Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Methods
2.3.1. Technical Pathway
2.3.2. Driving Factors
2.3.3. Landscape Pattern Indices
2.3.4. PLUS Model
2.3.5. FLUS Model
2.3.6. Markov Model
3. Results
3.1. The Overall Characteristics of Land Use in Western ECA of Beijing
3.2. Temporal and Spatial Variation of Land Use
3.3. Land-Use Landscape Pattern Change Analysis
3.4. Comparison and Accuracy Evaluation of Simulation Results
3.5. Prediction
4. Discussion
- Restrict new construction land and enhance land use economically. The expansion of construction land in the ECA in western Beijing is potentially insufficiently regulated, resulting in a chaotic spatial distribution that can have greater negative implications on the landscape. Therefore, in the next development plan, controls may be needed to limit the increase in construction land and improve the utilization rate of land resources. At the same time, existing construction land resources in the western suburbs of Beijing could be optimized to reduce damage caused by new construction to the environment.
- Stick to the red line of cultivated land (a cultivated land protection system in China) and protect cultivated land resources. While urbanization is developing and building area is increasing, it also decreases the area of cultivated land around the city. Cultivated land is an important land resource that satisfies people’s most basic food, clothing, housing and transportation needs. The loss of cultivated land will hinder social and economic development. When planning the future land use in the ECA of western Beijing, we must pay attention to protecting the basic status of cultivated land and strictly control the further reduction of cultivated land.
- Increase stakeholder knowledge and innovate suitable sustainable local land-use patterns.
- Control land prices reasonably.
5. Conclusions
- Forest is the main land-use type in this area, accounting for more than half of the area. In contrast, the proportion of water is the smallest. The area of construction land in the study area continued to increase from 2000 to 2020. The landscape is becoming more and more diversified; however, patch connectivity is good, but the landscape fragmentation of water and grassland is increasing from 2000 to 2020.
- When simulating the land-use conditions in the study area, the PLUS model is better than the FLUS model in terms of the numerical accuracy of the simulation results, the quantitative comparison of landscapes and the spatial accuracy.
- The prediction results show that construction land will continue to increase in 2030, forest and cultivated land will continue to decrease and government policies can play a role in land-use changes.
- There is an unsustainable land-use pattern in the ECA of western Beijing, which needs to be adjusted as soon as possible, otherwise it will affect the ecological environment.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, A.X.; Chen, L.J.; Qin, C.Z.; Wang, P.; Liu, J.Z.; Li, R.K.; Cai, Q.G. New paradigm for soil and water conservation: A method based on watershed process modeling and scenario analysis. Chin. J. Appl. Ecol. 2012, 23, 1883–1890. [Google Scholar]
- Hu, Y.F.; Zhang, Y.Z.; Han, Y.Q. Identification and monitoring of desertification lands in China from 2000–2015. Arid. Land Geogr. 2018, 41, 1321–1332. [Google Scholar]
- Jin, G.; Chen, K.; Liao, T.; Zhang, L. Measuring ecosystem services based on government intentions for future land use in Hubei Province: Implications for sustainable landscape management. Landsc. Ecol. 2021, 36, 2025–2042. [Google Scholar] [CrossRef]
- Pekin, B.K.; Pijanowski, B.C. Global land use intensity and the endangerment status of mammal species. Divers. Distrib. 2012, 18, 909–918. [Google Scholar] [CrossRef]
- Shen, G.; Yang, X.C.; Jin, Y.X.; Luo, S.; Xu, B.; Zhou, Q.B. Land use changes in the Zoige Plateau based on the object-oriented method and their effects on landscape patterns. Remote Sens. 2020, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.; Thomas, R.L.; Laurence, H.M.; Cédric, G.; Darrell, N.; Christopher, A.B.; Kristi, S. Exploring subtle land use and land cover changes: A framework for future landscape studies. Landsc. Ecol. 2010, 25, 249–266. [Google Scholar] [CrossRef] [Green Version]
- Kolios, S.; Stylios, C.D. Identification of land cover/land use changes in the greater area of the Preveza peninsula in Greece using Landsat satellite data. Appl. Geogr. 2013, 40, 150–160. [Google Scholar] [CrossRef]
