Tracking Fine-Scale Structural Changes in Coastal Dune Morphology Using Kite Aerial Photography and Uncertainty-Assessed Structure-from-Motion Photogrammetry
Abstract
:1. Introduction
- (1)
- How do data from a KAP system processed with SfM-MVS methodology compare to similar data captured from a more stable drone system for sand-dune morphological assessment at a single point in time? Given existing work that allows robust estimates of spatial uncertainty to be obtained for SfM-MVS derived point clouds (e.g., M3C2-PM), we apply such methods to the data produced from the drone survey and a single KAP survey to understand differences in the data produced.
- (2)
- To what extent can a KAP + SfM-MVS methodology capture fine spatial scale (sub-decimetre) changes in sand-dune morphology over time? Applying M3C2-PM analysis techniques, we aim to determine the extent to which significant changes can be detected in sand-dune morphology from multi-temporal KAP-SfM-MVS data products, focussing on three-, six- (intra-annual) and twelve-month (inter-annual) timescales.
- (3)
- Employing such methods, how do beach, dune fronts/foredunes, and footpaths change over time?
2. Materials and Methods
2.1. Study System
2.2. Data Capture
2.3. Data Processing
2.3.1. Sub-Setting Images
2.3.2. Photogrammetry Workflow
2.4. Analysis
3. Results
3.1. Drone versus KAP Survey
3.2. KAP Surveys
3.3. Intra-Annual Variation
3.4. Inter-Annual Variation
3.5. Change within Specific Features
4. Discussion
4.1. Drone versus KAP Survey
4.2. KAP Surveys
4.3. KAP as a Tool for Coastal Monitoring
4.4. Other Sources of Uncertainty
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Access Statement
Acknowledgments
Conflicts of Interest
References
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef] [Green Version]
- Hardisty, J. Beach and nearshore sediment transport. In Sediment Transport and Depositional Processes; Pye, K., Ed.; Blackwell: London, UK, 1994; pp. 216–255. [Google Scholar]
- Hesp, P. Foredunes and blowouts: Initiation, geomorphology and dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- Sigren, J.M.; Figlus, J.; Highfield, W.; Feagin, R.A.; Armitage, A.R. The Effects of Coastal Dune Volume and Vegetation on Storm-Induced Property Damage: Analysis from Hurricane Ike. J. Coast. Res. 2018, 34, 164–173. [Google Scholar] [CrossRef]
- Acosta, A.; Carranza, M.L.; Izzi, C.F. Are there habitats that contribute best to plant species diversity in coastal dunes? Biodivers. Conserv. 2009, 18, 1087–1098. [Google Scholar] [CrossRef]
- Everard, M.; Jones, L.; Watts, B. Have we neglected the societal importance of sand dunes? An ecosystem services perspective. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 476–487. [Google Scholar] [CrossRef]
- Defeo, O.; McLachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.; Jones, A.; Lastra, M.; Scapini, F. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 2009, 81, 1–12. [Google Scholar] [CrossRef]
- Brown, A.C.; McLachlan, A. Sandy shore ecosystems and the threats facing them: Some predictions for the year 2025. Environ. Conserv. 2002, 29, 62–77. [Google Scholar] [CrossRef]
- Santoro, R.; Jucker, T.; Prisco, I.; Carboni, M.; Battisti, C.; Acosta, A.T.R. Effects of Trampling Limitation on Coastal Dune Plant Communities. Environ. Manag. 2012, 49, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Lemauviel, S.; Rozé, F. Response of Three Plant Communities to Trampling in a Sand Dune System in Brittany (France). Environ. Manag. 2003, 31, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Davidson-Arnott, R.; Hesp, P.; Ollerhead, J.; Walker, I.; Bauer, B.; Delgado-Fernandez, I.; Smyth, T. Sediment budget controls on foredune height: Comparing simulation model results with field data. Earth Surf. Process. Landf. 2018, 43, 1798–1810. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Feagin, R.A.; Williams, A.M.; Popescu, S.; Stukey, J.; Washington-Allen, R.A. The Use of Terrestrial Laser Scanning (TLS) in Dune Ecosystems: The Lessons Learned. J. Coast. Res. 2014, 30, 111–119. [Google Scholar] [CrossRef]
