Land-Use Carbon Emissions Estimation for the Yangtze River Delta Urban Agglomeration Using 1994–2016 Landsat Image Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Images
2.2.2. Socio-Economic Statistics
3. Methods
3.1. Land-Use Classification
3.1.1. Random Forest Classifier
3.1.2. Accuracy Assessment
3.2. Estimation of Carbon Emissions
3.2.1. Carbon Emissions from Land Use
3.2.2. Carbon Emissions from Energy Consumption
3.2.3. Carbon Intensity
3.3. Spatial Autocorrelation Model
3.3.1. Global Spatial Autocorrelation Model
3.3.2. Local Spatial Autocorrelation Model
4. Results
4.1. Land Use and Carbon Emissions of the YRDUA
4.2. Spatiotemporal Characteristics of Carbon Emissions
4.2.1. Temporal Characteristics
4.2.2. The Spatial Characteristics
4.3. Spatial Correlation of Carbon Emissions and Carbon Intensity
4.3.1. Global Spatial Autocorrelation
4.3.2. Local Spatial Autocorrelation
5. Interpretation and Discussion
5.1. Carbon Sources and Carbon Sinks
5.2. Characteristics of Carbon Emissions and Carbon Intensity
5.3. Spatial Autocorrelation of Carbon Emissions and Carbon Intensity
5.4. Limitations
6. Conclusions
- In the YRDUA, urban land contributed to almost all carbon emissions. Furthermore, total carbon emissions and per unit of carbon emissions from urban land increased rapidly over twenty years. Thus, carbon emission reduction should be focused on controlling carbon emissions from urban land.
- There were high carbon emissions for cities along the Yangtze River and high carbon intensities for cities in Anhui. Therefore, the carbon emissions of Shanghai and other cities along the Yangtze River should be strictly controlled. Regarding cities in Anhui province, it is necessary to accelerate the optimization and upgrading of their industrial structures to low carbon intensity.
- Carbon intensities of Maanshan and Tongling, known as resource-based cities, were much higher than those of the other 24 cities. The government of Anhui Province should pay more attention to the economic development model and carbon intensities of resourced-based cities.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Solomon, S.D.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef] [Green Version]
- Van Minnen, J.G.; Goldewijk, K.K.; Stehfest, E.; Eickhout, B.; van Drecht, G.; Leemans, R. The importance of three centuries of land-use change for the global and regional terrestrial carbon cycle. Clim. Chang. 2009, 97, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A.; House, J.I.; Pongratz, J.; Van Der Werf, G.R.; Defries, R.S.; Hansen, M.C.; Le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef] [Green Version]
- Goldewijk, K.K. Estimating global land use change over the past 300 years: The HYDE Database. Glob. Biogeochem. Cycles 2001, 15, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Defries, R.S.; Houghton, R.A.; Hansen, M.C.; Field, C.B.; Skole, D.; Townshend, J. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2002, 99, 14256–14261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, R.A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990*. Tellus 2004, 51B, 378–390. [Google Scholar] [CrossRef]
- IPCC. Carbon emission factor. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 1st ed.; Eggleston, H.S., Buendia, L., Eds.; Institute for Global Environmental Strategies: Hayama, Japan, 2006; p. 23. ISBN 92-9169-520-3. [Google Scholar]
- Castillo-Santiago, M.A.; Hellier, A.; Tipper, R.; de Jong, B.H.J. Carbon emissions from land-use change: An analysis of causal factors in Chiapas, Mexico. Mitig. Adapt. Strateg. Glob. Chang. 2007, 1213–1235. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wang, W.; Zhao, R.; Zhang, M.; Wu, C. Land use, total carbon emissions change and low carbon land management in Coastal Jiangsu, China. J. Clean. Prod. 2015, 103, 77–86. [Google Scholar] [CrossRef]
- Muttitanon, W.; Tripathi, N.K. Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. Int. J. Remote Sens. 2005, 26, 2311–2323. [Google Scholar] [CrossRef]
- Rogan, J.; Chen, D.M. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Mu, H.; Li, H.; Zhang, M.; Li, M. Analysis of China’s carbon dioxide flow for 2008. Energy Policy 2013, 54, 320–326. [Google Scholar] [CrossRef]
- Guan, D.; Klasen, S.; Hubacek, K.; Feng, K.; Liu, Z.; He, K.; Geng, Y.; Zhang, Q. Determinants of stagnating carbon intensity in China. Nat. Clim. Chang. 2014, 4, 1017–1023. [Google Scholar] [CrossRef]
- China-U.S. Joint Presidential Statement on Climate Change. Available online: http://en.ndrc.gov.cn/newsrelease/201509/t20150929_755626 (accessed on 24 March 2018).
