Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. Atmospheric Correction of the Optical Bands
3.2. Monitoring Vegetation Recovery
3.3. LST Estimation
3.4. Burn Severity Estimation
3.5. Statistical Procedures
4. Results and Discussion
4.1. Spatial Pattern of dNBR
4.2. Temporal Dynamics of LST and NDVI Values
4.3. Analysis of fsdLST and fsdNDVI
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kuenzer, C.; Dech, S. Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Springer: London, UK, 2013. [Google Scholar]
- Kustas, W.; Anderson, M. Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteorol 2009, 149, 2071–2081. [Google Scholar]
- Monson, R.; Baldocchi, D. Terrestrial Biosphere-Atmosphere Fluxes; Cambridge University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Bowen, I.S. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev 1926, 27, 779–787. [Google Scholar]
- Montes-Helu, M.; Kolb, T.; Dore, S.; Sullivan, B.; Hart, S.; Koch, G.; Hungate, B. Persistent effects of fire-induced vegetation change on energy partitioning and evapotranspiration in Ponderosa pine forests. Agric.For. Meteorol 2009, 149, 491–500. [Google Scholar]
- Wendt, C.K.; Beringer, J.; Tapper, N.J.; Hutley, L.B. Local boundary-layer development over burnt and unburnt tropical savanna: An observational study. Bound.-Layer Meteorol 2007, 124, 291–304. [Google Scholar]
- Lambin, E.; Goyvaerts, K.; Petit, C. Remotely-sensed indicators of burning efficiency of savannah and forest fires. Int.J. Remote Sens 2003, 24, 3105–3118. [Google Scholar]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; van de Kerchove, R.; Goossens, R. Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire–burn severity using multitemporal MODIS imagery. Int.J. Wildland Fire 2012, 21, 243–256. [Google Scholar]
- Beringer, J.; Hutley, L.; Tapper, N.; Coutts, A.; Kerley, A.; O’grady, A. Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in Northern Australia. Int. J. Wildland Fire 2003, 12, 333–340. [Google Scholar]
- De Santis, A.; Chuvieco, E. Geocbi: A modified version of the composite burn index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ 2009, 113, 554–562. [Google Scholar]
- Gitas, I.Z.; Santis, A.; Mitri, G.H. Remote Sensing of Burn Severity. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 129–148. [Google Scholar]
- Key, C.H.; Benson, N.C. Landscape Assessment. In Firemon: Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 1–55. [Google Scholar]
- Chuvieco, E.; Riaño, D.; Danson, F.M.; Martin, P. Use of a radiative transfer model to simulate the postfire spectral response to burn severity. J. Geophys. Res.: Biogeosci 2006, 111. [Google Scholar] [CrossRef]
- Chuvieco, E.; Cocero, D.; Riaño, D.; Martin, P.; Martıńez-Vega, J.; de la Riva, J.; Pérez, F. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens.Environ 2004, 92, 322–331. [Google Scholar]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int.J. Wildland Fire 2006, 15, 319–345. [Google Scholar]
- Riaño, D.; Chuvieco, E.; Ustin, S.; Zomer, R.; Dennison, P.; Roberts, D.; Salas, J. Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica mountains. Remote Sens.Environ 2002, 79, 60–71. [Google Scholar]
- Landsat Missions. Available online: http://landsat.usgs.gov (accessed on 25 May 2014).
- Tang, H.; Li, Z.-L. Introduction. In Quantitative Remote Sensing in Thermal Infrared; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–4. [Google Scholar]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ 2013, 131, 14–37. [Google Scholar]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens 2001, 22, 3719–3746. [Google Scholar]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Trans. Geosci. Remote Sens 2009, 47, 339–349. [Google Scholar]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res 2004, 108, 46–88. [Google Scholar]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument. Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’03, Toulouse, France, 21–25 July 2003; 3015, pp. 3014–3016.
