Retrieval of Soil Water Content in Saline Soils from Emitted Thermal Infrared Spectra Using Partial Linear Squares Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Designs
Sample | pH | EC (mS/cm) | Total Salt (mg/g) | Cl− (mg/g) | SO42− (mg/g) | Ca2+ (mg/g) | K+ (mg/g) | Mg2+ (mg/g) | Na+ (mg/g) | CO32− (mg/g) | HCO3− (mg/g) |
---|---|---|---|---|---|---|---|---|---|---|---|
>2 mm | 8.64 | 4.86 | 22.70 | 0.05 | 13.08 | 1.64 | 0.20 | 0.05 | 5.11 | 0.00 | 0.18 |
0.2–2 mm | 8.70 | 5.79 | 27.20 | 0.03 | 15.69 | 1.65 | 0.20 | 0.05 | 6.47 | 0.00 | 0.18 |
0–0.2 mm | 8.40 | 6.27 | 29.40 | 0.04 | 16.40 | 2.09 | 0.20 | 0.05 | 6.96 | 0.00 | 0.14 |
Aeolian sandy soil | 9.09 | 0.28 | 1.43 | 0.04 | 0.21 | 0.07 | 0.09 | 0.02 | 0.31 | 0.11 | 0.31 |
2.2. Spectral Emission Recording
2.3. Partial Least Squares Regression
3. Results
3.1. General Patterns of Emissivity at Different Salts and Water Conditions
3.2. Correlations between Soil Water Contents and Original or First Derivative Spectra
3.3. Partial Least Squares Regression Models
Spectra Form | Bands | PC | R2 | RMSE | AICc | RPD |
---|---|---|---|---|---|---|
Original | 30 | 16 | 0.865 | 2.266 | 15.656 | 2.53 |
17 | 8 | 0.802 | 2.743 | 9.866 | 2.01 | |
3 | 3 | 0.526 | 4.242 | 7.401 | 1.05 | |
First-Order Derivate | 31 | 9 | 0.894 | 2.005 | 16.242 | 2.91 |
22 | 8 | 0.861 | 2.300 | 11.654 | 2.49 | |
13 | 6 | 0.804 | 2.728 | 8.761 | 2.03 | |
11 | 7 | 0.798 | 2.767 | 8.325 | 1.97 | |
7 | 5 | 0.714 | 3.294 | 7.702 | 1.58 |
Er | Intercept | Wavelength (μm) | ||
---|---|---|---|---|
8.813 | 8.533 | 8.450 | ||
Coefficients | –293.80 | 3687.86 | –6160.49 | 2774.75 |
Band (μm) | PC1 | PC2 | PC3 |
---|---|---|---|
8.813 | 0.64 | 0.75 | –0.13 |
8.533 | 0.53 | –0.56 | –0.64 |
8.450 | 0.55 | –0.34 | 0.76 |
DE | Intercept | Wavelength (μm) | ||||||
---|---|---|---|---|---|---|---|---|
10.640 | 8.703 | 8.596 | 8.097 | 12.924 | 11.294 | 8.769 | ||
Coefficients | 1.52 | –569.02 | 277.77 | 163.14 | 159.72 | 540.49 | –441.37 | 169.32 |
Band (μm) | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
10.640 | –2.53 | –2.59 | –1.27 | –2.14 | –0.18 |
8.703 | 7.24 | –0.64 | 5.90 | –8.08 | 2.91 |
8.596 | 4.09 | 5.87 | –1.17 | 2.75 | –6.43 |
8.097 | 11.30 | –9.33 | 0.22 | 3.43 | –1.86 |
12.924 | 0.60 | 0.42 | 1.30 | 1.28 | 1.03 |
11.294 | –0.09 | –1.66 | –0.86 | –1.74 | –0.54 |
