Effect of the Aerosol Model Assumption on the Atmospheric Correction over Land: Case Studies with CHRIS/PROBA Hyperspectral Images over Benelux
Abstract
:1. Introduction
2. Data
2.1. Study Area
2.2. Data Description
2.2.1. AERONET Measurements
2.2.2. CHRIS Data
Cabauw | Brussels | |
---|---|---|
Date (dd/mm/yyyy) | 10/05/2008 | 19/08/2009 |
Time AERONET (hh: mm) | 10:27 (Level 1.5) | 09:48 (Level 1.5) |
Time CHRIS (hh: mm) | 9:38 | 9:51 |
AOT@550 nm AERONET | 0.149 | 0.122 |
AOT@550 nm GEOS-Chem | 0.166 | 0.133 |
O3 (gm−2) | 0.373 | 0.314 |
Wv (gm−2) | 1.058 | 2.598 |
Zenith angle (°) | 37 | 45 |
3. Methods
3.1. Atmospheric Correction
3.2. GEOS-Chem/FlexAOD Model
4. Results
4.1. Comparison of GEOS-Chem-FlexAOD Aerosol Simulation with Aircraft Campaign Observations
Sulfate | Ammonium | Nitrate | Organic Matter | Black Carbon | |
---|---|---|---|---|---|
MB (µg/m3) | −0.58 | −0.22 | −0.18 | −3.5 | +0.31 |
MFB (%) | −8.1 | −6.6 | −4.0 | −99 | +91 |
RMSE (µg/m3) | 1.7 | 1.1 | 2.9 | 4.8 | 0.33 |
r | 0.46 | 0.46 | 0.56 | 0.17 | 0.15 |
4.2. Aerosol Microphysical and Optical Properties Comparison
4.3. Reflectance Analysis
4.3.1. CHRIS@CRI Algorithm Validation
Cabauw | Brussels | |||
---|---|---|---|---|
CHRIS Channel | Mean % Difference | Standard Deviation | Mean % Difference | Standard Deviation |
1 | −10.0 | 8.1 | −10.4 | 9.6 |
2 | 4.0 | 4.8 | 10.4 | 8.0 |
3 | 3.2 | 3.0 | 5.2 | 5.4 |
4 | 8.1 | 2.6 | 8.7 | 4.5 |
5 | 9.5 | 3.3 | 10.2 | 7.2 |
6 | 8.7 | 3.4 | 10.1 | 6.8 |
7 | 1.4 | 3.2 | 1.0 | 6.7 |
8 | 2.5 | 3.3 | 3.2 | 7.5 |
9 | −2.0 | 1.9 | 6.7 | 3.9 |
10 | −2.0 | 1.4 | −3.8 | 2.1 |
11 | −0.1 | 1.3 | −0.1 | 1.7 |
12 | 1.5 | 2.4 | 2.6 | 1.5 |
13 | 0.6 | 3.0 | 1.0 | 1.2 |
14 | −4.0 | 3.2 | −4.5 | 1.1 |
18 | −4.9 | 2.7 | −5.8 | 0.5 |
4.3.2. Aerosols Microphysics on Reflectance at 550 nm
Cabauw | Brussels | |||
---|---|---|---|---|
Aerosol Model | Percentage Reflectance Difference | Standard Deviation | Percentage Reflectance Difference | Standard Deviation |
Continental | 0.39 | 0.66 | 1.4 | 1.0 |
Urban | 9.3 | 3.7 | 7.7 | 3.1 |
Maritime | −7.4 | 7.3 | −5.00 | 3.4 |
GEOS-Chem | 0.00078 | 0.00075 | 0.31 | 1.3 |
4.3.3. Reflectance Spectral Behavior
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
Definition of Statistical indices Used in Table 3
- Mean Bias (MB):
- Mean Fractional Bias (MFB):
- Root Mean Square Error (RMSE):
- The Pearson’s Correlation (r):
References
- Bach, H.; Verhoef, W.; Schneider, K. Coupling remote sensing observation models and a growth model for improved retrieval of (geo)-biophysical information from optical remote sensing data. Proc. SPIE 2001. [Google Scholar] [CrossRef]
- Paronis, D.; Sykioti, O.; Kyparissis, A. Effects of aerosols on narrowband indices and band depths from CHRIS/PROBA: Case study on a Phlomis fruticosa ecosystem. In Proceedings of the ESA Hyperspectral Worskhop 2010, Frascati, Italy, 17–19 May 2010.