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. Proc. SPIE 2005, 5882. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Lulla, K.P.; Mausel, P.W. Assessment of vegetation change in a fire-altered forest landscape. Photogramm. Eng. Remote Sens 1990, 56, 371–377. [Google Scholar]
- Kriegler, F.J.; Malila, W.A.; Nalepka, R.F.; Richardson, W. Preprocessing Transformations and Their Effects on Multispectral Recognition. Proceedings of the Sixth International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 13–16 October 1969; pp. 97–131.
- Díaz-Delgado, R.; Lloret, F.; Pons, X. Influence of fire severity on plant regeneration by means of remote sensing imagery. Int.J. Remote Sens 2003, 24, 1751–1763. [Google Scholar]
- Escuin, S.; Navarro, R.; Fernandez, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from Landsat TM/ETM images. Int. J. Remote Sens 2008, 29, 1053–1073. [Google Scholar]
- Brewer, C.K.; Winne, J.C.; Redmond, R.L.; Opitz, D.W.; Mangrich, M.V. Classifying and mapping wildfire severity: A comparison of methods. Photogramm. Eng. Remote Sens 2005, 71, 1311–1320. [Google Scholar]
- Chafer, C.J. A comparison of fire severity measures: An Australian example and implications for predicting major areas of soil erosion. Catena 2008, 74, 235–245. [Google Scholar]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ 2005, 96, 328–339. [Google Scholar]
- Holden, Z.A.; Morgan, P.; Hudak, A.T. Burn severity of areas reburned by wildfires in the Gila National Forest, New Mexico, USA. Fire Ecol 2010, 6, 77–85. [Google Scholar]
- Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Smith, A.M.S.; Lewis, S.A.; Lentile, L.B.; Robichaud, P.R.; Clark, J.T.; McKinley, R.A. The relationship of multispectral satellite imagery to immediate fire effects. Fire Ecol 2007, 3, 64–90. [Google Scholar]
- Cocke, A.E.; Fulé, P.Z.; Crouse, J.E. Comparison of burn severity assessments using differenced normalized burn ratio and ground data. Int. J. Wildland Fire 2005, 14, 189–198. [Google Scholar]
- Hudak, A.T.; Robichaud, P.; Evans, J.S.; Clark, J.; Lannom, K.; Morgan, P.; Stone, C. Field Validation of Burned Area Reflectance Classification (BARC) Products for Post Fire Assessment. In Proceedings of the Tenth Forest Service Remote Sensing Applications Conference, Salt Lake City, UT, USA, 5–9 April 2004; pp. 1–13.
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar]
- Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A. Postfire soil burn severity mapping with hyperspectral image unmixing. Remote Sens. Environ 2007, 108, 467–480. [Google Scholar]
- Allen, J.L.; Sorbel, B. Assessing the differenced normalized burn ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildland Fire 2008, 17, 463–475. [Google Scholar]
- Hall, R.J.; Freeburn, J.; de Groot, W.; Pritchard, J.; Lynham, T.; Landry, R. Remote sensing of burn severity: Experience from Western Canada boreal fires. Int. J. Wildland Fire 2008, 17, 476–489. [Google Scholar]
- Picotte, J.J.; Robertson, K.M. Validation of remote sensing of burn severity in South-Eastern US ecosystems. Int. J. Wildland Fire 2011, 20, 453–464. [Google Scholar]
- Soverel, N.O.; Perrakis, D.D.; Coops, N.C. Estimating burn severity from Landsat dNBR and RdNBR indices across Western Canada. Remote Sens.Environ 2010, 114, 1896–1909. [Google Scholar]
- Wimberly, M.C.; Reilly, M.J. Assessment of fire severity and species diversity in the Southern Appalachians using Landsat TM and ETM+ imagery. Remote Sens.Environ 2007, 108, 189–197. [Google Scholar]