- Wondrade, N.; Dick, Ø.B.; Tveite, H. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa Watershed, Ethiopia. Environ. Monit. Assess. 2014, 186, 1765–1780. [Google Scholar] [CrossRef]
- Wu, T.S.; Feng, F.; Lin, Q.; Bai, H.M. A spatio-temporal prediction of NDVI based on precipitation: An application for grazing management in the arid and semi-arid grasslands. Int. J. Remote Sens. 2020, 41, 2359–2373. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Xiao, M.Z.; Huang, C.B.; Liang, Y.; Yang, Z.T. Land use scenario simulation and ecosystem service management for different regional development models of the Beibu Gulf Area. China. Remote Sens. 2021, 13, 3161. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Huang, M.; Zhu, D.Y.; Altan, O. Integrating remote sensing and a Markov-FLUS model to simulate future land use changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Tadesse, L.; Suryabhagavan, K.V.; Sridhar, G.; Legesse, G. Landuse and landcover changes and Soil erosion in Yezat Watershed, North Western Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Debnath, J.; Das, N.; Ahmed, I.; Bhowmik, M. Channel migration and its impact on land use/land cover using RS and GIS: A study on Khowai River of Tripura, North-East India. Egypt. J. Remote Sens. Space Sci. 2017, 20, 197–210. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre, C.P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Saifullah, K.; Barus, B.; Rustiadi, E. Spatial modelling of land use/cover change (LUCC) in South Tangerang City, Banten. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 54, pp. 012–018. [Google Scholar] [CrossRef]
- Wu, M.; Ren, X.Y.; Che, Y.; Yang, K. A Coupled SD and CLUE-S Model for Exploring the Impact of Land Use Change on Ecosystem Service Value: A Case Study in Baoshan District, Shanghai, China. Environ. Manag. 2015, 56, 402–419. [Google Scholar] [CrossRef] [PubMed]
- Schiff, J.L. Cellular Automata: A Discrete View of the World; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Basse, R.M.; Omrani, H.; Charif, O.; Gerber, P.; Bódis, K. Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl. Geogr. 2014, 53, 160–171. [Google Scholar] [CrossRef]
- Ku, C.A. Incorporating spatial regression model into cellular automata for simulating land use change. Appl. Geogr. 2016, 69, 1–9. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon 2020, 6, e05092. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.S.; Wang, B.Y. Understanding the drivers of sustainable land expansion using a patch-generating simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wu, Q.; Li, H.Q.; Wang, R.S.; Juergen, P.; He, Y.; Wang, M.; Wang, B.H.; Wang, Z. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc. Urban Plan. 2006, 78, 322–333. [Google Scholar] [CrossRef]
- Du, J.F.; Thill, J.C.; Peiser, R.B.; Feng, C.; Chun, C.C. Urban land market and land-use changes in post-reform China: A case study of Beijing. Landsc. Urban Plan. 2014, 124, 118–128. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Zhao, L.; Xiang, W.N.; Li, N.; Lv, L.N.; Yang, X. A coupled model for simulating spatio-temporal dynamics of land-use change: A case study in Changqing, Jinan, China. Landsc Urban Plan. 2012, 106, 51–61. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X.J. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Hu, W.P.; He, J.B. Built-up land-cover change monitoring by remote sensing of urban area in the Pearl River Delta based on GIS. J. Remote Sens. 2003, 7, 201–206. [Google Scholar]
- Li, J.L.; Xu, J.Q.; Li, W.F.; Liu, C. Spatio-temporal characteristics of urbanization area growth in the Yangtze River Delta. Acta Geogr. Sin. 2007, 62, 437–447. [Google Scholar]
- Li, Z.Z.; Cheng, X.Q.; Han, H.R. Analyzing Land-Use Change Scenarios for Ecosystem Services and their Trade-Offs in the Ecological Conservation Area in Beijing, China. Int. J. Environ. Res. Public Health 2020, 17, 8632. [Google Scholar] [CrossRef]
- Gao, B.P.; Li, C.; Wu, Y.M.; Zheng, K.J.; Wu, Y. Landscape ecological risk assessment and influencing factors in ecological conservation area in Sichuan-Yunnan provinces, China. Ying Yong Sheng Tai Xue Bao 2021, 32, 1603–1613. [Google Scholar] [CrossRef]
- The People’s Government of Beijing Municipality. Notice of the Beijing Municipal People’ s Government on the Issuance of the Planning of the Main Functional Areas in Beijing. Available online: http://www.beijing.gov.cn/gongkai/guihua/lswj/yw/201907/t20190701_100164.html (accessed on 17 September 2012).