- Vermote, E.; Justice, C.; Csiszar, I. Early evaluation of the VIIRS calibration, cloud mask and surface reflectance Earth data records. Remote Sens. Environ. 2014, 148, 134–145. [Google Scholar] [CrossRef]
- Gao, B.C.; Montes, M.J.; Davis, C.O.; Goetz, A.F.H. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens. Environ. 2009, 113, S17–S24. [Google Scholar] [CrossRef]
- Gao, B.C.; Davis, C.O.; Goetz, A.F.H. A review of atmospheric correction techniques for hyperspectral remote sensing of land surfaces and ocean colour. In Proceedings of the IEEE International Conference on Geoscience and Remote Sensing Symposium, IGARSS 2006, Denver, CO, USA, 31 July–4 August 2006; pp. 1979–1981.
- Kruse, F.A.; Raines, G.L.; Watson, K. Analytical techniques for extracting geologic information from multichannel airborne spectroradiometer and airborne imaging spectrometer data. In Proceedings of the International Symposium on Remote Sensing of Environment, Fourth Thematic Conference, Remote Sensing for Exploration Geology, San Francisco, CA, USA, 1–4 April 1985.
- Roberts, D.A.; Yamaguchi, Y.; Lyon, R. Comparison of various techniques for calibration of AIS data. In Proceedings of the 2nd Airborne Imaging Spectrometer Data Analysis Workshop JPL Publication, Pasadena, CA, USA, 6–8 May 1986; pp. 21–30.
- Conel, J.E.; Green, R.O.; Vane, G.; Bruegge, C.J.; Alley, R.E. AIS-2 radiometry and a comparison of methods for the recovery of ground reflectance. In Proceedings of the 3rd Airborne Imaging Spectrometer Data Analysis Workshop JPL Publication, Pasadena, CA, USA, 2–4 June 1987; pp. 18–47.
- Gao, B.C.; Heidebrecht, K.B.; Goetz, A.F.H. Derivation of scaled surface reflectances from AVIRIS data. Remote Sens. Environ. 1993, 44, 165–178. [Google Scholar] [CrossRef]
- Richter, R. Atmospheric correction of DAIS hyperspectral image data. Comput. Geosci. 1996, 22, 785–793. [Google Scholar] [CrossRef]
- Adler–Golden, S.M.; Matthew, M.W.; Bernstein, L.S.; Levine, R.Y.; Berk, A.; Richtsmeier, S.C.; Acharya, P.K.; Anderson, G.P.; Felde, J.W.; Gardner, J.A.; et al. Atmospheric correction for short-wave spectral imagery based on MODTRAN4. In Summaries of the Eighth JPL Airborne Earth Science Workshop JPL Publication; Green, R.O., Ed.; Jet Propulsion Laboratory: Pasadena, CA, USA, 1999; Volume 99–17, pp. 21–29. [Google Scholar]
- Kotchenova, S.; Vermote, E.; Matarrese, R.; Klemm, F., Jr. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef] [PubMed]
- Vermote, E.F.; el Saleous, N.Z.; Justice, C.O.; Kaufman, Y.J.; Privette, J.L.; Remer, L.; Roger, J.C.; Tanre, D. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J. Geophys. Res.: Atmos. 1997, 102, 17131–17141. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Heidebrecht, K.; Green, R.O.; Goetz, A.F.H. Calibration to surface reflectance of terrestrial imaging spectrometry data: Comparison of methods. In Proceedings of the Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23–26 January 1995; pp. 41–42.