- Smith, A.; Gares, P.A.; Wasklewicz, T.; Hesp, P.A.; Walker, I.J. Three years of morphologic changes at a bowl blowout, Cape Cod, USA. Geomorphology 2017, 295, 452–466. [Google Scholar] [CrossRef]
- Schubert, J.E.; Gallien, T.W.; Majd, M.S.; Sanders, B.F. Terrestrial Laser Scanning of Anthropogenic Beach Berm Erosion and Overtopping. J. Coast. Res. 2015, 31, 47–60. [Google Scholar] [CrossRef]
- Buckley, S.J.; Howell, J.A.; Enge, H.D.; Kurz, T.H. Terrestrial laser scanning in geology: Data acquisition, processing and accuracy considerations. J. Geol. Soc. 2008, 165, 625–638. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Westoby, M.J.; Lim, M.; Hogg, M.; Pound, M.J.; Dunlop, L.; Woodward, J. Cost-effective erosion monitoring of coastal cliffs. Coast. Eng. 2018, 138, 152–164. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Levin, N.; Barchyn, T.E.; Baddock, M.C. Remote sensing and spatial analysis of aeolian sand dunes: A review and outlook. Earth Sci. Rev. 2012, 111, 319–334. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef]
- Rader, A.M.; Pickart, A.J.; Walker, I.J.; Hesp, P.A.; Bauer, B.O. Foredune morphodynamics and sediment budgets at seasonal to decadal scales: Humboldt Bay National Wildlife Refuge, California, USA. Geomorphology 2018, 318, 69–87. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Sallenger, A.H., Jr.; List, J.H.; Holman, R.A. Estimation of Shoreline Position and Change Using Airborne Topographic Lidar Data. J. Coast. Res. 2002, 18, 502–513. [Google Scholar] [CrossRef]
- Burningham, H.; French, J. Understanding coastal change using shoreline trend analysis supported by cluster-based segmentation. Geomorphology 2017, 282, 131–149. [Google Scholar] [CrossRef]
- Bazzichetto, M.; Malavasi, M.; Acosta, A.T.R.; Carranza, M.L. How does dune morphology shape coastal EC habitats occurrence? A remote sensing approach using airborne LiDAR on the Mediterranean coast. Ecol. Indic. 2016, 71, 618–626. [Google Scholar] [CrossRef]
- Chust, G.; Galparsoro, I.; Borja, Á.; Franco, J.; Uriarte, A. Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuar. Coast. Shelf Sci. 2008, 78, 633–643. [Google Scholar] [CrossRef]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J. Environ. Manag. 1999, 55, 157–166. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Duffy, J.P.; Anderson, K. A 21st-century renaissance of kites as platforms for proximal sensing. Prog. Phys. Geogr. 2016, 40, 352–361. [Google Scholar] [CrossRef]
- Cunliffe, A.M.; Brazier, R.E.; Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 2016, 183, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Ota, T.; Ogawa, M.; Shimizu, K.; Kajisa, T.; Mizoue, N.; Yoshida, S.; Takao, G.; Hirata, Y.; Furuya, N.; Sano, T.; et al. Aboveground Biomass Estimation Using Structure from Motion Approach with Aerial Photographs in a Seasonal Tropical Forest. Forests 2015, 6, 3882–3898. [Google Scholar] [CrossRef] [Green Version]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Duffy, J.P.; Pratt, L.; Anderson, K.; Land, P.E.; Shutler, J.D. Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone. Estuar. Coast. Shelf Sci. 2018, 200, 169–180. [Google Scholar] [CrossRef]