- Wang, Y.; Ma, W.; Tu, W.; Zhao, Q.; Yu, Q. A study on carbon emissions in Shanghai 2000–2008, China. Environ. Sci. Policy 2013, 27, 151–161. [Google Scholar] [CrossRef]
- Geng, Y.; Tian, M.; Zhu, Q.; Zhang, J.; Peng, C. Quantification of provincial-level carbon emissions from energy consumption in China. Renew. Sustain. Energy Rev. 2011, 15, 3658–3668. [Google Scholar] [CrossRef]
- Zhao, Y.; Nielsen, C.P.; McElroy, M.B. China’s CO2 emissions estimated from the bottom up: Recent trends, spatial distributions, and quantification of uncertainties. Atmos. Environ. 2012, 59, 214–223. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Xiao, H.; Sun, D.; Li, Y. Spatial differences in and influences upon the sustainable development level of the Yangtze River Delta Urban Agglomeration in China. Sustainability 2018, 10, 411. [Google Scholar] [CrossRef]
- Ouyang, X.; Gao, B.; Du, K.; Du, G. Industrial sectors’ energy rebound effect: An empirical study of Yangtze River Delta urban agglomeration. Energy 2018, 145, 408–416. [Google Scholar] [CrossRef]
- National Development and Reform Commission Housing and Urban-Rural Development Department Notice on Issuing the Development Plan of the Yangtze River Delta Urban Agglomeration. Available online: http://www.ndrc.gov.cn/zcfb/zcfbghwb/201606/t20160603_806390 (accessed on 24 March 2018). (In Chinese)
- Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A. Landsat-5 TM reflective-band absolute radiometric calibration. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2747–2760. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Wang, Y.; Chen, L.; Yao, F.; Wu, P.; Wang, B.; Li, Y.; Zhou, T.; Zhang, T. Research on the contribution of urban land surface moisture to the alleviation effect of urban land surface heat based on Landsat 8 data. Remote Sens. 2015, 7, 10737–10762. [Google Scholar] [CrossRef]
- Pan, J.; Wang, M.; Li, D.; Li, J. Automatic generation of seamline network using area voronoi diagrams with overlap. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1737–1744. [Google Scholar] [CrossRef]
- Li, L.; Solana, C.; Canters, F.; Kervyn, M. Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image. J. Volcanol. Geotherm. Res. 2017, 345, 109–124. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Waske, B.; van der Linden, S.; Oldenburg, C.; Jakimow, B.; Rabe, A.; Hostert, P. imageR-A user-oriented implementation for remote sensing image analysis with Random Forests. Environ. Model. Softw. 2012, 35, 192–193. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Macarof, P.; Statescu, F. Comparasion of NDBI and NDVI as indicators of surface urban heat island effect in Landsat 8 imagery: A case study of Iasi. Present Environ. Sustain. Dev. 2017, 11. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, F.; Wei, Y. Water body extraction from Landsat ETM+ image using MNDWI and K-T transformation. Int. Conf. Geoinform. 2013. [Google Scholar] [CrossRef]
- Janssen, L.L.F.; van der Wel, F.J.M. Accuracy assessment of satellite derived land-cover data: A review. Photogramm. Eng. Remote Sens. 1994, 60, 419–426. [Google Scholar]
- Shi, H.; Mu, X.; Zhang, Y.; Lv, M. Effects of different land use patterns of carbon emisson in Guangyuan city of Sichuan province. Bull. Soil Water Conserv. 2012, 32, 101–106. (In Chinese) [Google Scholar]
- Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Duan, X.; Wang, X.; Lu, F.; Ouyang, Z. Carbon sequestration and its potential by wetland ecosystems in China. Acta Ecol. Sin. 2008, 28, 463–469. (In Chinese) [Google Scholar]
- Lai, L. Carbon Emission Effect of Land Use in China. Ph.D. Thesis, Nanjing University, Nanjing, Jiangsu, China, 2010. (In Chinese). [Google Scholar]
- Guidelines for the Preparation of Provincial Greenhouse Gas Inventories of China. Available online: https://wenku.baidu.com/view/7ae95325f111f18583 (accessed on 30 March 2018). (In Chinese).
