Interdependent Dynamics of LAI-Albedo across the Roofing Landscapes: Mongolian and Tibetan Plateaus
Abstract
:1. Introduction
- (1)
- Have the changes in albedo, LAI, and their relationships over the past 17 years been similar at the Mongolian and Tibetan Plateaus?
- (2)
- Are there any significant inter- and intra- annual differences in albedo and LAI?
- (3)
- Are the changes spatially homogeneous within each plateau? If not, how much land area has experienced significant (vs. insignificant) changes? Where are they located within a plateau?
- (4)
- Do the three measures of albedo have similar relationships with LAI in time and space?
2. Materials and Methods
2.1. Study Areas
2.2. MODIS Data
2.3. Quantitative Metrics and Analysis
3. Results
3.1. The Spatiotemporal Changes in LAI & Albedo
3.2. Inter-Annual Variations of LAI and Albedo
3.3. The Interdependent Dynamics of Albedo & LAI
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davin, E.L.; de Noblet-Ducoudre, N. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Clim. 2010, 23, 97–112. [Google Scholar] [CrossRef]
- Loranty, M.M.; Berner, L.T.; Goetz, S.J.; Jin, Y.F.; Randerson, J.T. Vegetation controls on northern high latitude snow-albedo feedback: Observations and cmip5 model simulations. Glob. Chang. Biol. 2014, 20, 594–606. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014. Synthesis Report Summary Chapter for Policymakers; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.J.; Lobell, D.B.; Delire, C.; Mirin, A. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pielke, R.A. Land use and climate change. Science 2005, 310, 1625–1626. [Google Scholar] [CrossRef] [PubMed]
- Rotenberg, E.; Yakir, D. Contribution of semi-arid forests to the climate system. Science 2010, 327, 451–454. [Google Scholar] [CrossRef] [PubMed]
- You, Q.G.; Xue, X.; Peng, F.; Dong, S.Y.; Gao, Y.H. Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau. Agric. For. Meteorol. 2017, 232, 48–65. [Google Scholar] [CrossRef]
- Brovkin, V.; Boysen, L.; Raddatz, T.; Gayler, V.; Loew, A.; Claussen, M. Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. J. Adv. Model. Earth Syst. 2013, 5, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Lee, X.; Goulden, M.L.; Hollinger, D.Y.; Barr, A.; Black, T.A.; Bohrer, G.; Bracho, R.; Drake, B.; Goldstein, A.; Gu, L.H.; et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 2011, 479, 384–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, L.; Chen, J.Q.; Zhang, Y.J. Growing season carries stronger contributions to albedo dynamics on the tibetan plateau. PLoS ONE 2017, 12, e0180559. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Zhang, Y.J.; Zhu, J.T. Decreased surface albedo driven by denser vegetation on the Tibetan Plateau. Environ. Res. Lett. 2014, 9, 104001. [Google Scholar] [CrossRef] [Green Version]
- Planque, C.; Carrer, D.; Roujean, J.L. Analysis of MODIS albedo changes over steady woody covers in France during the period of 2001–2013. Remote Sens. Environ. 2017, 191, 13–29. [Google Scholar] [CrossRef]