- Ben-Dor, E.; Kindel, B.; Goetz, A.F.H. Quality assessment of several methods to recover surface reflectance I using synthetic imaging spectroscopy (IS) data. Remote Sens. Environ. 2004, 90, 389–404. [Google Scholar] [CrossRef]
- Tuominen, J.; Lipping, T. Atmospheric correction of hyperspectral data using combined empirical and model based method. In Proceedings of the 31st EARSeL Symposium 2011, Prague, Czech Republic, 30 May–2 June 2011.
- Kaufman, Y.J.; Wald, A.; Remer, L.A.; Gao, B.C.; Li, R.R.; Flynn, L. The MODIS 2.1 μm channel—Correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1286–1298. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A.; Breon, F.-M.; Cacciari, A.; Carboni, E.; Diner, D.; di Nicolantonio, W.; Grainger, R.G.; Grey, W.M.F.; Höller, R.; Lee, K.-H.; et al. Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmos. Res. 2007, 85, 372–394. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. Aerosol Optics: Light Absorption and Scattering by Particles in the Atmosphere; Praxis Publishing Ltd.: Chichester, UK, 2008. [Google Scholar]
- Kokhanovsky, A.A.; Deuzé, J.L.; Diner, D.J.; Dubovik, O.; Ducos, F.; Emde, C.; Garay, M.J.; Grainger, R.G.; Heckel, A.; Herman, M.; et al. The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light. Atmos. Meas. Tech. 2010, 3, 909–932. [Google Scholar] [CrossRef]
- Bassani, C.; Cavalli, R.M.; Pignatti, S. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land. Sensors 2010, 10, 6421–6438. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, J.; Reid, J.S.; Hyer, E.J.; Hsu, N.C. Critical evaluation of the MODIS deep blue aerosol optical depth product for data assimilation over North Africa. Atmos. Meas. Tech. 2013, 6, 949–969. [Google Scholar] [CrossRef]
- Hyer, E.J.; Reid, J.S.; Zhang, J. An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals. Atmos. Meas. Tech. 2011, 4, 379–408. [Google Scholar] [CrossRef]
- Zhang, J.; Reid, J.S. MODIS aerosol product analysis for data assimilation: Assessment of over-ocean level 2 aerosol optical thickness retrievals. J. Geophys. Res.: Atmos 2006, 111. [Google Scholar] [CrossRef]
- Bassani, C.; Cavalli, R.M.; Antonelli, P. Influence of aerosol and surface reflectance variability on hyperspectral observed radiance. Atmos. Meas. Tech. 2012, 5, 1193–1203. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Levy, R.; Lyapustin, A. Radiative transfer codes for atmospheric correction and aerosol retrieval: Intercomparison study. Appl. Opt. 2008, 47, 2215–2226. [Google Scholar] [CrossRef] [PubMed]
- Vermote, E.F.; Tanré, D.; Deuzé, J.L.; Herman, M.; Morcrette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Kaufmann, Y.J.; Gobron, N.; Pinty, B.; Widlowski, J.L.; Verstraete, M.M. Relationship between surface reflectance in the visible and mid-IR used in MODIS aerosol algorithm—Theory. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Guanter, L.; Estellès, V.; Moreno, J. Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data. Remote Sens. Environ. 2007, 109, 54–65. [Google Scholar] [CrossRef]
- Guanter, L.; Richter, R.; Kauffmann, H. On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing. Int. J. Remote Sens. 2009, 30, 1407–1424. [Google Scholar] [CrossRef]
- Goetz, A.F.H.; Vane, G.; Salomon, J.E.; Rock, B.N. Imaging spectroscopy for earth remote sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Duca, R.; del Frate, F. Hyperspectral and multi-angle CHRIS-PROBA images for the generation of land cover maps. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2857–2866. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum—Vector (6SV). Available online: http://6s.ltdri.org (accessed on 12 April 2015).
