Evaluation of ALOS PALSAR Imagery for Burned Area Mapping in Greece Using Object-Based Classification
Abstract
:1. Introduction
2. Study Area and Dataset Description
3. Methodology
3.1. Dataset Pre-Processing
3.2. Burned Area Mapping Using Object-Based Image Analysis (OBIA)
3.3. Accuracy Assessment
4. Results and Discussion
4.1. Discrimination between Unburned and Burned Areas
4.2. Classification of Burned Areas
4.3. Classification Results
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Pérez-Cabello, F.; Echeverría, M.T.; Ibarra, P.; de la Riva, J. Effects of Fire on Vegetation, Soil and Hydrogeomorphological Behavior in Mediterranean Ecosystems. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer-Verlang: Berlin/Heidelberg, Germany, 2009; p. 112. [Google Scholar]
- Chuvieco, E. Satellite Observation of Biomass Burning: Implications in Global Change Research. In Earth Observation of Global Change: The Role of Satellite Remote Sensing in Monitoring the Global Environment; Chuvieco, E., Ed.; Springer-Verlang: Berlin/Heidelberg, Germany, 2008; p. 111. [Google Scholar]
- Koutsias, N.; Karteris, M.; Chuvieco, E. The use of intensity-hue-saturation transformation of Landsat-5 thematic mapper data for burned land mapping. Photogramm. Eng. Remote Sens 2000, 66, 829–839. [Google Scholar]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Alleaume, S.; Morisette, J.T.; Roy, D.P.; Petitecolin, F.; Descloitres, J.; Kaufman, Y. Global fire products from MODIS. Remote Sens. Environ 2002, 83, 245–263. [Google Scholar]
- Roy, D.P.; Lewis, P.E.; Justice, C.O. Burned area mapping using multi-temporal moderate spatial resolution data—A bi-directional reflectance model-based expectation approach. Remote Sens. Environ 2002, 83, 263–286. [Google Scholar]
- Mitri, G.H.; Gitas, I.Z. A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery. Int. J. Wildland Fire 2004, 12, 1–10. [Google Scholar]
- Chuvieco, E.; Ventura, G.; Martín, M.P. AVHRR multitemporal compositing techniques for burned land mapping. In. J. Remote Sens 2005, 26, 1013–1018. [Google Scholar]
- Ju, J.; Roy, D.P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ 2008, 112, 1196–1211. [Google Scholar]
- Hoekman, D.H.; Vissers, M.A.M.; Wielaard, N. PALSAR wide-area mapping of Borneo: Methodology and map validation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 605–617. [Google Scholar]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of imaging radars for ecological applications—A review. Remote Sens. Environ 1997, 59, 141–156. [Google Scholar]
- Bourgeau-Chavez, L.L.; Harrell, P.A.; Kasischke, E.S.; French, N.H.F. The detection and mapping of Alaskan wildfires using a spaceborne imaging radar system. Int. J. Remote Sens 1997, 18, 355–373. [Google Scholar]
- Bourgeau-Chavez, L.L.; Kasischke, E.S.; Brunzell, S.; Mudd, J.P.; Tukman, M. Mapping fire scars in global boreal forests using imaging radar data. Int. J. Remote Sens 2002, 23, 4211–4234. [Google Scholar]
- Siegert, F.; Hoffmann, A.A. The 1998 forest fires in East Kalimantan (Indonesia): A quantitative evaluation using high resolution, multitemporal ERS-2 SAR images and NOAA-AVHRR hotspot data. Remote Sens. Environ 2000, 72, 64–77. [Google Scholar]
- Gimeno, M.; San-Miguel-Ayanz, J.; Schmuck, G. Identification of burnt areas in Mediterranean forest environments from ERS-2 SAR time series. Int. J. Remote Sens 2004, 25, 4873–4888. [Google Scholar]