8.769 | 6.51 | 5.32 | –6.82 | 0.33 | 3.85 |
4. Discussion
4.1. Thermal Infrared vs. Visible-Near Infrared and Microwave
4.2. Original vs. First-Order Derivative
Er | SW | 8.813 | 8.533 | 8.450 |
---|---|---|---|---|
SW | 1.00 | |||
8.813 | 0.50 | 1.00 | ||
8.533 | 0.35 | 0.96 | 1.00 | |
8.450 | 0.43 | 0.96 | 0.98 | 1.00 |
DE | SW | 10.640 | 8.703 | 8.596 | 8.097 | 12.924 | 11.294 | 8.769 |
---|---|---|---|---|---|---|---|---|
SW | 1.00 | |||||||
10.640 | –0.41 | 1.00 | ||||||
8.703 | 0.16 | 0.09 | 1.00 | |||||
8.596 | 0.42 | –0.18 | –0.28 | 1.00 | ||||
8.097 | 0.27 | –0.02 | 0.25 | –0.08 | 1.00 | |||
12.924 | 0.27 | –0.08 | –0.01 | 0.15 | 0.18 | 1.00 | ||
11.294 | –0.19 | 0.13 | –0.07 | 0.05 | 0.06 | 0.14 | 1.00 | |
8.769 | 0.43 | –0.34 | –0.03 | 0.35 | 0.02 | 0.18 | 0.07 | 1.00 |
4.3. Potential Applications at Large Scale
Sensor | Satellite | Band (μm) | Spatial Resolution (m) |
---|---|---|---|
ASTER | EOS | 8.125–8.475, 8.475–8.825, 8.925–9.275, 10.25–10.95, 10.95–11.65 | 90 |
AVHRR | NOAA | 10.3–11.3, 11.5–12.5 | 1100 |
MODIS | EOS | 8.4–8.7, 9.58–9.88, 10.78–11.28, 11.77–12.27, 13.185–13.485, 13.485–13.785, 13.785–14.085, 14.085–14.385 | 1000 |
ETM+ | Landsat | 10–12.9 | 60 |
TM6 | Landsat | 10.4–12.5 | 120 |
IRS | HJ-1A/B | 10.5–12.5 | 300 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mganga, K.Z.; Musimba, N.K.R.; Nyangito, M.M.; Nyariki, D.M.; Mwangombe, A.W.; Ekaya, W.N.; Muiru, W.M.; Clavel, D.; Francis, J.; von Kaufmann, R. The role of moisture in the successful rehabilitation of denuded patches of a semi-arid environment in Kenya. J. Environ. Sci. Technol. 2010, 3, 195–207. [Google Scholar] [CrossRef]
- Dehaan, R.L.; Taylor, G.R. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sens. Environ. 2002, 80, 406–417. [Google Scholar] [CrossRef]
- Kerr, Y.H. Soil moisture from space: Where are we? Hydrogeol. J. 2007, 15, 117–120. [Google Scholar] [CrossRef]
- Kaleita, A.L.; Tian, L.F.; Hirschi, M.C. Relationship between soil moisture content and soil surface reflectance. T Asae. 2005, 48, 1979–1986. [Google Scholar] [CrossRef]
- Dante, E.M.; Dhruba, P.S. The use of hyperspectral data in identifying ‘desert-like’ soil surface features in Tabernas area, southeast Spain. In 22nd Asian conference on Remote Sensing, Singapore, 5–9 November 2001; p. 5.