- Bounoua, L.; DeFries, R.; Collatz, G.J.; Sellers, P.; Khan, H. Effects of land cover conversion on surface climate. Clim. Chang. 2002, 52, 29–64. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Ho, C.-H.; Jeong, J.-H. Increase in vegetation greenness and decrease in springtime warming over East Asia. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Keeling, R.F.; Piper, S.C.; Heimann, M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 1996, 381, 218–221. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.S.; Piao, S.L.; Ciais, P.; Myneni, R.B.; Chen, A.P.; Chevallier, F.; Dolman, A.J.; Janssens, I.A.; Penuelas, J.; Zhang, G.X.; et al. Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature 2013, 501, 88. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Wu, W.Z.; Liu, X.H.; Fath, B.D.; Sun, H.L.; Liu, X.C.; Xiao, X.R.; Cao, J. Land use/cover change and regional climate change in an arid grassland ecosystem of inner Mongolia, China. Ecol. Model. 2017, 353, 86–94. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, H.F.; Shen, H.H.; Zhou, D.J.; Zhou, L.M.; Myneni, R.B.; Fang, J.Y. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landsc. Ecol. 2015, 30, 1599–1611. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- John, R.; Chen, J.Q.; Ou-Yang, Z.T.; Xiao, J.F.; Becker, R.; Samanta, A.; Ganguly, S.; Yuan, W.P.; Batkhishig, O. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environ. Res. Lett. 2013, 8, 035033. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Stordal, F.; Johnsrud, M.; Diner, D.J.; Geogdzhayev, I.V.; Haywood, J.M.; Holben, B.N.; Holzer-Popp, T.; Ignatov, A.; Kahn, R.A.; et al. Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000. Atmos. Chem. Phys. 2005, 5, 1697–1719. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Wang, Z.S.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Roman, M.O.; Shuai, Y.M.; Woodcock, C.E.; Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.H.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Wang, K.C.; Liu, J.M.; Zhou, X.J.; Sparrow, M.; Ma, M.; Sun, Z.; Jiang, W.H. Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau. J. Geophys. Res.-Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Sturm, M.; Douglas, T.; Racine, C.; Liston, G.E. Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res.-Biogeosci. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Enkhtur, K.; Pfeiffer, M.; Lkhagva, A.; Boldgiv, B. Response of moths (Lepidoptera: Heterocera) to livestock grazing in mongolian rangelands. Ecol. Indic. 2017, 72, 667–674. [Google Scholar] [CrossRef]
- John, R.; Chen, J.Q.; Lu, N.; Wilske, B. Land cover/land use change in semi-arid Inner Mongolia: 1992–2004. Environ. Res. Lett. 2009, 4, 045010. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wan, S.; Henebry, G.; Qi, J.; Gutman, G.; Sun, G.; Kappas, M. Dryland East Asia: Land Dynamics Amid Social and Climate Change; Higher Education Press: Beijing, China, 2013. [Google Scholar]
- Zhang, Z.D.; Yang, Q.Y. Physical Geography of Xizang; Science Press: Beijing, China, 1982. (In Chinese) [Google Scholar]
- Shao, C.; Li, L.; Dong, G.; Chen, J. Spatial variation of net radiation and its contribution to energy balance closures in grassland ecosystems. Ecol. Process. 2014, 3, 7. [Google Scholar] [CrossRef]
- Houspanossian, J.; Gimenez, R.; Jobbagy, E.; Nosetto, M. Surface albedo raise in the South American Chaco: Combined effects of deforestation and agricultural changes. Agric. For. Meteorol. 2017, 232, 118–127. [Google Scholar] [CrossRef]