- Zhu, T.F. Land Use/Cover Change and Their Impact on Water Resource in North China Mountain region: A Case Study in Mentougou District, Beijing. Master’s Thesis, China Agricultural University, Beijing, China, 2014. [Google Scholar]
- Feng, Y.X.; Luo, G.P.; Zhou, D.C.; Han, Q.F.; Lu, L.; Xu, W.Q.; Zhu, L.; Yin, C.Y.; Dai, L.; Li, Y.Z. Effects of land use change on landscape pattern of a typical arid watershed in the recent 50 years: A case study on Manas River Watershed in Xinjiang. Acta Ecol. Sin. 2010, 30, 4295–4305. [Google Scholar]
- Hong, D.C. Analysis of Land Use and Landscape Pattern Change and Its Driving Factors in Kazakhstan. Master’s Thesis, Zhejiang University, Zhejiang, China, 2015. [Google Scholar]
- Pang, G.W. Quantitative Characterization of Human Factors Effecting the Soil Erosion Environmental. Master’s Thesis, Graduate University of Chinese Academy of Sciences, Beijing, China, 2012. [Google Scholar]
- Wang, X.L.; Bao, Y.H. Research methods of land use dynamic change. Prog. Geogr. 1999, 18, 81–87. [Google Scholar]
- Liang, X.; Liu, X.P.; Li, D.; Zhao, H.; Chen, G.Z. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- The People’s Government of Beijing Municipality. Beijing Urban Master Plan (2016–2035). Available online: http://www.beijing.gov.cn/gongkai/guihua/wngh/cqgh/201907/t20190701_100008.html (accessed on 29 September 2017).
- Zhao, X.L.; Zhang, Z.; Wang, X.; Zuo, L.; Liu, B.; Yi, L.; Xu, J.; Wen, Q. Analysis of Chinese cultivated land’s spatial-temporal changes and causes in recent 30 years. Trans. Chin. Soc. Agric. Eng. 2014, 30, 1–11. [Google Scholar]
- Shi, P.J.; Bai, X.M.; Kong, F.; Fang, J.Y.; Gong, D.Y.; Zhou, T.; Guo, Y.; Liu, Y.S.; Dong, W.J.; Wei, Z.G.; et al. Urbanization and air quality as major drivers of altered spatiotemporal patterns of heavy rainfall in China. Landsc. Ecol. 2017, 32, 1723–1738. [Google Scholar] [CrossRef] [Green Version]
- Brend, A.C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.M.; Zhou, D.C.; Li, Y.; Zhang, L.X. An integrated assessment on the warming effects of urbanization and agriculture in highly developed urban agglomerations of China. Sci. Total Environ. 2021, 804, 150119. [Google Scholar] [CrossRef]
- Wei, G.E.; Sun, P.J.; Jiang, S.N.; Shen, Y.; Liu, B.L.; Zhang, Z.K.; Ouyang, X. The Driving Influence of Multi-Dimensional Urbanization on PM2.5 Concentrations in Africa: New Evidence from Multi-Source Remote Sensing Data, 2000–2018. Int. J. Environ. Res. Public Health 2021, 18, 9389. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.G.; Xiang, W.N.; Zhao, J.Z. Urban ecology in China: Historical developments and future directions. Landsc. Urban Plan. 2014, 125, 222–233. [Google Scholar] [CrossRef]
- Lepeška, T.; Wojkowski, J.; Wałęga, A.; Młyński, D.; Radecki-Pawlik, A.; Olah, B. Urbanization—Its Hidden Impact on Water Losses: Prądnik River Basin, Lesser Poland. Water 2020, 12, 1958. [Google Scholar] [CrossRef]
- Wang, Y.J.; Ren, Y.Y.; Song, L.C.; Xiang, Y. Responses of extreme high temperatures to urbanization in the Beijing–Tianjin–Hebei urban agglomeration in the context of a changing climate. Meteorol. Appl. 2021, 28, 2024. [Google Scholar] [CrossRef]
- Hu, G.H.; Li, X.; Zhou, B.B.; Xing, M.; Ma, Q.; Liu, Y.L.; Chen, Y.M.; Liu, X.P. How to minimize the impacts of urban expansion on farmland loss: Developing a few large or many small cities? Landsc. Ecol. 2020, 35, 2487–2499. [Google Scholar] [CrossRef]