- Schwartz, M.D. Phenology: An Integrative Environmental Science; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Myneni, R.B.; Keeling, C.; Tucker, C.; Asrar, G.; Nemani, R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar]
- Díaz-Delgado, R.; Pons, X. Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995: Analysis of vegetation recovery after fire. For. Ecol. Manag 2001, 147, 67–74. [Google Scholar]
- Viedma, O.; Melia, J.; Segarra, D.; García-Haro, J. Modeling rates of ecosystem recovery after fires by using Landsat TM data. Remote Sens. Environ 1997, 61, 383–398. [Google Scholar]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Harris, S.; Veraverbeke, S.; Hook, S. Evaluating spectral indices for assessing fire severity in chaparral ecosystems (Southern California) using MODIS/ASTER (MASTER) airborne simulator data. Remote Sens 2011, 3, 2403–2419. [Google Scholar]
- Veraverbeke, S.; Harris, S.; Hook, S. Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data. Remote Sens. Environ. 2011, 115, 2702–2709. [Google Scholar]
- Forestal, S.D.I., 3rd; Spanish National Forest Inventory (IFN3). Dirección General de Medio Natural y Política Forestal del Ministerio de Medio Ambiente; Medio Rural y Marino: Madrid, Spain, 2011. [Google Scholar]
- Núñez Corchero, M.; Sosa Cardo, J.A. Climatología de Extremadura (1961–1990); Ministerio de Medio Ambiente: Madrid, Spain, 2001; p. 232. [Google Scholar]
- Gil, L.; Gordo, J.; Alía, R.; Catalán, G.; Pardos, J. Pinus pinaster Aiton en el paisaje vegetal de la peninsula Iberica. Ecología 1990, 1, 469–495. [Google Scholar]
- Miguel Pérez, I.; González Martínez, S.; Alía Miranda, R.; Gil Sánchez, L. Growth phenology and mating system of Maritime pine (Pinus pinaster Aiton) in Central Spain. Investig. Agrar. Sist. Recur. For. 2002, 11, 193–204. [Google Scholar]
- Tapias, R.; Gil, L.; Fuentes-Utrilla, P.; Pardos, J.A. Canopy seed banks in Mediterranean pines of South-Eastern Spain: A comparison between Pinus halepensis mill., P. pinaster ait., P. nigra arn. and P. pinea l. J. Ecol 2001, 89, 629–638. [Google Scholar]
- Schott, J.R.; Hook, S.J.; Barsi, J.A.; Markham, B.L.; Miller, J.; Padula, F.P.; Raqueno, N.G. Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive 1982–2010. Remote Sens. Environ 2012, 122, 41–49. [Google Scholar]
- USGS Global Visualization Viewer. Available online: http://glovis.usgs.gov (accessed on 25 May 2014).
- REDAREX. Available online: http://sw-aperos.juntaex.es/redarex/fs_estaciones.asp?lug=cc (accessed on 25 May 2014).
- SIAR. Available online: http://www.magrama.gob.es/es/agua/temas/gestion-sostenible-de-regadios/sistema-informacion-agroclimatica-regadio/Red-Estaciones-Agroclimaticas.aspx (accessed on 25 May 2014).
- Centro de Descargas de CNIG. Available online: http://centrodedescargas.cnig.es/CentroDescargas (accessed on 25 May 2014).
- ArcGIS Software. Available online: http://www.esri.com/software/arcgis (accessed on 25 May 2014).
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett 2006, 3, 68–72. [Google Scholar]
- ESRL:PSD:PSD Data: NCEP/NCAR Reanalysis Monthly Means and Other Derived Variables. Available online: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surface.html (accessed on 25 May 2014).
- NASA—Space-Based Measurements of Ozone and Air Quality in the Ultraviolet and Visible. Available online: http://ozoneaq.gsfc.nasa.gov/measurements.md (accessed on 25 May 2014).