- Loescher, H.W.; Gholz, H.L.; Jacobs, J.M.; Oberbauer, S.F. Energy dynamics and modeled evapotranspiration from a wet tropical forest in Costa Rica. J. Hydrol. 2005, 315, 274–294. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Krishnaswamy, J.; John, R.; Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Chang. Biol. 2014, 20, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.C.; Kato, S.; Xu, K.M.; Cai, M. Covariance between arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level. J. Geophys. Res.-Atmos. 2015, 120, 12656–12678. [Google Scholar] [CrossRef] [PubMed]
- Wild, M.; Hakuba, M.Z.; Folini, D.; Schar, C.; Long, C. New estimates of the earth radiation budget under cloud-free conditions and cloud radiative effects. Radiat. Process. Atmos. Ocean 2017, 1810, 090012. [Google Scholar]
- Gates, D.M. Energy, plants, and ecology. Ecology 1965, 46, 1–13. [Google Scholar] [CrossRef]
- Wang, S.Y.; Yang, B.J.; Yang, Q.C.; Lu, L.L.; Wang, X.Y.; Peng, Y.Y. Temporal trends and spatial variability of vegetation phenology over the Northern Hemisphere during 1982–2012. PLoS ONE 2016, 11, e0157134. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Guo, J.; Han, B.S.A.; Sun, Q.W.; Liu, L.C. The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau. Geomorphology 2009, 108, 182–190. [Google Scholar] [CrossRef]
- Yi, S.H.; Zhou, Z.Y.; Ren, S.L.; Xu, M.; Qin, Y.; Chen, S.Y.; Ye, B.S. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai-Tibetan Plateau. Environ. Res. Lett. 2011, 6, 045403. [Google Scholar] [CrossRef]
LAI Class | MP | TP | ||||||
---|---|---|---|---|---|---|---|---|
LAI | VIS | SHO | NIR | LAI | VIS | SHO | NIR | |
<0.5 | 0.31 | 0.158 | 0.213 | 0.286 | 0.22 | 0.155 | 0.204 | 0.254 |
0.5–1.0 | 0.72 | 0.101 | 0.187 | 0.267 | 0.74 | 0.099 | 0.174 | 0.243 |
1.0–1.5 | 1.21 | 0.080 | 0.169 | 0.246 | 1.26 | 0.074 | 0.163 | 0.242 |
1.5–2.0 | 1.72 | 0.064 | 0.153 | 0.235 | 1.73 | 0.062 | 0.158 | 0.245 |
2.0–2.5 | 2.23 | 0.057 | 0.145 | 0.228 | 2.24 | 0.057 | 0.160 | 0.253 |
>2.5 | 3.47 | 0.050 | 0.143 | 0.226 | 3.14 | 0.054 | 0.164 | 0.264 |
Mean | 0.73 | 0.111 | 0.193 | 0.275 | 0.70 | 0.123 | 0.188 | 0.249 |
Std | 0.63 | 0.036 | 0.035 | 0.042 | 0.71 | 0.058 | 0.040 | 0.042 |
Var | Loc | Sig. Area | Annual | May | June | July | Aug. | Sep. |
---|---|---|---|---|---|---|---|---|
LAI | MP | Total (103 km2) (%) | 128.19 (21.35) | 57.12 (11.96) | 100.63 (21.07) | 80.81 (16.92) | 62.59 (13.11) | 61.36 (12.85) |
Decreasing | 8.70 | 23.90 | 4.10 | 7.80 | 10.10 | 16.10 | ||
Increasing | 119.40 | 52.80 | 123.10 | 94.30 | 68.20 | 64.30 | ||
TP | Total (103 km2) (%) | 57.41 (14.69) | 65.03 (16.64) | 38.39 (9.83) | 47.92 (12.26) | 48.00 (12.28) | 42.96 (11.00) | |
Decreasing | 29.06 | 3.16 | 6.53 | 19.99 | 18.55 | 31.03 | ||
Increasing | 28.35 | 61.86 | 31.86 | 27.93 | 29.45 | 11.93 | ||
AlbedoNIR | MP | Total (103 km2) (%) | 639.42 (33.45) | 478.36 (25.39) | 469.16 (24.84) | 464.35 (24.40) | 255.66 (13.40) | 481.96 (25.33) |
Decreasing | 441.64 | 289.87 | 313.19 | 323.75 | 154.56 | 418.98 | ||
Increasing | 197.78 | 188.48 | 155.96 | 140.60 | 101.10 | 62.98 | ||
TP | Total (103 km2) (%) | 330.58 (19.34) | 148.03 (11.00) | 149.08 (12.21) | 148.03 (11.68) | 115.74 (10.02) | 190.03 (11.68) | |
