Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area, Field and Image Data
2.2. Landsat Image Time Series (LITS) Preparation
2.2.1. Image Selection
2.2.2. Cloud and Cloud-Shadow Masking
2.2.3. Radiometric Calibration and Atmospheric Correction
2.2.4. Geometric Correction and Validation
2.2.5. Creating Synthetic Landsat Images using the STARFM Algorithm and Assembling the LITS
2.3. Evaluation of the LITS
2.3.1. Accuracy of Predicted Landsat TM Images
2.3.2. Accuracy of the Time Series
3. Results
3.1. Geometric Consistency of the LITS
3.2. Accuracy of the STARFM Generated Landsat TM Imagery
3.3. Ability of the LITS to Capture Vegetation Phenology
3.4. Comparing LITS and MODIS NDVI Time Series
4. Discussion
4.1. Preparing Landsat Thematic Mapper Images and Choice of MODIS Data Sets
4.2. Accuracy of STARFM Predicted Images and the LITS
5. Conclusions and Future Works
Acknowledgments
References and Notes
- Cohen, W.B.; Goward, S.N. Landsat’s role in ecological applications of remote sensing. Bioscience 2004, 54, 535–545. [Google Scholar]
- Santillan, J.; Makinano, M.; Paringit, E. Integrated Landsat image analysis and hydrologic modeling to detect impacts of 25-year land-cover change on surface runoff in a Philippine watershed. Remote Sens 2011, 3, 1067–1087. [Google Scholar]
- Matejicek, L.; Kopackova, V. Changes in croplands as a result of large scale mining and the associated impact on food security studied using time-series Landsat images. Remote Sens 2010, 2, 1463–1480. [Google Scholar]
- Nagendra, H.; Rocchini, D.; Ghate, R.; Sharma, B.; Pareeth, S. Assessing plant diversity in a dry tropical forest: comparing the utility of Landsat and IKONOS satellite images. Remote Sens 2010, 2, 478–496. [Google Scholar]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens 2004, 25, 1565–1596. [Google Scholar]
- Lu, D.; Mausel, P.; Brondi, E.; Moran, E. Change detection techniques. Int. J. Remote Sens 2004, 25, 2365–2407. [Google Scholar]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ 2007, 110, 370–386. [Google Scholar]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ 2010, 114, 106–115. [Google Scholar]
- Gonzalez-Sanpedro, M.C.; Le Toan, T.; Moreno, J.; Kergoat, L.; Rubio, E. Seasonal variations of leaf area index of agricultural fields retrieved from Landsat data. Remote Sens. Environ 2008, 112, 810–824. [Google Scholar]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ 2006, 105, 142–154. [Google Scholar]
- Maignan, F.; Breon, F.M.; Bacour, C.; Demarty, J.; Poirson, A. Interannual vegetation phenology estimates from global AVHRR measurements—Comparison with in situ data and applications. Remote Sens. Environ 2008, 112, 496–505. [Google Scholar]
- Potter, C.; Tan, P.-N.; Kumar, V.; Kucharik, C.; Klooster, S.; Genovese, V.; Cohen, W.; Healey, S. Recent history of large-scale ecosystem disturbances in North America derived from the AVHRR satellite record. Ecosystems 2005, 8, 808–824. [Google Scholar]
- Hayes, D.J.; Cohen, W.B. Spatial, spectral and temporal patterns of tropical forest cover change as observed with multiple scales of optical satellite data. Remote Sens. Environ 2007, 106, 1–16. [Google Scholar]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free access to Landsat imagery. Science 2008, 320, 1011–1011. [Google Scholar]
- Ju, J.; Roy, D.P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ 2008, 112, 1196–1211. [Google Scholar]
- Huang, C.Q.; Goward, S.N.; Masek, J.G.; Gao, F.; Vermote, E.F.; Thomas, N.; Schleeweis, K.; Kennedy, R.E.; Zhu, Z.L.; Eidenshink, J.C.; Townshend, J.R.G. Development of time series stacks of Landsat images for reconstructing forest disturbance history. Int. J. Dig. Earth 2009, 2, 195–218. [Google Scholar]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens 2006, 44, 2207–2218. [Google Scholar]