- Lanorte, A.; Lasaponara, R.; Lovallo, M.; Telesca, L. Fisher–Shannon information plane analysis of SPOT/Vegetation Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance. Int. J. Appl. Earth Obs.Geoinf 2014, 26, 441–446. [Google Scholar]
- Fox, D.; Maselli, F.; Carrega, P. Using SPOT images and field sampling to map burn severity and vegetation factors affecting post forest fire erosion risk. Catena 2008, 75, 326–335. [Google Scholar]
- Petropoulos, G.P.; Griffiths, H.M.; Kalivas, D.P. Quantifying spatial and temporal vegetation recovery dynamics following a wildfire event in a Mediterranean landscape using EO data and GIS. Appl. Geogr. 2014, 50, 120–131. [Google Scholar]
- Butler, B. Precipitable Water at the VLA—1990–1998; MMA Memo: Charlottesville, VA, USA, 1998. [Google Scholar]
- Bolton, D. The computation of equivalent potential temperature. Mon. Weather Rev 1980, 108, 1046–1053. [Google Scholar]
- De Vicente, P.; Pulido, A.D. The Atmosphere in the 40 m RT Environment; Water Vapour and Opacity; 2012-18; IT-OAN: Madrid, Spain, 2012. [Google Scholar]
- Li, Z.-L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Tang, B.-H.; Yan, G. Land surface emissivity retrieval from satellite data. Int. J. Remote Sens 2013, 34, 3084–3127. [Google Scholar]
- Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens 2000, 21, 353–366. [Google Scholar]
- Sobrino, J.A.; Raissouni, N.; Li, Z.-L. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens.Environ 2001, 75, 256–266. [Google Scholar]
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ 1996, 57, 167–184. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from Landsat TM 5. Remote Sens. Environ 2004, 90, 434–440. [Google Scholar]
- Rubio, E.; Caselles, V.; Badenas, C. Emissivity measurements of several soils and vegetation types in the 8–14 μm wave band: Analysis of two field methods. Remote Sens. Environ 1997, 59, 490–521. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Gómez, M.; Ortiz, A.B.; Romaguera, M.; Zaragoza, M.; Julien, Y.; Cuenca, J.; Atitar, M.; et al. Thermal remote sensing in the framework of the SEN2FLEX project: Field measurements, airborne data and applications. Int.J. Remote Sens 2008, 29, 4961–4991. [Google Scholar]
- Choudhury, B.J.; Ahmed, N.U.; Idso, S.B.; Reginato, R.J.; Daughtry, C.S.T. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens. Environ 1994, 50, 1–17. [Google Scholar]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens 1998, 19, 1533–1543. [Google Scholar]
- Van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sens. Environ 2004, 92, 397–408. [Google Scholar]
- De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of simulation vs. empirical models. Remote Sens. Environ 2007, 108, 422–435. [Google Scholar]