- French, N.H.F.; Kasischke, E.S.; Bourgeau-Chavez, L.L.; Harrel, P.A. Sensitivity of ERS-1 SAR to variations in soil water in fire disturbed boreal forest ecosystems. Int. J. Remote Sens 1996, 17, 3037–3053. [Google Scholar]
- Huang, S.; Siegert, F. Backscatter change on fire scars in Siberian boreal forests in ENVISAT ASAR wide-swath images. IEEE Geosci. Remote Sens. Lett 2006, 3, 154–158. [Google Scholar]
- Kasischke, E.S.; Tanase, M.A.; Bourgeau-Chavez, L.L.; Borr, M. Soil moisture limitations on monitoring boreal forest regrowth using spaceborne L-band SAR data. Remote Sens. Environ 2011, 115, 227–232. [Google Scholar]
- Siegert, F.; Ruecker, G. Use of multitemporal ERS-2 SAR images for identification of burned scars in south-east Asian tropical rainforest. Int. J. Remote Sens 2000, 21, 831–837. [Google Scholar]
- Huang, S.; Siegert, F. ENVISAT multisensor data for fire monitoring and impact assessment. Int. J. Remote Sens 2004, 25, 4411–4416. [Google Scholar]
- Ban, Y.; Hu, H.; Rangel, I.M. Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: Object-based and knowledge-based approach. Int. J. Remote Sens 2010, 31, 1391–1410. [Google Scholar]
- Peters, J.; van Coillie, F.; Westra, T.; de Wulf, R. Synergy of very high resolution optical and radar data for object-based olive grove mapping. Int. J. Geogr. Inf. Sci 2011, 25, 971–989. [Google Scholar]
- Bernhard, E.M.; Stein, E.; Twele, A.; Gähler, M. Synergistic Use of Optical and Radar Data for Rapid Mapping of Forest Fires in the European Mediterranean. Proceedings of ISPRS Workshop 2011, Hannover, Germany, 14–17 July 2011.
- Thiel, C.J.; Thiel, C.; Schmullius, C.C. Operational large-area forest monitoring in Siberia using ALOS PALSAR summer intensities and winter coherence. IEEE Trans. Geosci. Remote Sens 2009, 47, 3993–4000. [Google Scholar]
- Qi, Z.; Gar-On Yeh, A.; Li, X.; Lin, Z. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sens. Environ 2012, 118, 21–39. [Google Scholar]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens 2004, 58, 239–258. [Google Scholar]
- Santoro, M.; Fransson, J.E.S.; Eriksson, L.E.B.; Ulander, L.M.H. Clear-cut detection in Swedish boreal forest using multi-temporal ALOS PALSAR backscatter data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 618–631. [Google Scholar]
- Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett 2009, 36, 1–6. [Google Scholar]
- Lucas, R.; Armston, J.; Fairfax, R.; Fensham, R.; Accad, A.; Carreiras, J.; Kelley, J.; Bunting, P.; Clewley, D.; Bray, S.; et al. An evaluation of the ALOS PALSAR L-band backscatter-above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 576–593. [Google Scholar]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—The potential of combined X- and L-band SAR data use. Remote Sens. Environ 2011, 115, 1260–1271. [Google Scholar]
- Zuo, Y.; Ge, L.; Zhang, K. Evaluation of ALOS PALSAR applicability to generate bushfire scar maps. Proceedings of the 31st Asian Conference on Remote Sensing, Hanoi, Vietnam, 1–5 November 2010.
- Mari, N.; Laneve, G.; Cadau, E.; Porcasi, X. Fire damage assessment in Sardinia: The use of ALOS/PALSAR data for post fire effects management. Eur. J. Remote Sens 2012, 45, 233–241. [Google Scholar]
- Gitas, I.Z.; Polychronaki, A.; Katagis, T.; Mallinis, G. Contribution of remote sensing to disaster management activities: A case study of the large fires in the Peloponnese, Greece. Int. J. Remote Sens 2008, 29, 1847–1853. [Google Scholar]
- CIAT-CSI SRTM Website. Available online: http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp (accessed on 7 August 2013).