- Zhang, D.J.; Tang, R.L.; Tang, B.H.; Wu, H.; Li, Z.L. A simple method for soil moisture determination from LST-VI feature space using nonlinear interpolation based on thermal infrared remotely sensed data. IEEE J.-Stars 2015, 8, 638–648. [Google Scholar] [CrossRef]
- Norouzi, H.; Temimi, M.; Khanbilvardi, R. Using global land surface emissivity as soil moisture indicator. Iahs.-Aish P 2012, 352, 46–49. [Google Scholar]
- Rahimzadeh-Bajgiran, P.; Berg, A.A.; Champagne, C.; Omasa, K. Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS J. Photogramm. Remote Sens. 2013, 83, 94–103. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Franch, B.; Mattar, C.; Jiménez-Muñoz, J.C.; Corbari, C. A method to estimate soil moisture from Airborne Hyperspectral Scanner (AHS) and ASTER data: Application to SEN2FLEX and SEN3EXP campaigns. Remote Sens. Environ. 2012, 117, 415–428. [Google Scholar] [CrossRef]
- Williams, M.S.; Kvien, C.; Allam, G.K.; Luna, R.; Kincaid, R.; Sullivan, D.G.; Yamamoto, K.; Giraldo, M.; Bosch, D.D.; Lewis, M.; et al. Remote sensing of soil moisture using airborne hyperspectral data. GISci. Remote Sens. 2011, 48, 522–540. [Google Scholar]
- Champagne, C.; Davidson, A.; Cherneski, P.; L’Heureux, J.; Hadwen, T. Monitoring agricultural risk in Canada using l-band passive microwave soil moisture from SMOS. J. Hydrometeorol. 2015, 16, 5–18. [Google Scholar] [CrossRef]
- Shafian, S.; Maas, S. Index of soil moisture using raw Landsat image digital count data in Texas high plains. Remote Sens. 2015, 7, 2352–2372. [Google Scholar] [CrossRef]
- Romshoo, S.A. Geostatistical analysis of soil moisture measurements and remotely sensed data at different spatial scales. Environ. Geol. 2004, 45, 339–349. [Google Scholar] [CrossRef]
- Lakhankar, T.; Jones, A.S.; Combs, C.L.; Sengupta, M.; Haar, T.H.V.; Khanbilvardi, R. Analysis of large scale spatial variability of soil moisture using a geostatistical method. Sensors 2010, 10, 913–932. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.T.; Luo, J.C.; Shi, Z.; Li, J.L. An experimental study on paddy soil moisture inversion based on emissive hyperspectra. In Proceedings of the 2012 First International Conference on Agro-Geoinformatics, Shanghai, China, 2–4 August 2012; pp. 1–5.
- Li, B.; Rodell, M. Spatial variability and its scale dependency of observed and modeled soil moisture over different climate regions. Hydrol. Earth Syst. Sci. 2013, 17, 1177–1188. [Google Scholar] [CrossRef]
- Parde, M.; Zribi, M.; Wigneron, J.P.; Dechambre, M.; Fanise, P.; Kerr, Y.; Crapeau, M.; Saleh, K.; Calvet, J.C.; Albergel, C.; et al. Soil moisture estimations based on airborne carols l-band microwave data. Remote Sens. 2011, 3, 2591–2604. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.Y.; Hong, Y.; Qin, Q.M.; Basara, J.B.; Mao, K.B.; Wang, D. A semiphysical microwave surface emission model for soil moisture retrieval. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4079–4090. [Google Scholar] [CrossRef]
- Liu, W.D.; Baret, F.; Gu, X.F.; Tong, Q.X.; Zheng, L.F.; Zhang, B. Relating soil surface moisture to reflectance. Remote Sens. Environ. 2002, 81, 238–246. [Google Scholar] [CrossRef]
- Wang, Q.; Li, P.; Pu, Z.; Chen, X. Calibration and validation of salt-resistant hyperspectral indices for estimating soil moisture in arid land. J. Hydrol. 2011, 408, 276–285. [Google Scholar] [CrossRef]
- Oltra-Carrió, R.; Baup, F.; Fabre, S.; Fieuzal, R.; Briottet, X. Improvement of soil moisture retrieval from hyperspectral VNIR-SWIR data using clay content information: From laboratory to field experiments. Remote Sens. 2015, 7, 3184–3205. [Google Scholar] [CrossRef]
- Jackson, T.J.; Le Vine, D.M.; Hsu, A.Y.; Oldak, A.; Starks, P.J.; Swift, C.T.; Isham, J.D.; Haken, M. Soil moisture mapping at regional scales using microwave radiometry: The southern great plains hydrology experiment. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2136–2151. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Subpixel variability of remotely sensed soil moisture: Aninter-comparison study of SAR and ESTAR. IEEE Trans. Geosci. Remote Sens. 2002, 40, 326–337. [Google Scholar] [CrossRef]
- Schlenz, F.; Fallmann, J.; Marzahn, P.; Loew, A.; Mauser, W. Characterization of rape field microwave emission and implications to surface soil moisture retrievals. Remote Sens. 2012, 4, 247–270. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.S.; Xiao, Q.; Li, H.; Du, Y.M.; Liu, Q.H. Investigating the impact of soil moisture on thermal infrared emissivity using ASTER data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 294–298. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Long, D.; Liu, B.; Qin, G.; Qin, J.; Batelaan, O. Estimation of surface soil moisture from thermal infrared remote sensing using an improved trapezoid method. Remote Sens. 2015, 7, 8250–8270. [Google Scholar] [CrossRef]
- Maekawa, T.; Nishihara, O.; Aoki, Y.; Tsubosaka, K.; Kitamura, S. Design challenges of ASTER in thermal infrared spectral region. In Proceedings of the Sensor Systems for the Early Earth Observing System Platforms, Orlando, Florida, 25 August 1993; pp. 176–186.