- Gong, B.H.; Liu, Z.F. Assessing impacts of land use policies on environmental sustainability of oasis landscapes with scenario analysis: The case of northern China. Landsc. Ecol. 2020, 36, 1913–1932. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, X.; Liu, Y.F.; Lu, Y.C.; Wang, Y.H.; Liu, Y.L. Urban expansion simulation under constraint of multiple ecosystem services (MESs) based on cellular automata (CA)-Markov model: Scenario analysis and policy implications. Land Use Policy 2021, 108, 105667. [Google Scholar] [CrossRef]
- Ma, B.; Tian, G.; Kong, L.; Liu, X.J. How China’s linked urban-rural construction land policy impacts rural landscape patterns: A simulation study in Tianjin, China. Landsc. Ecol. 2018, 33, 1417–1434. [Google Scholar] [CrossRef]
Land Type Number | Land Type Name | Description |
---|---|---|
1 | Grassland | Land types with surface coverage above 10% are mainly natural herbaceous vegetation, such as grassland, meadow and artificial grassland constructed by urban greening. |
2 | Forest | Forest land mainly refers to the land surface covered by trees and shrubs. In the ECA of western Beijing, the coverage of tree crown and shrub is more than 30%. Common tree types include deciduous broad-leaved forest, deciduous coniferous forest, evergreen coniferous forest and mixed forest. Shrub types include mountain shrub, deciduous and evergreen shrub. |
3 | Water | The area covered by liquid water as is displayed on satellite images, such as rivers and lakes. |
4 | Construction land | Human beings need to build artificial surfaces to meet the needs of living space and economic development. Common urban residential areas, villages, industrial and mining production land, traffic land, etc. |
5 | Cultivated land | Land used by rural residents to farm a variety of food crops and cash crops, such as irrigated drylands, vegetable greenhouses and land that grows fruit trees or other economically valuable trees. |
Land-Use Type | Grassland | Forest | Water | Construction Land | Cultivated Land |
---|---|---|---|---|---|
Grassland | 1 | 1 | 0 | 0 | 1 |
Forest | 1 | 1 | 0 | 0 | 1 |
Water | 1 | 1 | 1 | 0 | 1 |
Construction land | 1 | 1 | 0 | 1 | 1 |
Cultivated land | 1 | 1 | 0 | 0 | 1 |
Land-Use Type | Grassland | Forest | Water | Construction Land | Cultivated Land |
---|---|---|---|---|---|
Neighborhood weight | 0.5 | 0.7 | 0.1 | 0.1 | 0.1 |
Land-Use Type | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area/hm2 | Proportion/% | Area/hm2 | Proportion/% | Area/hm2 | Proportion/% | |
Grassland | 49,913.55 | 9.69 | 37,644.30 | 7.30 | 37,845.81 | 7.35 |
Forest | 346,655.25 | 67.26 | 346,481.01 | 67.23 | 348,170.04 | 67.58 |
Water | 2426.85 | 0.47 | 1088.19 | 0.21 | 2349.27 | 0.46 |
Construction land | 21,870.27 | 4.24 | 28,844.01 | 5.60 | 51,410.97 | 9.98 |
Cultivated land | 94,508.37 | 18.34 | 101,316.78 | 19.66 | 75,394.89 | 14.63 |
Total area (hm2) | 515,374.29 | 515,374.29 | 515,374.29 |
Land-Use Type | 2000–2010 (% Change) | 2010–2020 (% Change) | 2000–2020 (% Change) |
---|---|---|---|
Grassland | −2.458 | 0.054 | −1.209 |
Forest | −0.005 | 0.049 | 0.022 |
Water | −5.516 | 11.589 | −0.160 |
Construction land | 3.189 | 7.824 | 6.754 |
Cultivated land | 0.721 | −2.590 | −1.028 |
Overall dynamic | 0.266 | 0.505 | 0.304 |
2000 2020 | Grassland | Forest | Water | Construction Land | Cultivated Land | Total 2020 |
---|---|---|---|---|---|---|
Grassland | 30,191.94 | 3267.09 | 509.58 | 441.27 | 3450.15 | 37,860.03 |
Forest | 5375.07 | 335,275.02 | 114.3 | 87.12 | 7463.52 | 348,315.03 |
Water | 215.19 | 243.99 | 1415.43 | 99.45 | 376.38 | 2350.44 |
Construction land | 5243.22 | 6361.11 | 117.18 | 20,001.15 | 19,715.76 | 51,438.42 |
Cultivated land | 8888.13 | 1508.04 | 270.36 | 1241.28 | 63,502.56 | 75,410.37 |