- Tanase, M.; de la Riva, J.; Pérez-Cabello, F. Estimating burn severity at the regional level using optically based indices. Can. J. For. Res 2011, 41, 863–872. [Google Scholar]
- Key, C.H.; Benson, N.C. Remote Sensing Measure of Severity: The Normalized Burn Ratio, FIREMON Landscape Assessment (LA) v4, Sampling and Analysis Methods; USFS Rocky Mountain Research Station: Collins, CO, USA, 2004. [Google Scholar]
- Parks, S.; Dillon, G.; Miller, C. A new metric for quantifying burn severity: The relativized burn ratio. Remote Sens 2014, 6, 1827–1844. [Google Scholar]
- Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sens. Environ 2007, 106, 305–325. [Google Scholar]
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Veraverbeke, S.; Coppin, P. Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index. ISPRS J. Photogramm. Remote Sens 2011, 66, 17–27. [Google Scholar] [Green Version]
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.; Goossens, R. The temporal dimension of Differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: The case of the large 2007 Peloponnese wildfires in Greece. Remote Sens. Environ 2010, 114, 2548–2563. [Google Scholar]
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Coppin, P. A pixel based regeneration index using time series similarity and spatial context. Photogramm. Eng. Remote Sens 2010, 76, 673–682. [Google Scholar]
- García-Martín, A.; Pérez-Cabello, F.; de la Riva Fernández, J.; Llovería, R.M. Estimation of crown biomass in the context of forest-fire management in Mediterranean areas. Towar. Oper. Use Remote Sens. For. Fire Manag 2007, 84, 78–82. [Google Scholar]
- Copertino, V.A.; di Pietro, M.; Scavone, G.; Telesca, V. Comparison of algorithms to retrieve land surface temperature from Landsat-7 ETM+ IR data in the Basilicata Ionian band. Tethys 2012, 12, 25–34. [Google Scholar]
- Srivastava, P.K.; Majumdar, T.J.; Bhattacharya, A.K. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Adv. Space Res 2009, 43, 1563–1574. [Google Scholar]
- Vlassova, L.; Perez-Cabello, F.; Nieto, H.; Martín, P.; Riaño, D.; de la Riva, J. Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sens 2014, 6, 4345–4368. [Google Scholar]
- Barbero, M.; Loisel, R.; Quezel, P.; Richardson, D.M.; Romane, F. Pines of the Mediterranean Basin. In Ecology and Biogeography of Pinus; Richardson, D., Ed.; Cambridge University Press: Cambridge, UK, 2000; pp. 153–170. [Google Scholar]
- Pérez-Cabello, F.; Echeverría, M.; Ibarra, P.; Riva, J. Effects of Fire on Vegetation, Soil and Hydrogeomorphological Behavior in Mediterranean Ecosystems. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 111–128. [Google Scholar]