- Roy, D.P.; Junchang, J.; Lewis, P.; Schaaf, C.; Feng, G.; Hansen, M.; Lindquist, E. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ 2008, 112, 3112–3130. [Google Scholar]
- Zhu, X.; Jin, C.; Feng, G.; Xuehong, C.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ 2010, 114, 2610–2623. [Google Scholar]
- Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ 2002, 83, 31–49. [Google Scholar]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ 2002, 83, 3–15. [Google Scholar]
- Pohl, C.; Van Genderen, J.L. Multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens 1998, 19, 823–854. [Google Scholar]
- Arai, E.; Shimabukuro, Y.E.; Pereira, G.; Vijaykumar, N.L. A multi-resolution multi-temporal technique for detecting and mapping deforestation in the Brazilian Amazon rainforest. Remote Sens 2011, 3, 1943–1956. [Google Scholar]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Seitz, N.; White, J.C.; Feng, G.; Masek, J.G.; Stenhouse, G. Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens. Environ 2009, 113, 1988–1999. [Google Scholar]
- Liang, L.; Schwartz, M.D.; Fei, S. Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sens. Environ 2011, 115, 143–157. [Google Scholar]
- DEWR. Present Major Vegetation Subgroups - NVIS Stage 1; Version 3.1; Australian Government Department of the Environment and Water Resources: Canberra, ACT, Australia, 2005. [Google Scholar]
- Sun, D.; Hnatiuk, R.J.; Neldner, V.J. Review of vegetation classification and mapping systems undertaken by major forested land management agencies in Australia. Aust. J. Bot 1997, 45, 929–948. [Google Scholar]
- Specht, R.L. The balance between the foliage projective covers of overstorey and understorey strata in Australian vegetation. Aust. J. Ecol 1981, 6, 193–202. [Google Scholar]
- Specht, R.L. Vegetation. In The Australian Environment; Leeper, G.W., Ed.; CSIRO and Melbourne University Press: Melbourne, VIC, Australia, 1970; pp. 44–67. [Google Scholar]
- Roy, D.P.; Lewis, P.; Schaaf, C.B.; Devadiga, S.; Boschetti, L. The global impact of clouds on the production of MODIS bidirectional reflectance model-based composites for terrestrial monitoring. IEEE Geosci. Remote Sens. Lett 2006, 3, 452–456. [Google Scholar]
- Huang, C.Q.; Coward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.L.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ 2010, 114, 183–198. [Google Scholar]
- Green, R.O.; Pavri, B.E.; Chrien, T.G. On-orbit radiometric and spectral calibration characteristics of EO-1 hyperion derived with and underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina. IEEE Trans. Geosci. Remote Sens 2003, 41, 1194–1203. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed.; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- NASA. Landdsat 7 Science Data User’s Hand Book; Landat Project Science Office: Greenbelt, MD, USA, 2000. [Google Scholar]
- Helder, D.L.; Markham, B.L.; Thome, K.J.; Barsi, J.A.; Chander, G.; Malla, R. Updated radiometric calibration for the Landsat-5 Thematic Mapper reflective bands. IEEE Trans. Geosci. Remote Sens 2008, 46, 3309–3325. [Google Scholar]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens 1997, 35, 675–686. [Google Scholar]
- Ziemke, J.R.; Chandra, S.; Duncan, B.N.; Froidevaux, L.; Bhartia, P.K.; Levelt, P.F.; Waters, J.W. Tropospheric ozone determined from aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res.-Atmos 2006, 111, D19303. [Google Scholar]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw 2001, 16, 309–330. [Google Scholar]
- Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens 1988, 9, 1357–1381. [Google Scholar]
- Gillingham, S.S.; Flood, N.; Gill, T.K.; Mitchell, R.M. Limitations of the dense dark vegetation method for aerosol retrieval under Australian conditions. Remote Sens. Lett 2012, 3, 67–76. [Google Scholar]
- Guanter, L.; Gãmez-Chova, L.; Moreno, J. Coupled retrieval of aerosol optical thickness, columnar water vapor and surface reflectance maps from ENVISAT/MERIS data over land. Remote Sens. Environ 2008, 112, 2898–2913. [Google Scholar]
- Davies, W.H.; North, P.R.J.; Grey, W.M.F.; Barnsley, M.J. Improvements in aerosol optical depth estimation using multiangle CHRIS/PROBA images. IEEE Trans. Geosci. Remote Sens 2010, 48, 18–24. [Google Scholar]
- Radhi, M.; Box, M.A.; Box, G.P.; Mitchell, R.M.; Cohen, D.D.; Stelcer, E.; Keywood, M.D. Optical, physical and chemical characteristics of Australian Desert dust aerosols: Results from a field experiment. Atmos. Chem. Phys. Discuss 2009, 9, 25085–25125. [Google Scholar]
- Bhandari, S.; Phinn, S.; Gill, T. Assessing viewing and illumination geometry effects on the MODIS vegetation index (MOD13Q1) time series: Implications for monitoring phenology and disturbances in forest communities in Queensland, Australia. Int. J. Remote Sens 2011, 32, 7513–7538. [Google Scholar]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ 2002, 83, 135–148. [Google Scholar]
- Rueda, C.A.; Greenberg, J.A.; Ustin, S.L. StarSpan: A Tool for Fast Selective Pixel Extraction from Remotely Sensed Data; Center for Spatial Technologies and Remote Sensing (CSTARS), University of California at Davis: Davis, CA, USA, 2005. [Google Scholar]
- Armston, J.D.; Denham, R.J.; Danaher, T.J.; Scarth, P.F.; Moffiet, T.N. Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery. J. Appl. Remote Sens 2009, 3, 033540–033540-28. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ 2002, 83, 195–213. [Google Scholar]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition procedures based on Loess. J. Off. Stat 1990, 6, 3–73. [Google Scholar]
- Jonsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci 2004, 30, 833–845. [Google Scholar]
- Mitchell, R.M.; Campbell, S.K.; Qin, Y. Recent increase in aerosol loading over the Australian arid zone. Atmos. Chem. Phys 2010, 10, 1689–1699. [Google Scholar]
- Bhandari, S. Monitoring Forest Dynamics Using Time Series of Satellite Data in Queensland, Australia. 2011. [Google Scholar]
- Colditz, R.R.; Conrad, C.; Wehrmann, T.; Schmidt, M.; Dech, S. TiSeG: a flexible software tool for time-series generation of MODIS data utilizing the quality assessment science data set. IEEE Trans. Geosci. Remote Sens 2008, 46, 3296–3308. [Google Scholar]
- Tan, B.; Woodcock, C.E.; Hu, J.; Zhang, P.; Abdou, W.A.; Ozdogan, M.; Huang, D.; Yang, W.; Knyazikhin, Y.; Myneni, R.B. The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens. Environ 2006, 105, 98–114. [Google Scholar]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ 2009, 113, 1613–1627. [Google Scholar]
S.N. | Name of Vegetation Community | Area (ha) |
---|---|---|
1 | Brigalow | 9,683 |
2 | Callitris forests and woodlands | 13,223 |
3 | Dry rain forests | 3,898 |
4 | Eucalyptus open forests with a grassy understorey | 78,147 |
5 | Eucalyptus open forests with a shrubby understorey | 9,960 |
6 | Eucalyptus open woodlands with a grassy understorey | 3,934 |
7 | Eucalyptus woodlands with a grassy understorey | 398,399 |
8 | Eucalyptus woodlands with a shrubby understorey | 213,574 |
9 | Regrowth or modified forests and woodlands | 48,968 |
10 | Cleared, non-native vegetation and buildings | 674,426 |
Landsat TM | MODIS | ||
---|---|---|---|
Band No | Band width μm | Band No | Band width μm |