- Highwood, E.J.; Northway, M.J.; McMeeking, G.R.; Morgan, W.T.; Liu, D.; Osborne, S.; Bower, K.; Coe, H.; Ryder, C.; Williams, P. Aerosol scattering and absorption during the EUCAARI-LONGREX flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146: Can measurements and models agree? Atmos. Chem. Phys. 2012, 12, 7251–7267. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 2000, 105. [Google Scholar] [CrossRef]
- D’Almeida, G.A.; Koepke, P.; Shettle, E.P. Atmospheric Aerosols: Global Climatology and Radiative Characteristics; A.DEEPAK Publishing: Hampton, VA, USA, 1991. [Google Scholar]
- Bey, I.; Jacob, D.J.; Yantosca, R.M.; Logan, J.A.; Field, B.; Fiore, A.M.; Li, Q.; Liu, H.; Mickley, L.J.; Schultz, M. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. 2001, 106. [Google Scholar] [CrossRef]
- Park, R.J.; Jacob, D.J.; Chin, M.; Martin, R.V. Sources of carbonaceous aerosols over the United States and implications for natural visibility. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Park, R.J.; Jacob, D.J.; Field, B.D.; Yantosca, R.M.; Chin, M. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. J. Geophys. Res. 2004, 109, D15204. [Google Scholar] [CrossRef]
- Pye, H.O.T.; Liao, H.; Wu, S.; Mickley, L.J.; Jacob, D.J.; Henze, D.K.; Seinfeld, J.H. Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Alexander, B.; Allman, D.J.; Amos, H.M.; Fairlie, T.D.; Dachs, J.; Hegg, D.A.; Sletten, R.S. Isotopic constraints on sulfate aerosol formation pathways in the marine boundary layer of the subtropical northeast Atlantic Ocean. J. Geophys. Res. 2012, 117, D06304. [Google Scholar] [CrossRef]
- Liao, H.; Henze, D.K.; Seinfeld, J.H.; Wu, S.L.; Mickley, L.J. Biogenic secondary organic aerosol over the United States: Comparison of climatological simulations with observations. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Henze, D.K.; Seinfeld, J.H. Global secondary organic aerosol from isoprene oxidation. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Henze, D.K.; Seinfeld, J.H.; Ng, N.L.; Kroll, J.H.; Fu, T.-M.; Jacob, D.J.; Heald, C.L. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: High- vs. low-yield pathways. Atmos. Chem. Phys. 2008, 8, 2405–2420. [Google Scholar] [CrossRef]
- Fairlie, T.D.; Jacob, D.J.; Park, R.J. The impact of transpacific transport of mineral dust in the United States. Atmos. Environ. 2007. [Google Scholar] [CrossRef]
- Jaeglé, L.; Quinn, P.K.; Bates, T.; Alexander, B.; Lin, J.-T. Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 2011, 11. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.V.; Jacob, D.J.; Yantosca, R.M.; Chin, M.; Ginoux, P. Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Ridley, D.A.; Heald, C.L.; Ford, B.J. North African dust export and deposition: A satellite and model perspective. J. Geophys. Res. 2012, 117, D02202. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Dlugach, J.M.; Yanovitskij, E.G.; Zakharova, N.T. Bidirectional reflectance of flat, optically thick particulate laters: An efficient radiative transfer solution and applications to snow and soil surfaces. J. Quant. Spectrosc. Radiat. Trans. 1999, 63, 409–432. [Google Scholar] [CrossRef]
- Curci, G.; Hogrefe, C.; Bianconi, R.; Im, U.; Balzarini, A.; Baro, R.; Brunner, D.; Forkel, R.; Giordano, L.; Hirtl, M.; et al. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective. Atmos. Environ. 2014. [Google Scholar] [CrossRef]