- Sturdivant, E.J.; Lentz, E.E.; Thieler, E.R.; Farris, A.S.; Weber, K.M.; Remsen, D.P.; Miner, S.; Henderson, R.E. UAS-SfM for Coastal Research: Geomorphic Feature Extraction and Land Cover Classification from High-Resolution Elevation and Optical Imagery. Remote Sens. 2017, 9, 1020. [Google Scholar] [CrossRef]
- Otero, V.; Van De Kerchove, R.; Satyanarayana, B.; Martínez-Espinosa, C.; Fisol, M.A.; Ibrahim, M.R.B.; Ibrahim, S.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia. For. Ecol. Manag. 2018, 411, 35–45. [Google Scholar] [CrossRef]
- Nolet, C.; Van Puijenbroek, M.; Suomalainen, J.; Limpens, J.; Riksen, M. UAV-imaging to model growth response of marram grass to sand burial: Implications for coastal dune development. Aeolian Res. 2018, 31, 50–61. [Google Scholar] [CrossRef]
- Madurapperuma, B.; Close, P.; Fleming, S.; Collin, M.; Thuresson, K.; Lamping, J.; Dellysse, J.; Cortenbach, J. Habitat Mapping of Ma-le’l Dunes Coupling with UAV and NAIP imagery. Proceedings 2018, 2, 368. [Google Scholar] [CrossRef]
- Duffy, J.P.; Cunliffe, A.M.; Debell, L.; Sandbrook, C.; Wich, S.A.; Shutler, J.D.; Myers-smith, I.H.; Varela, M.R.; Anderson, K. Location, location, location: Considerations when using lightweight drones in challenging environments. Remote Sens. Ecol. Conserv. 2018, 4, 7–19. [Google Scholar] [CrossRef]
- Fraser, W.R.; Carlson, J.C.; Duley, P.A.; Holm, E.J.; Patterson, D.L. Using Kite-Based Aerial Photography for Conducting Adélie Penguin Censuses in Antarctica. Waterbirds 1999, 22, 435–440. [Google Scholar] [CrossRef]
- Feurer, D.; Planchon, O.; El Maaoui, M.A.; Slimane, A.; Boussema, M.R.; Pierrot-Deseilligny, M.; Raclot, D. Using kites for 3-D mapping of gullies at decimetre-resolution over several square kilometres: A case study on the Kamech catchment, Tunisia. Nat. Hazards Earth Syst. Sci. 2018, 18, 1567–1582. [Google Scholar] [CrossRef]
- Bryson, M.; Johnson-Roberson, M.; Murphy, R.J.; Bongiorno, D. Kite Aerial Photography for Low-Cost, Ultra-high Spatial Resolution Multi-Spectral Mapping of Intertidal Landscapes. PLoS ONE 2013, 8, e73550. [Google Scholar] [CrossRef] [PubMed]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Natural England St Gothian Sands LNR. Available online: https://designatedsites.naturalengland.org.uk/SiteLNRDetail.aspx?SiteCode=L1122976&SiteName=G&countyCode=6&responsiblePerson=&SeaArea=&IFCAArea= (accessed on 1 March 2018).
- CHDK Development Team Canon Hack Development Kit. Available online: http://chdk.wikia.com/wiki/CHDK (accessed on 17 September 2018).
- James, M.R.; Robson, S.; D’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Harvey, P. Exiftool: Read, Write and Edit Meta Information! Available online: http://owl.phy.queensu.ca/~phil/exiftool/ (accessed on 17 September 2018).
- Baddeley, A.; Rubak, E.; Turner, R. Spatial Point Patterns: Methodology and Applications with R; Chapman and Hall/CRC Press: London, UK, 2015. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2017. [Google Scholar]
- Agisoft LLC Photoscan Professional (1.3.1). 2017. Available online: http://www.agisoft.com/ (accessed on 17 September 2018).
- Pebezma, E.; Bivand, R.; Rowlingson, B.; Gomez-Rubio, V.; Hijmans, R.; Sumner, M.; MacQueen, D.; Lemon, J.; O’Brien, J.; O’Rourke, J. Sp: Classes and Methods for Spatial Data, R Package Version 1.2-5; 2017. Available online: http://www.et.bs.ehu.es/cran/web/packages/sp/index.html (accessed on 17 September 2018).
- CloudCompare (Version 2.10) [GPL Software]. 2017. Available online: https://www.danielgm.net/cc/ (accessed on 17 September 2018).
- Environment Agency. Environment Agency LIDAR Data: Technical Note; Environment Agency: Bristol, UK, 2016.