1 | 0.45−0.52 | 3 | 0.459−0.479 |
2 | 0.52−0.60 | 4 | 0.545−0.565 |
3 | 0.63−0.69 | 1 | 0.620−0.670 |
4 | 0.76−0.90 | 2 | 0.841−0.876 |
5 | 1.55−1.75 | 6 | 1.628−1.652 |
7 | 2.08−2.35 | 7 | 2.105−2.155 |
Predicted Image Date | Input Landsat Date 1 | Input Landsat Date 2 | Input MODIS Date 1 | Input MODIS Date 2 | Input MODIS Prediction Date |
---|---|---|---|---|---|
2003/09/05 | 2003/07/19 | 2003/09/21 | 2003/07/12 | 2003/09/14 | 2003/08/29 |
2006/06/25 | 2006/05/24 | 2006/07/11 | 2006/05/17 | 2006/07/04 | 2006/06/18 |
2007/07/30 | 2007/04/09 | 2007/08/31 | 2007/04/07 | 2007/08/29 | 2007/07/28 |
Dates | Vegetation Types | R2 | ||||||
---|---|---|---|---|---|---|---|---|
Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 7 | NDVI | ||
2003/09/05 | Brigalow | 0.73 | 0.86 | 0.90 | 0.85 | 0.93 | 0.94 | 0.82 |
Callitris forests and woodlands | 0.52 | 0.76 | 0.85 | 0.81 | 0.90 | 0.93 | 0.79 | |
Dry rainforests | 0.49 | 0.77 | 0.88 | 0.80 | 0.90 | 0.93 | 0.83 | |
Eucalyptus open forests (gu) | 0.20 | 0.54 | 0.85 | 0.86 | 0.90 | 0.90 | 0.75 | |
Eucalyptus open forests (su) | 0.71 | 0.82 | 0.87 | 0.81 | 0.90 | 0.90 | 0.74 | |
Eucalyptus open woodlands (gu) | 0.56 | 0.72 | 0.86 | 0.80 | 0.92 | 0.92 | 0.80 | |
Eucalyptus woodlands (gu)) | 0.63 | 0.83 | 0.90 | 0.88 | 0.92 | 0.93 | 0.80 | |
Eucalyptus woodlands (su) | 0.58 | 0.74 | 0.87 | 0.89 | 0.90 | 0.91 | 0.76 | |
Cleared, non-native, buildings | 0.77 | 0.88 | 0.92 | 0.88 | 0.90 | 0.92 | 0.80 | |
2006/06/25 | Brigalow | 0.63 | 0.91 | 0.95 | 0.86 | 0.96 | 0.96 | 0.94 |
Callitris forests and woodlands | 0.74 | 0.80 | 0.90 | 0.87 | 0.94 | 0.94 | 0.89 | |
Dry rainforests | 0.08 | 0.59 | 0.81 | 0.86 | 0.93 | 0.95 | 0.89 | |
Eucalyptus open forests (gu) | 0.71 | 0.80 | 0.90 | 0.88 | 0.94 | 0.93 | 0.87 | |
Eucalyptus open forests (su) | 0.70 | 0.79 | 0.89 | 0.88 | 0.93 | 0.94 | 0.86 | |
Eucalyptus open woodlands (gu) | 0.41 | 0.74 | 0.87 | 0.89 | 0.94 | 0.92 | 0.88 | |
Eucalyptus woodlands (gu) | 0.73 | 0.85 | 0.93 | 0.88 | 0.95 | 0.95 | 0.89 | |
Eucalyptus woodlands (su) | 0.74 | 0.84 | 0.92 | 0.88 | 0.95 | 0.94 | 0.88 | |
Cleared, non-native, buildings | 0.83 | 0.90 | 0.94 | 0.86 | 0.95 | 0.95 | 0.92 | |
2007/07/30 | Brigalow | 0.78 | 0.89 | 0.84 | 0.76 | 0.89 | 0.86 | 0.68 |
Callitris forests and woodlands | 0.76 | 0.86 | 0.88 | 0.80 | 0.91 | 0.90 | 0.82 | |
Dry rainforests | 0.30 | 0.44 | 0.58 | 0.50 | 0.77 | 0.77 | 0.76 | |
Eucalyptus open forests (gu) | 0.64 | 0.77 | 0.81 | 0.78 | 0.86 | 0.86 | 0.75 | |
Eucalyptus open forests (su) | 0.78 | 0.88 | 0.84 | 0.78 | 0.88 | 0.86 | 0.66 | |
Eucalyptus open woodlands (gu) | 0.73 | 0.84 | 0.90 | 0.60 | 0.89 | 0.92 | 0.75 | |
Eucalyptus woodlands (gu) | 0.67 | 0.80 | 0.85 | 0.82 | 0.89 | 0.88 | 0.79 | |
Eucalyptus woodlands (su) | 0.53 | 0.65 | 0.75 | 0.74 | 0.84 | 0.85 | 0.78 | |
Cleared, non-native, buildings | 0.77 | 0.85 | 0.87 | 0.79 | 0.85 | 0.87 | 0.74 |
Share and Cite
Bhandari, S.; Phinn, S.; Gill, T. Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia. Remote Sens. 2012, 4, 1856-1886. https://doi.org/10.3390/rs4061856
Bhandari S, Phinn S, Gill T. Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia. Remote Sensing. 2012; 4(6):1856-1886. https://doi.org/10.3390/rs4061856
Chicago/Turabian StyleBhandari, Santosh, Stuart Phinn, and Tony Gill. 2012. "Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia" Remote Sensing 4, no. 6: 1856-1886. https://doi.org/10.3390/rs4061856
APA StyleBhandari, S., Phinn, S., & Gill, T. (2012). Preparing Landsat Image Time Series (LITS) for Monitoring Changes in Vegetation Phenology in Queensland, Australia. Remote Sensing, 4(6), 1856-1886. https://doi.org/10.3390/rs4061856