Total 2000 | 49,913.55 | 346,655.25 | 2426.85 | 21,870.27 | 94,508.37 | 515,374.29 |
Landscape Index | Year | Grassland | Forest | Water | Construction Land | Cultivated Land |
---|---|---|---|---|---|---|
NP | 2000 | 19,721 | 4240 | 255 | 397 | 504 |
2010 | 21,217 | 4279 | 166 | 716 | 639 | |
2020 | 20,148 | 4032 | 99 | 833 | 1266 | |
PD | 2000 | 3.8265 | 0.8227 | 0.0495 | 0.077 | 0.0978 |
2010 | 4.1168 | 0.8303 | 0.0322 | 0.1389 | 0.124 | |
2020 | 3.9109 | 0.7827 | 0.0192 | 0.1617 | 0.2457 | |
LPI | 2000 | 0.4562 | 58.413 | 0.2188 | 0.4758 | 5.5887 |
2010 | 0.3469 | 58.350 | 0.0295 | 0.6134 | 7.7833 | |
2020 | 0.331 | 28.804 | 0.137 | 1.2581 | 6.7998 | |
AI | 2000 | 79.211 | 97.138 | 87.064 | 94.906 | 96.156 |
2010 | 74.1297 | 97.110 | 83.632 | 94.339 | 96.403 | |
2020 | 75.4517 | 97.142 | 90.704 | 94.919 | 94.778 |
Land-Use Type | 2000 SPLIT | 2010 SPLIT | 2020 SPLIT |
---|---|---|---|
Grassland | 8900.71 | 20,823.10 | 20,747.92 |
Forest | 2.91 | 2.92 | 6.15 |
Water | 197,097.68 | 4,145,895.14 | 409,223.17 |
Construction land | 16,916.41 | 9909.91 | 2720.01 |
Cultivated land | 197.68 | 101.39 | 204.30 |
Land-Use Type | Reality 2020 | PLUS Simulation Correct Number | Accuracy (%) | FLUS Simulation Correct Number | Accuracy (%) |
---|---|---|---|---|---|
Grassland | 37,865 | 25,844 | 68.25% | 24952 | 65.90% |
Forest | 348,365 | 331,697 | 95.22% | 331787 | 95.24% |
Water | 2338 | 1698 | 72.63% | 1681 | 71.90% |
Construction land | 51,427 | 26,453 | 51.44% | 25,900 | 50.36% |
Cultivated land | 75,389 | 68,287 | 90.57% | 68,358 | 90.67% |
Landscape Indices | Observed 2020 | PLUS | FLUS |
---|---|---|---|
NP | 7973 | 8463 | 8402 |
LPI | 57.64 | 59.15 | 59.12 |
PARA_MN | 320.29 | 331.41 | 333.67 |
PARA_AM | 45.55 | 44.24 | 43.72 |
PARA_MD | 400 | 400 | 400 |
PARA_RA | 380.54 | 379.57 | 380.54 |
PARA_SD | 99.93 | 90.45 | 89.29 |
PARA_CV | 31.2 | 27.29 | 26.76 |
ENN_MN | 342.06 | 327.27 | 326.37 |
ENN_AM | 225.53 | 216.69 | 214.14 |
ENN_MD | 223.61 | 223.61 | 223.61 |
ENN_RA | 15,599.05 | 15,466.84 | 15,466.84 |
ENN_SD | 467.65 | 447.15 | 446.76 |
ENN_CV | 136.71 | 136.63 | 136.89 |
PLADJ | 88.61 | 88.94 | 89.07 |
2020 2030 | Grassland | Forest | Water | Construction Land | Cultivated Land | Total 2030 |
---|---|---|---|---|---|---|
Grassland | 37,865 | 82 | 17 | 37,964 | ||
Forest | 348,177 | 348,177 | ||||
Water | 6 | 2338 | 683 | 3027 | ||
Construction land | 100 | 51,427 | 16,520 | 68,047 | ||
Cultivated land | 58,169 | 58,169 | ||||
Total 2020 | 37,865 | 348,365 | 2338 | 51,427 | 75,389 | 515,384 |
2020 2030 | Grassland | Forest | Water | Construction Land | Cultivated Land | Total 2030 |
---|---|---|---|---|---|---|
Grassland | 37,865 | 77 | 22 | 37,964 | ||
Forest | 348,177 | 348,177 | ||||
Water | 1 | 2338 | 688 | 3027 | ||
Construction land | 110 | 51,427 | 16,510 | 68,047 | ||
Cultivated land | 58,169 | 58,169 | ||||
Total 2020 | 37,865 | 348,365 | 2338 | 51,427 | 75,389 | 515,384 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, J.; Xiong, N.; Liang, B.; Wang, Z.; Cressey, E.L. Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing. Remote Sens. 2022, 14, 1452. https://doi.org/10.3390/rs14061452
Wang J, Zhang J, Xiong N, Liang B, Wang Z, Cressey EL. Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing. Remote Sensing. 2022; 14(6):1452. https://doi.org/10.3390/rs14061452
Chicago/Turabian StyleWang, Jia, Junping Zhang, Nina Xiong, Boyi Liang, Zong Wang, and Elizabeth L. Cressey. 2022. "Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing" Remote Sensing 14, no. 6: 1452. https://doi.org/10.3390/rs14061452