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Conlin, M.; Cohn, N.; Ruggiero, P. A Quantitative Comparison of Low-Cost Structure from Motion (SfM) Data Collection Platforms on Beaches and Dunes. J. Coast. Res. 2018. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Feagin, R.A.; Figlus, J.; Zinnert, J.C.; Sigren, J.; Martínez, M.L.; Silva, R.; Smith, W.K.; Cox, D.; Young, D.R.; Carter, G. Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Front. Ecol. Environ. 2015, 13, 203–210. [Google Scholar] [CrossRef]
- Autret, R.; Dodet, G.; Suanez, S.; Roudaut, G.; Fichaut, B. Long-term variability of supratidal coastal boulder activation in Brittany (France). Geomorphology 2018, 304, 184–200. [Google Scholar] [CrossRef]
- Bryson, M.; Duce, S.; Harris, D.; Webster, J.M.; Thompson, A.; Vila-Concejo, A.; Williams, S.B. Geomorphic changes of a coral shingle cay measured using Kite Aerial Photography. Geomorphology 2016, 270. [Google Scholar] [CrossRef]
- Seymour, A.C.; Ridge, J.T.; Rodriguez, A.B.; Newton, E.; Dale, J.; Johnston, D.W. Deploying Fixed Wing Unoccupied Aerial Systems (UAS) for Coastal Morphology Assessment and Management. J. Coast. Res. 2018, 34, 704–717. [Google Scholar] [CrossRef]
Survey ID | Date | Survey Duration (GMT) | Platform | Predominant Wind Direction | Wind Speed Range (m s−1) |
---|---|---|---|---|---|
1 | 30 March 2016 | 10:45–11:35 | KAP HQ 1.6 | WNW | 3.6–4.5 |
2 | 30 June 2016 | 08:05–11:50 | KAP HQ 1.6 | W | 4–6.3 |
3 | 13 October 2016 | 10:25–11:00 | KAP HQ 1.6 | E | 6.7 |
4 | 20 January 2017 | 13:50–14:20 | KAP HQ 1.6 | E | 4–4.5 |
5 | 16 June 2017 | 07:45–08:35 | KAP HQ 1.6 | W | 4.5–4.9 |
6 | 12 January 2018 | 10:30–12:00 | KAP HQ 1.6 & 5 | S | 5.8–7.2 |
7 | 12 January 2018 | 12:30–12:55 | 3DR Solo Quadcopter | S | 7.2 |
Precision Estimates | Number of Points | ||||
---|---|---|---|---|---|
X (mm) | Y (mm) | Z (mm) | |||
KAP | Minimum | 3.9 | 3.8 | 5.6 | 467,784 |
Mean | 31.3 | 29.5 | 87.9 | ||
Maximum | 11,505 | 8013.5 | 12,242.1 | ||
Drone | Minimum | 3.5 | 3.6 | 5 | 250,787 |
Mean | 4.9 | 5 | 9 | ||
Maximum | 317.7 | 851.5 | 1517.6 |
Change Period (months) | Survey Pair | M3C2 Distance (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
−7000 to −2000 | −2000 to −1000 | −1000 to −500 | −500 to 0 | 0 to 500 | 500 to 1000 | 1000 to 2000 | 2000 to 7000 | 7000 to 15,000 | ||
3 | 1 & 2 | 0.12 | 0.03 | 0.13 | 9.86 | 89.37 | 0.27 | 0.12 | 0.09 | 0 |
2 & 3 | 0.2 | 0.26 | 0.29 | 10.52 | 84.57 | 2.19 | 1.23 | 0.69 | 0.01 | |
3 & 4 | 0.43 | 0.27 | 0.54 | 39.48 | 55.64 | 1.53 | 1.23 | 0.74 | 0.03 | |
6 | 1 & 3 | 0.03 | 0.02 | 0.03 | 7.85 | 88.64 | 3.19 | 0.16 | 0.09 | 0 |
4 & 5 | 0 | 0 | 0.12 | 81.6 | 18.25 | 0.03 | 0 | 0 | 0 | |
5 & 6 | 0.09 | 0.02 | 0.03 | 1.7 | 96.88 | 0.89 | 0.21 | 0.15 | 0.02 | |
12 | 4 & 6 | 0.12 | 0.21 | 0.69 | 19.7 | 74.25 | 4.44 | 0.37 | 0.08 | 0.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duffy, J.P.; Shutler, J.D.; Witt, M.J.; DeBell, L.; Anderson, K. Tracking Fine-Scale Structural Changes in Coastal Dune Morphology Using Kite Aerial Photography and Uncertainty-Assessed Structure-from-Motion Photogrammetry. Remote Sens. 2018, 10, 1494. https://doi.org/10.3390/rs10091494
Duffy JP, Shutler JD, Witt MJ, DeBell L, Anderson K. Tracking Fine-Scale Structural Changes in Coastal Dune Morphology Using Kite Aerial Photography and Uncertainty-Assessed Structure-from-Motion Photogrammetry. Remote Sensing. 2018; 10(9):1494. https://doi.org/10.3390/rs10091494
Chicago/Turabian StyleDuffy, James P., Jamie D. Shutler, Matthew J. Witt, Leon DeBell, and Karen Anderson. 2018. "Tracking Fine-Scale Structural Changes in Coastal Dune Morphology Using Kite Aerial Photography and Uncertainty-Assessed Structure-from-Motion Photogrammetry" Remote Sensing 10, no. 9: 1494. https://doi.org/10.3390/rs10091494
APA StyleDuffy, J. P., Shutler, J. D., Witt, M. J., DeBell, L., & Anderson, K. (2018). Tracking Fine-Scale Structural Changes in Coastal Dune Morphology Using Kite Aerial Photography and Uncertainty-Assessed Structure-from-Motion Photogrammetry. Remote Sensing, 10(9), 1494. https://doi.org/10.3390/rs10091494