- Junta de Extremadura. Plan de Ordenación de los Recursos Forestales de las Hurdes. In Plan Forestal de Extremadura; Government of Extremadura: Extremadura, Spain, 2011. [Google Scholar]
Date | Months Post-Fire | Sun Azimuth (Degrees) | Sun Elevation (Degrees) | Tair (Mean, °C) | RH (Mean, %) |
---|---|---|---|---|---|
13 July 2009 | 0 (Pre-fire) | 125.0 | 62.4 | 25.3 | 41.6 |
29 July 2009 | 1 | 129.0 | 59.9 | 24.3 | 32.8 |
30 August 2009 | 2 | 141.1 | 52.6 | 28.7 | 23.7 |
15 September 2009 | 3 | 147.3 | 47.9 | 17.9 | 38.6 |
17 October 2009 | 4 | 156.5 | 37.4 | 11.7 | 40.7 |
10 March 2010 | 9 | 146.9 | 40.1 | 5.9 | 39.6 |
11 April 2010 | 10 | 141.8 | 52.9 | 13.4 | 58.0 |
30 June 2010 | 12 | 124.3 | 64.0 | 25.8 | 47.0 |
16 July 2010 | 13 | 126.1 | 62.3 | 24.5 | 41.3 |
1 August 2010 | 14 | 130.3 | 59.6 | 25.8 | 35.2 |
5 November 2010 | 17 | 159.2 | 31.4 | 12.8 | 81.9 |
16 May 2011 | 23 | 132.5 | 61.8 | 18.7 | 56.2 |
1 June 2011 | 24 | 127.9 | 63.9 | 17.7 | 40.1 |
4 August 2011 | 26 | 130.7 | 58.9 | 25.8 | 45.8 |
5 September 2011 | 27 | 142.9 | 50.9 | 20.2 | 47.3 |
LST | 2009 | 2010 | 2011 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Severity | Date | Mean | SD | Min | Max | Date | Mean | SD | Min | Max | Date | Mean | SD | Min | Max |
UB | 0713 | 30.84 | 4.30 | 21.34 | 42.80 | 0310 | 9.84 | 4.1 | 0.54 | 18.55 | 0516 | 25.99 | 3.60 | 17.82 | 35.89 |
LS | 0713 | 31.04 | 3.23 | 21.39 | 38.09 | 0310 | 11.93 | 3.93 | 0.86 | 21.08 | 0516 | 28.26 | 3.55 | 18.13 | 38.20 |
MLS | 0713 | 30.10 | 2.74 | 20.75 | 37.47 | 0310 | 13.7 | 4.26 | 0.45 | 22.4 | 0516 | 30.29 | 3.50 | 18.01 | 39.69 |
MHS | 0713 | 29.23 | 2.42 | 20.70 | 36.96 | 0310 | 14.38 | 4.87 | 0.89 | 23.18 | 0516 | 31.34 | 3.80 | 18.56 | 39.26 |
HS | 0713 | 27.70 | 2.05 | 21.33 | 36.50 | 0310 | 14.82 | 5.96 | 1.15 | 23.88 | 0516 | 32.32 | 4.37 | 21.12 | 40.26 |
UB | 0729 | 36.61 | 5.56 | 25.32 | 49.37 | 0411 | 24.34 | 4.12 | 14.78 | 35.17 | 0601 | 23.12 | 3.05 | 15.97 | 30.06 |
LS | 0729 | 40.59 | 5.06 | 24.62 | 50.85 | 0411 | 27.8 | 4.3 | 15.1 | 40.09 | 0601 | 24.87 | 2.65 | 16.46 | 30.18 |
MLS | 0729 | 43.23 | 4.91 | 25.08 | 53.74 | 0411 | 31.06 | 4.32 | 15.31 | 41.53 | 0601 | 26.28 | 2.40 | 16.75 | 33.98 |
MHS | 0729 | 45.87 | 4.93 | 26.52 | 55.41 | 0411 | 32.79 | 4.85 | 16.48 | 42.01 | 0601 | 26.87 | 2.61 | 16.72 | 33.87 |
HS | 0729 | 47.29 | 4.94 | 29.69 | 56.58 | 0411 | 34.36 | 5.83 | 19.15 | 44.55 | 0601 | 27.54 | 2.96 | 19.32 | 33.89 |
UB | 0830 | 37.18 | 4.90 | 26.12 | 47.06 | 0630 | 32.59 | 4.72 | 19.44 | 45.12 | 0804 | 26.57 | 5.41 | 8.55 | 39.43 |
LS | 0830 | 40.17 | 4.42 | 26.85 | 48.66 | 0630 | 35.75 | 4.58 | 18.72 | 47.39 | 0804 | 28.46 | 5.25 | 2.28 | 37.12 |
MLS | 0830 | 42.19 | 4.59 | 26.91 | 52.41 | 0630 | 39.06 | 3.98 | 24.22 | 47.41 | 0804 | 30.12 | 4.91 | 11.91 | 39.76 |
