m Revisit time <3 h 0.5 m/s and accuracy | Revisit time <3 h Latency time <1 h | ||
Sea ice thickness | 2. Sea ice monitoring 7. Sea ice melting emissions | Spatial resolution: 1 cm (vertical) Revisit time <3 h 1 cm accuracy Latency time <1 h | KARIN/SWOT SAR-2000 S.G/CSG SAR/HRWS SAR-X/TSX-NG SAR-X/PAZ | Revisit time <3 h Latency time <1 h | |
Atmospheric pressure over sea surface | 1. Marine weather forecast 8. Atmospheric for weather forecast | Spatial resolution: 1–25 km Revisit time <3 h 5% accuracy Latency time <1 h | OLCI/Sentinel-3 | CPR/Earth-CARE | Revisit time <3 h Latency time <1 h |
Sea surface temperature | 1. Marine weather forecast 2. Sea ice monitoring 3. Fishing pressure and fish stock assessment 7. Sea ice melting emissions | Spatial resolution: 1–10 km Revisit time <3 h 0.3 k accuracy Latency time <1 h | SLSTR/Sentinel 3 | SEVERI/MSG MSI/Earth-CARE IASI and AVHRR/MetOp METimage, IASI-NG/MetOp-SG FCI/MTG-I IRS/MTG-S | Revisit time <3 h Latency time <1 h |
Ocean chlorophyll concentration | 3. Fishing pressure and fish stock assessment | Spatial resolution: 1 km Revisit time <72 h 0.05 mg/m accuracy | OLCI/Sentinel-3 | 3MI/MetOp-SG METimage/MetOp-SG | Latency time <1 h |
Ocean imagery and water leaving radiance | 1. Sea ice monitoring 3. Fishing pressure and fish stock assessment | Spatial resolution: 1 km Revisit time <72 h 5% accuracy Latency time <1 h | OLCI/Sentinel-3 SAR-C/Sentinel-1 | AVHRR/3/MetOp-A/B/C SAR/RADARSAT-2 | Latency time <1 h |
Color dissolved organic matter | 3. Fishing pressure and fish stock assessment | Spatial resolution: 1 km Revisit time <72 h 5% accuracy | OLCI/Sentinel-3 | 3MI /MetOp-SG METimage/MetOp-SG FLORIS/FLEX | Latency time <1 h |
Detection of water stress in crops | 5. Agriculture and forestry (hydric stress) | Spatial resolution: 2–7 m Revisit time <24 h 5% accuracy Latency time <1 h | SLSTR / Sentinel-3 | SEVERI/MSG MSI/Earth-CARE IASI and AVHRR/MetOp METimage, IASI-NG /MetOp-SG FCI/MTG-I IRS/MTG-S | Spatial resolution <7 m Latency time <1 h |
Estimation of crop evapotranspiration | 5. Agriculture and forestry (hydric stress) | Spatial resolution: 1–10 m Revisit time <24 h | |||
Soil moisture at the surface | 5. Agriculture and forestry (hydric stress) 6. Land for mapping: risk assessment 10. Natural habitat and protected species 2. Sea ice monitoring | Spatial resolution: 10 km Revisit time <24 h 0.01 m/m accuracy Latency time <1 h | Sentinel-1 | ASCAT/MetOp SAR-2000 SG/CSG SEVERI/MSG SAR-P/BIOMASS FCI/MTG-I MSI/Earth-CARE | Accuracy <0.01 m/m Latency time <1 h |
Crop growth & condition | 5. Agriculture and forestry (hydric stress) | Spatial resolution: 2 km Revisit time <24 h Latency time <1 h | N/A | N/A | Spatial resolution: 2 km Revisit time <24 h Latency time <1 h |
Monitoring system—vessels and fish farming cages position tracking | 3. Fishing pressure and fish stock assessment | Spatial resolution: 1 km Revisit time <72 h (cloud free) 5% accuracy Latency time <1 h | Sentinel-1 | NAIS/NORSAT-2 E-SAIL/Triton-2 | from 2025 |
Technology Type | Measurements | Instrument Limitations |
---|---|---|
GNSS-R | Sea ice thickness | Accuracy (∼20 cm) [12,20] |
Dominant wave direction | Coarse spatial resolution (∼25 km) [21] | |
Wind speed over the sea surface (horizontal) | Coarse spatial resolution (∼25 km) Accuracy (2 m /s) [12] | |
Significant wave height Sea ice cover ocean surface currents | No specific limitation [22] | |