- National Bureau of Statistics. China Energy Statistical Yearbook 2016, 1st ed.; China Stastistics Press: Beijing, China, 2016; pp. 356–358. ISBN 978-7-5037-8064-6. (In Chinese)
- Tiefelsdorf, M. The saddlepoint approximation of Moran’s I’s and local Moran’s Ii’s reference sistributions and their numerical evaluation. Geogr. Anal. 2002, 34, 187–206. [Google Scholar] [CrossRef]
- Fu, W.J.; Jiang, P.K.; Zhou, G.M.; Zhao, K.L. Using Moran’s i and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences 2014, 11, 2401–2409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Lin, G. On Moran’s i coefficient under heterogeneity. Comput. Stat. Data Anal. 2016, 95, 83–94. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, L.; Xu, W.; Ledwith, V. Use of local Moran’s I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. Sci. Total Environ. 2008, 398, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Cave, M.; Zhang, C. Using local Moran’s I to identify contamination hotspots of rare earth elements in urban soils of London. Appl. Geochem. 2018, 88, 167–178. [Google Scholar] [CrossRef]
- Tian, G.; Jiang, J.; Yang, Z.; Zhang, Y. The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China. Ecol. Model. 2011, 222, 865–878. [Google Scholar] [CrossRef]
- Long, H.; Tang, G.; Li, X.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Growth, population and industrialization, and urban land expansion of China. J. Urban Econ. 2008, 63, 96–115. [Google Scholar] [CrossRef]
- Han, J.; Meng, X.; Zhou, X.; Yi, B.; Liu, M.; Xiang, W.-N. A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: A case study in China’s Yangtze River Delta region. J. Clean. Prod. 2017, 141, 1040–1050. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, C.; Li, G.; Feng, K. CO2, economic growth, and energy consumption in China’s provinces: Investigating the spatiotemporal and econometric characteristics of China’s CO2 emissions. Ecol. Indic. 2016, 69, 184–195. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, L.C.; Wu, G.; Tsai, H.T.; Wei, Y.M. Changes in carbon intensity in China: Empirical findings from 1980–2003. Ecol. Econ. 2007, 62, 683–691. [Google Scholar] [CrossRef]
- Marton, A.M.; Wu, W. Spaces of globalisation: Institutional reforms and spatial economic development in the Pudong new area, Shanghai. Habitat Int. 2006, 30, 213–229. [Google Scholar] [CrossRef]
- Wu, J.; Barnes, T. Local planning and global implementation: Foreign investment and urban development of Pudong, Shanghai. Habitat Int. 2008, 32, 364–374. [Google Scholar] [CrossRef]
- Hu, C.; Huang, X. Characteristics of carbon emission in China and analysis on its cause. China Popul. Resour. Environ. 2008, 18, 38–42. [Google Scholar] [CrossRef]
- He, S.Y.; Lee, J.; Zhou, T.; Wu, D. Shrinking cities and resource-based economy: The economic restructuring in China’s mining cities. Cities 2017, 60, 75–83. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Liu, T. Empirical analysis on the factors influencing national and regional carbon intensity in China. Renew. Sustain. Energy Rev. 2016, 55, 34–42. [Google Scholar] [CrossRef]
- Cai, B.; Cao, D.; Liu, L.; Zhou, Y.; Zhang, Z. China transport CO2 emission study. Adv. Chin. Chang. Res. 2011, 7, 197–203. (In Chinese) [Google Scholar]
- CO2 Emissions from Fuel Combustion Highlights. 2017. Available online: https://www.iea.org/publications/freepublications/publication/CO2EmissionsfromFuelCombustionHighlights2017.pdf (accessed on 9 August 2018).