- Heald, C.L.; Coe, H.; Jimenez, J.L.; Weber, R.J.; Bahreini, R.; Middlebrook, A.M.; Russell, L.M.; Jolleys, M.; Fu, T.-M.; Allan, J.D.; et al. Exploring the vertical profile of atmospheric organic aerosol: Comparing 17 aircraft field campaigns with a global model. Atmos. Chem. Phys. 2011, 11, 12673–12696. [Google Scholar] [CrossRef]
- Morgan, W.T.; Allan, J.D.; Bower, K.N.; Highwood, E.J.; Liu, D.; McMeeking, G.R.; Northway, M.J.; Williams, P.I.; Krejci, R.; Coe, H. Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction. Atmos. Chem. Phys. 2010, 10, 4065–4083. [Google Scholar] [CrossRef]
- McMeeking, G.R.; Hamburger, T.; Liu, D.; Flynn, M.; Morgan, W.T.; Northway, M.; Highwood, E.J.; Krejci, R.; Allan, J.D.; Minikin, A.; et al. Black carbon measurements in the boundary layer over western and northern Europe. Atmos. Chem. Phys. 2010, 10, 9393–9414. [Google Scholar] [CrossRef]
- Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.; Adams, P.J.; Artaxo, P.; Bahadur, R.; Balkanski, Y.; Bauer, S.E.; Bellouin, N.; Benedetti, A.; et al. The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos. Chem. Phys. 2014, 14, 10845–10895. [Google Scholar] [CrossRef]
- Wang, Q.; Jacob, D.J.; Fisher, J.A.; Mao, J.; Leibensperger, E.M.; Carouge, C.C.; le Sager, P.; Kondo, Y.; Jimenez, J.L.; Cubison, M.J.; et al. Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: Implications for radiative forcing. Atmos. Chem. Phys. 2011, 11, 12453–12473. [Google Scholar] [CrossRef]
- Wang, X.; Heald, C.L.; Ridley, D.A.; Schwarz, J.P.; Spackman, J.R.; Perring, A.E.; Coe, H.; Liu, D.; Clarke, A.D. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon. Atmos. Chem. Phys. 2014, 14, 10989–11010. [Google Scholar] [CrossRef]
- BEAM Home. Available online: http://www.brockmann-consult.de/cms/web/beam (accessed on 31 March 2015).
- Bassani, C.; Manzo, C.; Braga, F.; Bresciani, M.; Giardino, C.; Alberotanza, L. The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters. Atmos. Meas. Tech. 2015, 8, 1593–1604. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirelli, C.; Curci, G.; Manzo, C.; Tuccella, P.; Bassani, C. Effect of the Aerosol Model Assumption on the Atmospheric Correction over Land: Case Studies with CHRIS/PROBA Hyperspectral Images over Benelux. Remote Sens. 2015, 7, 8391-8415. https://doi.org/10.3390/rs70708391
Tirelli C, Curci G, Manzo C, Tuccella P, Bassani C. Effect of the Aerosol Model Assumption on the Atmospheric Correction over Land: Case Studies with CHRIS/PROBA Hyperspectral Images over Benelux. Remote Sensing. 2015; 7(7):8391-8415. https://doi.org/10.3390/rs70708391
Chicago/Turabian StyleTirelli, Cecilia, Gabriele Curci, Ciro Manzo, Paolo Tuccella, and Cristiana Bassani. 2015. "Effect of the Aerosol Model Assumption on the Atmospheric Correction over Land: Case Studies with CHRIS/PROBA Hyperspectral Images over Benelux" Remote Sensing 7, no. 7: 8391-8415. https://doi.org/10.3390/rs70708391
APA StyleTirelli, C., Curci, G., Manzo, C., Tuccella, P., & Bassani, C. (2015). Effect of the Aerosol Model Assumption on the Atmospheric Correction over Land: Case Studies with CHRIS/PROBA Hyperspectral Images over Benelux. Remote Sensing, 7(7), 8391-8415. https://doi.org/10.3390/rs70708391