Decreasing | 249.82 | 117.64 | 95.54 | 117.64 | 63.43 | 135.01 | ||
Increasing | 80.76 | 30.39 | 53.54 | 30.39 | 52.30 | 55.02 | ||
AlbedoVIS | MP | Total (103 km2) (%) | 605.48 (31.68) | 412.24 (21.85) | 420.77 (22.31) | 434.24 (22.84) | 378.71 (19.85) | 456.77 (24.00) |
Decreasing | 585.59 | 366.15 | 403.18 | 413.06 | 354.84 | 442.86 | ||
Increasing | 19.89 | 46.09 | 17.59 | 21.18 | 23.86 | 13.91 | ||
TP | Total (103 km2) (%) | 283.53 (16.59) | 197.08 (10.44) | 130.54 (11.01) | 179.60 (14.38) | 143.54 (12.79) | 157.62 (9.70) | |
Decreasing | 235.73 | 183.17 | 85.95 | 152.02 | 97.95 | 122.69 | ||
Increasing | 47.80 | 13.90 | 44.59 | 27.58 | 45.59 | 34.93 | ||
AlbedoSHO | MP | Total (103 km2) (%) | 597.17 (31.24) | 468.47 (24.89) | 431.68 (22.94) | 429.77 (22.62) | 324.27 (17.00) | 426.51 (22.43) |
Decreasing | 495.83 | 359.54 | 360.11 | 355.50 | 242.20 | 389.51 | ||
Increasing | 101.34 | 108.93 | 71.56 | 74.27 | 82.07 | 36.99 | ||
TP | Total (103 km2) (%) | 290.79 (17.01) | 179.78 (13.54) | 130.97 (11.39) | 116.43 (9.54) | 137.26 (12.46) | 173.21 (10.75) | |
Decreasing | 224.23 | 162.09 | 84.32 | 79.43 | 80.19 | 121.13 | ||
Increasing | 66.56 | 17.68 | 46.64 | 37.00 | 57.07 | 52.08 |
Var | Loc | Annual | May | June | July | August | September | |
---|---|---|---|---|---|---|---|---|
SHO | TP | Slope | −0.149 | −0.098 | −0.085 | −0.103 | −0.092 | −0.048 |
p | 0.001 | 0.043 | 0.185 | 0.033 | 0.060 | 0.348 | ||
R2 | 0.563 | 0.247 | 0.085 | 0.268 | 0.217 | 0.060 | ||
MP | Slope | −0.115 | −0.073 | −0.108 | −0.119 | −0.059 | −0.112 | |
p | 0.151 | 0.143 | 0.296 | 0.011 | 0.250 | 0.018 | ||
R2 | 0.334 | 0.137 | 0.024 | 0.360 | 0.087 | 0.318 | ||
NIR | TP | Slope | −0.122 | −0.147 | −0.115 | −0.090 | −0.110 | −0.093 |
p | 0.009 | 0.001 | 0.015 | 0.067 | 0.027 | 0.058 | ||
R2 | 0.377 | 0.550 | 0.334 | 0.206 | 0.286 | 0.219 | ||
MP | Slope | −0.092 | −0.072 | −0.098 | −0.091 | −0.044 | −0.11 | |
p | 0.059 | 0.151 | 0.044 | 0.065 | 0.397 | 0.020 | ||
R2 | 0.217 | 0.132 | 0.244 | 0.209 | 0.048 | 0.311 | ||
VIS | TP | Slope | −0.161 | −0.079 | −0.05 | −0.093 | −0.087 | −0.035 |
p | 0.001 | 0.111 | 0.324 | 0.056 | 0.079 | 0.497 | ||
R2 | 0.657 | 0.160 | 0.065 | 0.223 | 0.192 | 0.031 | ||
MP | Slope | −0.137 | −0.078 | −0.108 | −0.13 | −0.093 | −0.126 | |
p | 0.002 | 0.117 | 0.023 | 0.004 | 0.058 | 0.006 | ||
R2 | 0.479 | 0.047 | 0.300 | 0.431 | 0.219 | 0.405 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Chen, J.; Shao, C. Interdependent Dynamics of LAI-Albedo across the Roofing Landscapes: Mongolian and Tibetan Plateaus. Remote Sens. 2018, 10, 1159. https://doi.org/10.3390/rs10071159
Tian L, Chen J, Shao C. Interdependent Dynamics of LAI-Albedo across the Roofing Landscapes: Mongolian and Tibetan Plateaus. Remote Sensing. 2018; 10(7):1159. https://doi.org/10.3390/rs10071159
Chicago/Turabian StyleTian, Li, Jiquan Chen, and Changliang Shao. 2018. "Interdependent Dynamics of LAI-Albedo across the Roofing Landscapes: Mongolian and Tibetan Plateaus" Remote Sensing 10, no. 7: 1159. https://doi.org/10.3390/rs10071159
APA StyleTian, L., Chen, J., & Shao, C. (2018). Interdependent Dynamics of LAI-Albedo across the Roofing Landscapes: Mongolian and Tibetan Plateaus. Remote Sensing, 10(7), 1159. https://doi.org/10.3390/rs10071159