Year | Sensor | Acquisition Date (Path/Row) |
---|---|---|
1995 (1994–1996) | TM | 1994-05-05 (118/39), 1994-05-05 (118/40), 1994-05-19 (120/37), 1994-05-19 (120/39), 1994-05-19 (120/40), 1994-05-30 (117/40), 1994-06-29 (119/39), 1994-08-30 (121-39), 1995-06-05 (122/39), 1995-08-03 (119/37), 1995-08-03 (119/38), 1995-08-05 (117/39), 1995-08-12 (118/38), 1995-09-04 (119/40), 1995-09-02 (121/37), 1995-09-02 (121/38), 1995-10-13 (120/38), 1996-05-08 (120/36), 1996-07-25 (122/38) |
2005 (2004–2006) | TM | 2004-05-21 (121/39), 2004-07-19 (118/38), 2004-07-26 (119/39), 2004-07-26 (119/40), 2004-08-04 (118/40), 2004-09-17 (122/38), 2004-09-17 (122/39), 2005-05-12 (117/39), 2005-07-15 (117-40), 2006-04-20 (118/39), 2006-05-20 (120/37), 2006-05-20 (120/38), 2006-05-20 (120/39), 2006-07-30 (121/37), 2006-07-30 (121/38), 2006-09-09 (120/36), 2006-09-18 (119/37), 2006-09-18 (119/38), 2006-09-25 (120/40) |
2015 (2014–2016) | OLI | 2014-05-01 (121/39), 2014-05-26 (120/37), 2014-06-11 (120/39), 2015-05-13 (120/36), 2015-05-13 (120/40), 2015-07-27 (117/39), 2015-07-27 (117-40), 2015-08-03 (118/38), 2015-08-03 (118/39), 2015-08-03 (118/40), 2015-10-02 (122/39), 2015-10-13 (119/37), 2015-10-13 (119/38), 2015-10-13 (119/39), 2015-10-13 (119/40), 2016-04-29 (120/38), 2016-06-14 (122/38), 2016-07-25 (121/37), 2016-07-25 (121/38) |
Land-Use Types | Carbon Emission Coefficient (kg (C)·m−2·a−1) | Used in the Study |
---|---|---|
Cropland | 0.0497 [35] | 0.0497 |
Forestland | [−0.0645, −0.0527] [36] | −0.0586 |
Grassland | −0.0021 [36] | −0.0021 |
Water area | −0.0509 [37] | −0.0459 |
−0.0410 [38] | ||
Other land-use | −0.0005 [38] | −0.0005 |
Energy | Average Low Calorific Value (kJ/kg) | Unit Calorific Value Carbon Content (kg/109 J) | Carbon Oxidation Rate (%) | Carbon Emission Coefficient (kg/kg) |
---|---|---|---|---|
Coal | 20,908 | 26.37 | 94 | |
Cleaned coal | 26,344 | 25.41 | 93 | 0.6225 |
Coke | 28,435 | 29.5 | 93 | 0.7801 |
Gasoline | 43,070 | 18.9 | 98 | 0.7977 |
Kerosene | 43,070 | 19.5 | 98 | 0.8231 |
Diesel oil | 42,652 | 20.2 | 98 | 0.8443 |
Fuel oil | 41,816 | 21.1 | 98 | 0.8647 |
Liquefied petroleum gas | 50,179 | 17.2 | 98 | 0.8458 |
Natural gas | 35,585 | 15.3 | 99 | 0.5390 |
Year | Unit | Cropland | Forestland | Grassland | Water Area | Urban Land | Other Land-Use |
---|---|---|---|---|---|---|---|
1995 | area (km2) | 121,871.6 | 58,240.1 | 1338.3 | 14,949.5 | 9100.7 | 3953.4 |
proportion | 58.19% | 27.81% | 0.64% | 7.14% | 4.33% | 1.89% | |
2005 | area(km2) | 115,285.4 | 61,710.4 | 1092.0 | 14,642.3 | 14,626.8 | 2096.9 |