MHS | 0830 | 44.22 | 4.84 | 27.07 | 53.65 | 0630 | 40.45 | 3.91 | 25.17 | 49.21 | 0804 | 30.40 | 4.78 | 5.72 | 40.64 |
HS | 0830 | 45.02 | 5.14 | 29.60 | 53.79 | 0630 | 41.42 | 4.11 | 30.45 | 49.76 | 0804 | 30.35 | 4.99 | 11.33 | 39.70 |
UB | 0915 | 23.84 | 4.84 | 13.83 | 35.18 | 0716 | 33.13 | 5.09 | 23.05 | 44.03 | 0905 | 24.27 | 4.10 | 15.47 | 32.49 |
LS | 0915 | 26.35 | 4.17 | 14.18 | 34.12 | 0716 | 36.64 | 4.71 | 23.52 | 46.59 | 0905 | 26.38 | 3.61 | 15.22 | 32.86 |
MLS | 0915 | 28.01 | 4.21 | 13.71 | 36.13 | 0716 | 39.81 | 3.88 | 24.19 | 47.91 | 0905 | 27.86 | 3.37 | 15.10 | 35.36 |
MHS | 0915 | 29.14 | 4.42 | 14.72 | 39.65 | 0716 | 41.2 | 3.79 | 24.22 | 48.22 | 0905 | 28.28 | 3.69 | 15.18 | 36.06 |
HS | 0915 | 30.00 | 4.93 | 15.01 | 39.66 | 0716 | 41.84 | 4.15 | 30.14 | 48.34 | 0905 | 28.59 | 4.46 | 16.19 | 35.88 |
UB | 1017 | 21.80 | 5.58 | 10.21 | 33.69 | 0801 | 36.51 | 4.87 | 26.37 | 46.65 | |||||
LS | 1017 | 24.51 | 5.15 | 11.03 | 36.10 | 0801 | 39.66 | 4.47 | 27 | 49.62 | |||||
MLS | 1017 | 27.04 | 5.71 | 11.04 | 39.91 | 0801 | 42.61 | 3.71 | 28.02 | 50.58 | |||||
MHS | 1017 | 28.88 | 6.72 | 10.16 | 42.69 | 0801 | 43.92 | 3.6 | 28.64 | 50.65 | |||||
HS | 1017 | 29.27 | 7.79 | 10.16 | 41.73 | 0801 | 44.47 | 3.87 | 33.88 | 50.76 | |||||
UB | 1105 | 17.24 | 3.46 | 9.82 | 26.75 | ||||||||||
LS | 1105 | 19.1 | 3.9 | 9.81 | 31.36 | ||||||||||
MLS | 1105 | 21.05 | 4.7 | 9.35 | 31.94 | ||||||||||
MHS | 1105 | 21.83 | 5.61 | 8.13 | 33.2 | ||||||||||
HS | 1105 | 22.55 | 6.85 | 8.12 | 33.61 |
NDVI | 2009 | 2010 | 2011 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | Date | Mean | SD | Min | Max | Date | Mean | SD | Min | Max | Date | Mean | SD | Min | Max |
UB | 0713 | 0.46 | 0.14 | 0.13 | 0.74 | 0310 | 0.50 | 0.13 | 0.14 | 0.76 | 0516 | 0.52 | 0.13 | 0.15 | 0.80 |
LS | 0713 | 0.45 | 0.12 | 0.15 | 0.74 | 0310 | 0.38 | 0.12 | 0.13 | 0.73 | 0516 | 0.48 | 0.11 | 0.22 | 0.80 |
MLS | 0713 | 0.49 | 0.10 | 0.21 | 0.74 | 0310 | 0.25 | 0.08 | 0.03 | 0.71 | 0516 | 0.43 | 0.10 | 0.19 | 0.72 |
MHS | 0713 | 0.55 | 0.07 | 0.35 | 0.79 | 0310 | 0.19 | 0.06 | 0.03 | 0.47 | 0516 | 0.44 | 0.09 | 0.21 | 0.80 |
HS | 0713 | 0.63 | 0.04 | 0.44 | 0.78 | 0310 | 0.16 | 0.04 | 0.08 | 0.38 | 0516 | 0.41 | 0.10 | 0.21 | 0.76 |
UB | 0729 | 0.44 | 0.15 | 0.13 | 0.75 | 0411 | 0.49 | 0.13 | 0.11 | 0.82 | 0601 | 0.52 | 0.13 | 0.17 | 0.82 |
LS | 0729 | 0.34 | 0.12 | 0.10 | 0.73 | 0411 | 0.37 | 0.12 | 0.05 | 0.75 | 0601 | 0.48 | 0.12 | 0.23 | 0.80 |
MLS | 0729 | 0.25 | 0.09 | 0.05 | 0.58 | 0411 | 0.25 | 0.09 | 0.11 | 0.61 | 0601 | 0.43 | 0.09 | 0.21 | 0.71 |
MHS | 0729 | 0.18 | 0.07 | 0.07 | 0.48 | 0411 | 0.19 | 0.06 | 0.09 | 0.51 | 0601 | 0.45 | 0.09 | 0.19 | 0.82 |
HS | 0729 | 0.14 | 0.04 | 0.07 | 0.34 | 0411 | 0.16 | 0.04 | 0.08 | 0.49 | 6001 | 0.43 | 0.10 | 0.21 | 0.80 |