Microwave sounder (50–60 GHz) | Atmospheric pressure (over sea surface) | Coarse spatial resolution (20 km, at 400 km altitude) [23] |
Microwave radiometer (X-, K-, Ka-, W-bands) | Wind speed over sea surface (horizontal) Sea ice cover Sea ice type Sea ice drift Sea surface temperature | Coarse spatial resolution (∼25 km) [24] Accuracy: (1.5-m/s ocean wind speed) [25] (0.5 K for SST) [25] (from 10%–20% for sea ice data) [26] |
L-band microwave radiometer | Sea ice cover | Coarse spatial resolution |
Soil moisture at the surface | Coarse spatial resolution | |
Sea ice thickness | Accuracy [27,28] | |
AIS decoder | Monitoring system: vessels | No specific limitation [5] |
Cloud radar (oxygen band) | Atmospheric pressure (over sea surface) | Narrow swath (2 km) [29,30] |
Radar scatterometer | Wind speed over sea surface (horizontal) Sea ice type Sea-ice cover | Accuracy: Wind speed (<2 m/s) [31] |
Radar altimeter (SAR) | Ocean surface currents Significant wave height Dominant wave direction Sea ice type Sea ice cover Wind speed over sea surface (horizontal) | Narrow coverage (nadir-pointing) Long-term analysis and narrow coverage |
SAR | Ocean surface currents Iceberg tracking Sea ice drift Sea ice extent Sea ice type Sea ice cover Dominant wave direction Dominant wave period Significant wave height Sea ice thickness Wind speed over sea surface | Narrow coverage (<600 km) Long-term analysis and narrow coverage [32] |
LiDAR | Sea ice thickness | Long-term analyses, narrow coverage, Cloud sensitive |
Multispectral radiometer VIS/NIR/TIR | Ocean chlorophyll concentration ( center: 442.5, 490, 510, 560 nm) Ocean imagery and water leaving radiance ( Centre: 485, 560, 660, 2100 nm) Color Dissolved Organic Matter (CDOM) ( center: 442.5, 490, 510, 560, 665 nm) Sea surface temperature ( center: 3.7, 4.05, 8.55, 11, 12 m) Sea ice cover ( center: 640, 1610 nm) | Cloud sensitive, Daylight only |
Hyperspectral radiometer (VIS/NIR) | CDOM Sea ice cover | Cloud sensitive, Daylight only |
Spectrometer/sounder IR | Sea ice cover Sea surface temperature | Cloud sensitive, Daylight only |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lancheros, E.; Camps, A.; Park, H.; Sicard, P.; Mangin, A.; Matevosyan, H.; Lluch, I. Gaps Analysis and Requirements Specification for the Evolution of Copernicus System for Polar Regions Monitoring: Addressing the Challenges in the Horizon 2020–2030. Remote Sens. 2018, 10, 1098. https://doi.org/10.3390/rs10071098
Lancheros E, Camps A, Park H, Sicard P, Mangin A, Matevosyan H, Lluch I. Gaps Analysis and Requirements Specification for the Evolution of Copernicus System for Polar Regions Monitoring: Addressing the Challenges in the Horizon 2020–2030. Remote Sensing. 2018; 10(7):1098. https://doi.org/10.3390/rs10071098
Chicago/Turabian StyleLancheros, Estefany, Adriano Camps, Hyuk Park, Pierre Sicard, Antoine Mangin, Hripsime Matevosyan, and Ignasi Lluch. 2018. "Gaps Analysis and Requirements Specification for the Evolution of Copernicus System for Polar Regions Monitoring: Addressing the Challenges in the Horizon 2020–2030" Remote Sensing 10, no. 7: 1098. https://doi.org/10.3390/rs10071098
APA StyleLancheros, E., Camps, A., Park, H., Sicard, P., Mangin, A., Matevosyan, H., & Lluch, I. (2018). Gaps Analysis and Requirements Specification for the Evolution of Copernicus System for Polar Regions Monitoring: Addressing the Challenges in the Horizon 2020–2030. Remote Sensing, 10(7), 1098. https://doi.org/10.3390/rs10071098