- Hook, S.J.; Kahle, A.B. The micro fourier transform interferometer (FTIR)—A new field spectrometer for acquisition of infrared data of natural surfaces. Remote Sens. Environ. 1996, 56, 172–181. [Google Scholar] [CrossRef]
- Salisbury, J.W.; Daria, D.M. Infrared (8–14 µm) remote-sensing of soil particle-size. Remote Sens. Environ. 1992, 42, 157–165. [Google Scholar] [CrossRef]
- Xiao, Q.; Liu, Q.H.; Li, X.W.; Chen, L.F.; Liu, Q.; Xin, X.Z. A field measurement method of spectral emissivity and research on the feature of soil thermal infrared emissivity. J. Infrared Millim. Waves 2003, 22, 373–378. [Google Scholar]
- Csillag, F.; Pasztor, L.; Biehl, L.L. Spectral band selection for the characterization of salinity status of soils. Remote Sens. Environ. 1993, 43, 231–242. [Google Scholar] [CrossRef]
- Farifteh, J. Interference of salt and moisture on soil reflectance spectra. Int. J. Remote Sens. 2011, 32, 8711–8724. [Google Scholar] [CrossRef]
- Mccabe, M.F.; Balick, L.K.; Theiler, J.; Gillespie, A.R.; Mushkin, A. Linear mixing in thermal infrared temperature retrieval. Int. J. Remote Sens. 2008, 29, 5047–5061. [Google Scholar] [CrossRef]
- Salisbury, J.W.; Daria, D.M. Emissivity of terrestrial materials in the 8–14 µm atmospheric window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Bittelli, M.; Ventura, F.; Campbell, G.S.; Snyder, R.L.; Gallegati, F.; Pisa, P.R. Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. J. Hydrol. 2008, 362, 191–205. [Google Scholar] [CrossRef]
- Artz, R.R.E.; Chapman, S.J.; Jean Robertson, A.H.; Potts, J.M.; Laggoun-Défarge, F.; Gogo, S.; Comont, L.; Disnar, J.-R.; Francez, A.-J. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biol. Biochem. 2008, 40, 515–527. [Google Scholar] [CrossRef]
- Haberhauer, G.; Feigl, B.; Gerzabek, M.H.; Cerri, C. FT-IR spectroscopy of organic matter in tropical soils: Changes induced through deforestation. Appl. Spectrosc. 2000, 54, 221–224. [Google Scholar] [CrossRef]
- Tatzber, M.; Stemmer, M.; Spiegel, H.; Katzlberger, C.; Haberhauer, G.; Gerzabek, M.H. An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ. Chem. Lett. 2007, 5, 9–12. [Google Scholar] [CrossRef]
- Mira, M.; Valor, E.; Caselles, V.; Rubio, E.; Coll, C.; Galve, J.M.; Niclos, R.; Sanchez, J.M.; Boluda, R. Soil moisture effect on thermal infrared (8–13-µm) emissivity. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2251–2260. [Google Scholar] [CrossRef]
- Luoto, M.; Hjort, J. Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorphology 2005, 67, 299–315. [Google Scholar] [CrossRef]
- Mahesh, S.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of Canadian wheat. Food Bioprocess. Tech. 2015, 8, 31–40. [Google Scholar] [CrossRef]
- Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Ergon, R. Finding y-relevant part of x by use of PCR and PLSR model reduction methods. J. Chemometr. 2007, 21, 537–546. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef]
- Weng, Y.L.; Gong, P.; Zhu, Z.L. Soil salt content estimation in the Yellow River delta with satellite hyperspectral data. Can. J. Remote Sens. 2008, 34, 259–270. [Google Scholar]
- Sidike, A.; Zhao, S.; Wen, Y. Estimating soil salinity in pingluo county of china using quickbird data and soil reflectance spectra. Int. J. Appl. Earth Observ. Geoinform. 2014, 26, 156–175. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal. Proc. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Van der Meer, F. Iterative spectral unmixing (ISU). Int. J. Remote Sens. 1999, 20, 3431–3436. [Google Scholar] [CrossRef]
- Singh, D. Polarization discrimination ratio approach to retrieve bare soil moisture at X-band. In Proceedings of the IEEE International Geoscience and Remote Sensing, Seoul, Korea, 25–29 July 2005.