proportion | 55.04% | 29.46% | 0.51% | 6.99% | 6.98% | 1.00% | |
2015 | area(km2) | 105,485.7 | 61,242.7 | 1234.1 | 13,801.0 | 25,175.9 | 2514.2 |
proportion | 50.36% | 29.24% | 0.59% | 6.59% | 12.02% | 1.20% | |
1995–2015 | area of change | −16,385.9 | 3002.6 | −104.2 | −1148.5 | 16,075.1 | −1439.2 |
change rate | −13.45% | 5.16% | −7.78% | −7.68% | 176.64% | −36.40% |
Year | Land-Use Specific Carbon Emission/Absorptions | Total Carbon Emissions | Total Carbon Absorptions | Net Carbon Emissions | |||||
---|---|---|---|---|---|---|---|---|---|
Cropland | Forestland | Grassland | Water Area | Urban Land | Other Land-Use | ||||
1995 | 2220.9 | −1251.4 | −1.0 | −251.6 | 24,179.1 | −0.7 | 26,400.0 | −1504.7 | 24,895.3 |
8.41% | 83.16% | 0.07% | 16.72% | 91.59% | 0.05% | 100.00% | 100.00% | ||
2005 | 2100.9 | −1326.0 | −0.8 | −246.4 | 70,728.8 | −0.4 | 72,829.7 | −1573.6 | 71,256.1 |
2.88% | 84.26% | 0.05% | 15.66% | 97.12% | 0.02% | 100.00% | 100.00% | ||
2015 | 1922.3 | −1316.0 | −0.9 | −232.3 | 111,578.4 | −0.5 | 113,500.7 | −1549.6 | 111,951.1 |
1.69% | 84.92% | 0.06% | 14.99% | 98.31% | 0.03% | 100.00% | 100.00% |
Net Carbon Emissions | Carbon Intensities | |||||
---|---|---|---|---|---|---|
Year | 1995 | 2005 | 2015 | 1995 | 2005 | 2015 |
Moran’s I | −0.0012 | 0.1984 | 0.1910 | 0.0729 | 0.0412 | 0.0056 |
z(I) * | 0.3894 | 2.6056 | 2.0116 | 1.3937 | 0.7064 | 0.4574 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Li, L.; Chen, L.; Zhang, Y.; Cheng, L.; Zhou, X.; Yang, X. Land-Use Carbon Emissions Estimation for the Yangtze River Delta Urban Agglomeration Using 1994–2016 Landsat Image Data. Remote Sens. 2018, 10, 1334. https://doi.org/10.3390/rs10091334
Cui Y, Li L, Chen L, Zhang Y, Cheng L, Zhou X, Yang X. Land-Use Carbon Emissions Estimation for the Yangtze River Delta Urban Agglomeration Using 1994–2016 Landsat Image Data. Remote Sensing. 2018; 10(9):1334. https://doi.org/10.3390/rs10091334
Chicago/Turabian StyleCui, Yifan, Long Li, Longqian Chen, Yu Zhang, Liang Cheng, Xisheng Zhou, and Xiaoyan Yang. 2018. "Land-Use Carbon Emissions Estimation for the Yangtze River Delta Urban Agglomeration Using 1994–2016 Landsat Image Data" Remote Sensing 10, no. 9: 1334. https://doi.org/10.3390/rs10091334
APA StyleCui, Y., Li, L., Chen, L., Zhang, Y., Cheng, L., Zhou, X., & Yang, X. (2018). Land-Use Carbon Emissions Estimation for the Yangtze River Delta Urban Agglomeration Using 1994–2016 Landsat Image Data. Remote Sensing, 10(9), 1334. https://doi.org/10.3390/rs10091334