- Harrell, P.A.; Bourgeau-Chavez, L.L.; Kasischke, E.S.; French, N.H.F.; Christensen, N.L.J. Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest. Remote Sens. Environ 1995, 54, 247–260. [Google Scholar]
- Bourgeau-Chavez, L.L.; Kasischke, E.S.; Riordan, K.; Brunzell, S.; Nolan, M.; Hyer, E.; Slawski, J.; Medvecz, M.; Walters, T.; Ames, S. Remote monitoring of spatial and temporal surface soil moisture in fire disturbed boreal forest ecosystems with ERS SAR imagery. Int. J. Remote Sens 2007, 28, 2133–2162. [Google Scholar]
- Chavez, P.S., Jr. Image-based atmospheric corrections-revisited and improved. Photogramm. Eng. Remote Sens 1996, 6, 1025–1036. [Google Scholar]
- Sarmap Website. Available online: http://www.sarmap.ch/pdf/SAR-Guidebook.pdf (accessed on 25 September 2013).
- Alaska Satellite Facility. Available online: http://media.asf.alaska.edu/asfmainsite/documents/sci-sar-userguide.pdf (accessed on 25 September 2013).
- Dekker, R.J. Speckle filtering in satellite SAR change detection imagery. Int. J. Remote Sens 1998, 19, 1133–1146. [Google Scholar]
- Almeida-Filho, R.; Shimabukuro, Y.E. Detecting areas disturbed by gold mining activities through JERS-1 SAR images, Roraima State, Brazilian Amazon. Int. J. Remote Sens 2000, 21, 3357–3362. [Google Scholar]
- Bazi, Y.; Bruzzone, L.; Melgani, F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sen 2005, 43, 874–887. [Google Scholar]
- Bovolo, F.; Bruzzone, L. A split-based approach to unsupervised change detection in large-size multitemporal images: Application to tsunami-damage assessment. IEEE Trans. Geosci. Remote Sen 2007, 45, 1658–1670. [Google Scholar]
- Giglio, L.; Csiszar, I.; Restás, Á; Morisette, J.T.; Schroeder, W.; Morton, D.; Justice, C.O. Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens. Environ 2008, 112, 3055–3063. [Google Scholar]
- Rykhus, R.; Lu, Z. Monitoring a boreal wildfire using multi-temporal Radarsat-1 intensity and coherence images. Geomat. Nat. Hazards Risk 2011, 2, 15–32. [Google Scholar]
- Key, C.; Benson, N. Landscape Assessment: Ground Measure of Severity; the Composite Burn Index, and Remote Sensing of Severity, the Normalized Burn Index. In FIREMON: Fire Effects Monitoring and Inventory System; General Technical Report RMRS-GTR-164-CD LA;. Lutes, D., Kean, R., Caratti, J., Key, C., Benson, N., Sutherland, N., Gangi, L., Eds.; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; pp. 1–51. [Google Scholar]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. Int. J. Wildland Fire 2010, 19, 558–569. [Google Scholar] [Green Version]
- Walker, J.S.; Blaschke, T. Object-based land-cover classification for the Phoenix metropolitan area: Optimization vs. transportability. Int. J. Remote Sens 2008, 29, 2021–2040. [Google Scholar]
- Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ 2011, 115, 1003–1012. [Google Scholar]
- Polychronaki, A.; Gitas, I.Z. Burned area mapping in Greece using SPOT-4 HRVIR images and object-based image analysis. Remote Sens 2012, 4, 424–438. [Google Scholar]
- eCognition Developer 8.7 Reference Book; Trimble Documentation; Trimble Germany GmbH: München, Germany, 2011.