- Dematte, J.A.M.; Sousa, A.A.; Alves, M.C.; Nanni, M.R.; Fiorio, P.R.; Campos, R.C. Determining soil water status and other soil characteristics by spectral proximal sensing. Geoderma 2006, 135, 179–195. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, Q. Seasonal and annual variation in transpiration of a dominant desert species, Haloxylon ammodendron, in Central Asia up-scaled from sap flow measurement. Ecohydrology 2015, 8, 948–960. [Google Scholar] [CrossRef]
- Luo, G.P.; Chen, X.; Zhou, K.F.; Ye, M.Q. Temporal and spatial variation and stability of the oasis in the Sangong River watershed, Xinjiang, China. Sci. China Ser. D 2003, 46, 62–73. [Google Scholar] [CrossRef]
- Li, P.H.; Wang, Q. Retrieval of chlorophyll for assimilating branches of a typical desert plant through inversed radiative transfer models. Int. J. Remote Sens. 2013, 34, 2402–2416. [Google Scholar] [CrossRef]
- D&P instruments. Available online: http://www.dpinstruments.com (accessed on 29 October 2015).
- Labed, J.; Stoll, M.P. Spatial variability of land surface emissivity in the thermal infrared band: Spectral signature and effective surface temperature. Remote Sens. Environ. 1991, 38, 1–17. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Jacobson, A.R.; Laba, M.; Baveye, P.C. Accounting for surface roughness effects in the near-infrared reflectance sensing of soils. Geoderma 2009, 152, 171–180. [Google Scholar] [CrossRef]
- Hubert, M.; Vanden Branden, K. Robust methods for partial least squares regression. J. Chemometr. 2003, 17, 537–549. [Google Scholar] [CrossRef]
- Lied, T.T.; Geladi, P.; Esbensen, K.H. Multivariate image regression (MIR): Implementation of image PLSR-first forays. J. Chemometr. 2000, 14, 585–598. [Google Scholar] [CrossRef]
- Haaland, D.M.; Thomas, E.V. Partial least-squares methods for spectral analyses .1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988, 60, 1193–1202. [Google Scholar] [CrossRef]
- Chen, S.; Hong, X.; Harris, C.J.; Sharkey, P.M. Sparse mzodeling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. B 2004, 34, 898–911. [Google Scholar] [CrossRef]
- Sinan, Z.; Quan, W. Inverse retrieval of chlorophyll from reflected spectra for assimilating branches of drought-tolerant tamarix ramosissima. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 1498–1505. [Google Scholar] [CrossRef]
- Antonucci, F.; Pallottino, F.; Costa, C.; Rimatori, V.; Giorgi, S.; Papetti, P.; Menesatti, P. Development of a rapid soil water content detection technique using active infrared thermal methods for in-field applications. Sensors 2011, 11, 10114–10128. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Breakthroughs in Statistics; Kotz, S., Johnson, N., Eds.; Springer New York: New York, NY, USA, 1992; pp. 610–624. [Google Scholar]
- Rossel, R.A.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.L. Regression and time-series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J. Digital mapping of soil properties using multivariate statistical analysis and ASTER data in an arid region. Remote Sens. 2015, 7, 1181–1205. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Lesaignoux, A.; Fabre, S.; Briottet, X. Influence of soil moisture content on spectral reflectance of bare soils in the 0.4–14 μm domain. Int. J. Remote Sens. 2012, 34, 2268–2285. [Google Scholar] [CrossRef]
- Mira, M.; Valor, E.; Boluda, R.; Caselles, V.; Coll, C. Influence of soil water content on the thermal infrared emissivity of bare soils: Implication for land surface temperature determination. J. Geophys. Res. Earth Surf. 2007, 112, F4. [Google Scholar] [CrossRef]