UB | 0830 | 0.42 | 0.15 | 0.10 | 0.72 | 0630 | 0.49 | 0.14 | 0.16 | 0.76 | 0804 | 0.45 | 0.13 | 0.13 | 0.77 |
LS | 0830 | 0.32 | 0.11 | 0.10 | 0.69 | 0630 | 0.39 | 0.13 | 0.08 | 0.79 | 0804 | 0.39 | 0.10 | 0.18 | 0.74 |
MLS | 0830 | 0.24 | 0.07 | 0.09 | 0.59 | 0630 | 0.29 | 0.09 | 0.13 | 0.64 | 0804 | 0.36 | 0.07 | 0.18 | 0.70 |
MHS | 0830 | 0.19 | 0.05 | 0.09 | 0.44 | 0630 | 0.27 | 0.08 | 0.13 | 0.76 | 0804 | 0.38 | 0.07 | 0.18 | 0.73 |
HS | 0830 | 0.17 | 0.03 | 0.09 | 0.30 | 0630 | 0.25 | 0.07 | 0.13 | 0.74 | 0804 | 0.39 | 0.07 | 0.21 | 0.69 |
UB | 0915 | 0.44 | 0.14 | 0.11 | 0.71 | 0716 | 0.49 | 0.16 | 0.10 | 0.80 | 0905 | 0.50 | 0.14 | 0.11 | 0.79 |
LS | 0915 | 0.34 | 0.11 | 0.13 | 0.70 | 0716 | 0.37 | 0.14 | −0.06 | 0.81 | 0905 | 0.43 | 0.12 | 0.17 | 0.78 |
MLS | 0915 | 0.25 | 0.07 | 0.09 | 0.53 | 0716 | 0.27 | 0.09 | 0.11 | 0.63 | 0905 | 0.40 | 0.09 | 0.18 | 0.71 |
MHS | 0915 | 0.21 | 0.05 | 0.07 | 0.52 | 0716 | 0.25 | 0.08 | 0.11 | 0.76 | 0905 | 0.42 | 0.08 | 0.20 | 0.80 |
HS | 0915 | 0.19 | 0.03 | 0.07 | 0.32 | 0716 | 0.24 | 0.07 | 0.11 | 0.73 | 0905 | 0.44 | 0.08 | 0.20 | 0.75 |
UB | 1017 | 0.46 | 0.16 | 0.11 | 0.76 | 0801 | 0.46 | 0.14 | 0.13 | 0.74 | |||||
LS | 1017 | 0.35 | 0.12 | 0.12 | 0.71 | 0801 | 0.35 | 0.13 | 0.02 | 0.74 | |||||
MLS | 1017 | 0.26 | 0.08 | 0.09 | 0.56 | 0801 | 0.26 | 0.08 | 0.11 | 0.61 | |||||
MHS | 1017 | 0.21 | 0.06 | 0.09 | 0.61 | 0801 | 0.25 | 0.07 | 0.12 | 0.73 | |||||
HS | 1017 | 0.18 | 0.04 | 0.04 | 0.39 | 0801 | 0.24 | 0.06 | 0.11 | 0.71 | |||||
UB | 1105 | 0.55 | 0.14 | 0.19 | 0.82 | ||||||||||
LS | 1105 | 0.44 | 0.13 | 0.16 | 0.82 | ||||||||||
MLS | 1105 | 0.36 | 0.10 | 0.05 | 0.80 | ||||||||||
MHS | 1105 | 0.36 | 0.09 | 0.16 | 0.67 | ||||||||||
HS | 1105 | 0.36 | 0.10 | −500.10 | 0.73 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vlassova, L.; Pérez-Cabello, F.; Mimbrero, M.R.; Llovería, R.M.; García-Martín, A. Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images. Remote Sens. 2014, 6, 6136-6162. https://doi.org/10.3390/rs6076136
Vlassova L, Pérez-Cabello F, Mimbrero MR, Llovería RM, García-Martín A. Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images. Remote Sensing. 2014; 6(7):6136-6162. https://doi.org/10.3390/rs6076136
Chicago/Turabian StyleVlassova, Lidia, Fernando Pérez-Cabello, Marcos Rodrigues Mimbrero, Raquel Montorio Llovería, and Alberto García-Martín. 2014. "Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images" Remote Sensing 6, no. 7: 6136-6162. https://doi.org/10.3390/rs6076136
APA StyleVlassova, L., Pérez-Cabello, F., Mimbrero, M. R., Llovería, R. M., & García-Martín, A. (2014). Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images. Remote Sensing, 6(7), 6136-6162. https://doi.org/10.3390/rs6076136