- McNairn, H.; Shang, J.; Jiao, X.; Champagne, C. The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification. IEEE Trans. Geosci. Remote Sens 2009, 47, 3981–3992. [Google Scholar]
- French, N.H.F.; Bourgeau-Chavez, L.L.; Wang, Y.; Kasischke, E.S. Initial observations of Radarsat imagery at fire-disturbed sites in interior Alaska. Remote Sens. Environ 1999, 68, 89–94. [Google Scholar]
- Small, D. Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens 2011, 49, 3081–3093. [Google Scholar]
- Kasischke, E.S.; Bourgeau-Chavez, L.L.; Johnstone, J.F. Assessing spatial and temporal variations in surface soil moisture in fire-disturbed black spruce forests in Interior Alaska using spaceborne synthetic aperture radar imagery-Implications for post-fire tree recruitment. Remote Sens. Environ 2007, 108, 42–58. [Google Scholar]
- Ulaby, F.T.; Batlivala, P.P.; Dobson, M.C. Microwave backscatter dependence on surface-roughness, soil-moisture, and soil texture: Part-1 Bare soil. IEEE Trans. Geosci. Remote Sens 1978, 16, 286–295. [Google Scholar]
Study Area | EO Data | Bands (wavelength) | Pixel Size (m) | Acquisition Date | Date of Fire Event |
---|---|---|---|---|---|
Peloponnese | ALOS PALSAR FBD SLC 1 | HH 5, HV 6 polarizations | 25 | 2007-08-08 | 2007-08-30 |
ALOS PALSAR FBD SLC | HH, HV polarizations | 25 | 2007-09-23 | ||
SPOT-4 HRVIR 2 | Green (0.50–0.59 μm), Red (0.61–0.68 μm), NIR 7 (0.78–0.89 μm), SWIR8 (1.58–1.75 μm) | 20 | 2007-07-19 | ||
SPOT-4 HRVIR | Green, Red, NIR, SWIR | 20 | 2007-09-09 | ||
SPOT-5 HRG 3 | Green, Red, NIR, SWIR | 10 | 2007-09-02 | ||
SRTM DEM 4 | 90 | ||||
Rhodes | ALOS PALSAR FBD SLC | HH, HV polarizations | 25 | 2008-05-24 | 2008-07-28 |
ALOS PALSAR FBD SLC | HH, HV polarizations | 25 | 2008-10-09 | ||
SPOT-4 HRVIR 1 | Green, Red, NIR, SWIR | 20 | 2008-07-17 | ||
SPOT-4 HRVIR 1 | Green, Red, NIR, SWIR | 20 | 2009-05-15 | ||
Two IKONOS | Blue (0.445–0.516 μm), Green (0.506–0.595 μm), Red (0.632–0.698 μm), NIR (0.757–0.853 μm) | 1 | 2008-07-31 | ||
SRTM DEM | 90 |
Study Area | Probabilities of Detection | Probabilities of False Alarm |
---|---|---|
Peloponnese | 0.71 | 0.048 |
Rhodes Island | 0.82 | 0.083 |
Accuracies | Peloponnese | Rhodes | |
---|---|---|---|
Probabilities of detection | Forest | 0.77 | 0.83 |
Grassland | 0.72 | 0.81 | |
Agricultural areas | 0.75 | 0.84 | |
Sparsely and Non-vegetated areas | 0.51 | 0.81 | |
Probabilities of false alarm | Forest | 0.01 | 0.02 |
Grassland | 0.01 | 0.02 | |
Agricultural areas | 0.01 | 0.02 | |
Sparsely and Non-vegetated areas | 0.004 | 0.002 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Polychronaki, A.; Gitas, I.Z.; Veraverbeke, S.; Debien, A. Evaluation of ALOS PALSAR Imagery for Burned Area Mapping in Greece Using Object-Based Classification. Remote Sens. 2013, 5, 5680-5701. https://doi.org/10.3390/rs5115680
Polychronaki A, Gitas IZ, Veraverbeke S, Debien A. Evaluation of ALOS PALSAR Imagery for Burned Area Mapping in Greece Using Object-Based Classification. Remote Sensing. 2013; 5(11):5680-5701. https://doi.org/10.3390/rs5115680
Chicago/Turabian StylePolychronaki, Anastasia, Ioannis Z. Gitas, Sander Veraverbeke, and Annekatrien Debien. 2013. "Evaluation of ALOS PALSAR Imagery for Burned Area Mapping in Greece Using Object-Based Classification" Remote Sensing 5, no. 11: 5680-5701. https://doi.org/10.3390/rs5115680
APA StylePolychronaki, A., Gitas, I. Z., Veraverbeke, S., & Debien, A. (2013). Evaluation of ALOS PALSAR Imagery for Burned Area Mapping in Greece Using Object-Based Classification. Remote Sensing, 5(11), 5680-5701. https://doi.org/10.3390/rs5115680