- Eisele, A.; Lau, I.; Hewson, R.; Carter, D.; Wheaton, B.; Ong, C.; Cudahy, T.J.; Chabrillat, S.; Kaufmann, H. Applicability of the thermal infrared spectral region for the prediction of soil properties across semi-arid agricultural landscapes. Remote Sens. 2012, 4, 3265–3286. [Google Scholar] [CrossRef]
- Hewson, R.D.; Cudahy, T.J.; Jones, M.; Thomas, M. Investigations into soil composition and texture using infrared spectroscopy (2–14 μm). Appl. Environ. Soil Sci. 2012, 2012, 1–12. [Google Scholar] [CrossRef]
- Eisele, A.; Chabrillat, S.; Hecker, C.; Hewson, R.; Lau, I.C.; Rogass, C.; Segl, K.; Cudahy, T.J.; Udelhoven, T.; Hostert, P.; et al. Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties. Remote Sens. Environ. 2015, 163, 296–311. [Google Scholar] [CrossRef]
- Mooney, J.; Kambhampati, P. Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra. J. Phys. Chem. Lett. 2013, 4, 3316–3318. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Baldridge, A.M. Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements. Remote Sens. Environ. 2010, 114, 1480–1493. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Pan, M.; Wood, E.F. Soil moisture retrieval using multi-channel passive microwave measurements through improved radiative transfer modelling. IAHS-AISH Publ. 2012, 352, 7–10. [Google Scholar]
- Zhan, X.W.; Anderson, M.; Liu, J.C. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing, Honolulu, HI, USA, 25–30 July 2010; pp. 4440–4441.
- Kochubey, S.M.; Kazantsev, T.A. Changes in the first derivatives of leaf reflectance spectra of various plants induced by variations of chlorophyll content. J. Plant Physiol. 2007, 164, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Demetriades-Shah, T.H.; Steven, M.D.; Clark, J.A. High resolution derivative spectra in remote sensing. Remote Sens. Environ. 1990, 33, 55–64. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.L.; Yao, Y.J.; Zhang, X.T. Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 401–405. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V.; Valor, E.; Niclos, R.; Sanchez, J.M.; Galve, J.M.; Mira, M. Temperature and emissivity separation from aster data for low spectral contrast surfaces. Remote Sens. Environ. 2007, 110, 162–175. [Google Scholar] [CrossRef]
- Tonooka, H. Accurate atmospheric correction of ASTER thermal infrared imagery using the WVS method. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2778–2792. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Wang, Q. Retrieval of Soil Water Content in Saline Soils from Emitted Thermal Infrared Spectra Using Partial Linear Squares Regression. Remote Sens. 2015, 7, 14646-14662. https://doi.org/10.3390/rs71114646
Xu L, Wang Q. Retrieval of Soil Water Content in Saline Soils from Emitted Thermal Infrared Spectra Using Partial Linear Squares Regression. Remote Sensing. 2015; 7(11):14646-14662. https://doi.org/10.3390/rs71114646
Chicago/Turabian StyleXu, Lu, and Quan Wang. 2015. "Retrieval of Soil Water Content in Saline Soils from Emitted Thermal Infrared Spectra Using Partial Linear Squares Regression" Remote Sensing 7, no. 11: 14646-14662. https://doi.org/10.3390/rs71114646
APA StyleXu, L., & Wang, Q. (2015). Retrieval of Soil Water Content in Saline Soils from Emitted Thermal Infrared Spectra Using Partial Linear Squares Regression. Remote Sensing, 7(11), 14646-14662. https://doi.org/10.3390/rs71114646