Detection and Mapping of Black Rock Coatings Using Hyperion Images: Sudbury, Ontario, Canada
Abstract
:1. Introduction
2. Black Rock Coatings near Sudbury Base Metal Smelters
3. Remote Sensing of Black Rock Coatings near Smelters
4. Sudbury Study Areas
5. Hyperion Images
6. Classification Methodology
7. Results
8. Discussion
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schindler, M.; Durocher, J.; Abdu, Y.; Hawthorne, F.C. Hydrous silica coatings: Occurrence, speciation of metals, and environmental significance. Environ. Sci. Technol. 2009, 43, 8775–8780. [Google Scholar] [CrossRef] [PubMed]
- Mantha, N.M.; Schindler, M.; Kyser, T.K. Silica and sulfate-bearing rock coatings in smelter areas: Part II. Forensic tools for atmospheric metal(loid)-and sulfur-isotope compositions. Geochim. Cosmochim. Acta 2012, 90, 221–241. [Google Scholar] [CrossRef]
- Mantha, N.M.; Schindler, M.; Murayama, M.; Hochella, M.F., Jr. Silica-and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution I. Formation and mineralogical composition. Geochim. Cosmochim. Acta 2012, 85, 254–274. [Google Scholar] [CrossRef]
- Caplette, J.; Schindler, M.; Kyser, T.K. The black rock coatings in Rouyn-Noranda, Quebec: Fingerprints of historical smelter emissions and the local ore. Can. J. Earth Sci. 2015, 52, 952–965. [Google Scholar] [CrossRef]
- Schiffman, P.; Zierenberg, R.; Marks, N.; Bishop, J.L.; Dyar, M.D. Acid-fog deposition at Kilauea volcano: A possible mechanism for the formation of siliceous-sulfate rock coatings on Mars. Geology 2006, 34, 921–924. [Google Scholar] [CrossRef]
- Chemtob, S.M.; Jolliff, B.L.; Rossman, G.R.; Eiler, J.M.; Arvidson, R.E. Silica coatings in the Ka’u Desert, Hawaii, a Mars analog terrain: A micromorphological, spectral, chemical, and isotopic study. J. Geophys. Res. 2010, 115, E04001. [Google Scholar] [CrossRef]
- Marcucci, E.C.; Hynek, B.M.; Kierein-Young, K.; Rogers, K.L. Visible-near-infrared reflectance spectroscopy of volcanic acid-sulfate alteration in Nicaragua: Analogs for early Mars. J. Geophys. Res. 2013, 118, 2213–2233. [Google Scholar] [CrossRef]
- Malcolm, K.J.; Leverington, D.W.; Schindler, M. A Landsat-based study of black rock coatings proximal to base metal smelters, Sudbury, Ontario, Canada. Int. J. Remote Sens. 2015, 36, 3932–3960. [Google Scholar] [CrossRef]
- Dill, H.G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Sci. Rev. 2010, 100, 1–420. [Google Scholar] [CrossRef]
- Rousell, D.H.; Meyer, W.; Prevec, S.A. 2002, Bedrock geology and mineral deposits. In The Physical Environment of the City of Great Sudbury; Rousell, D.H., Jansons, K.J., Eds.; Ontario Geological Survey: Sudbury, ON, Canada, 2002; Special Volume 6, pp. 21–55. [Google Scholar]
- Saarinen, O.W.; Tanos, W.A. The physical environment of the Sudbury area and its influence on urban development. In The Physical Environment of the City of Great Sudbury; Rousell, D.H., Jansons, K.J., Eds.; Ontario Geological Survey: Sudbury, ON, Canada, 2002; Special Volume 6, pp. 3–18. [Google Scholar]
- Davies, B.E. Heavy metal contamination from base metal mining and smelting: Implications for man and his environment. In Applied Environmental Geochemistry; Thornton, I., Ed.; Academic Press: New York, NY, USA, 1983; pp. 425–462. [Google Scholar]
- Rieuwerts, J.; Farago, M. Heavy metal pollution in the vicinity of a secondary lead smelter in the Czech Republic. Appl. Geochem. 1996, 11, 17–23. [Google Scholar] [CrossRef]
- Schindler, M.; Mantha, N.; Kyser, K.T.; Murayama, M.; Hochella, M.F., Jr. Shining light on black rock coatings in smelter-impacted areas. Geosci. Can. 2012, 39, 148–157. [Google Scholar]
- Lanteigne, S.; Schindler, M.; McDonald, A.M.; Skeries, K.; Abdu, Y.; Mantha, N.M.; Murayama, M.; Hawthorne, F.C.; Hochella, M.F., Jr. Mineralogy and weathering of smelter-derived spherical particles in soils: Implications for the mobility of Ni and Cu in the surficial environment. Water Air Soil Pollut. 2012, 223, 3619–3641. [Google Scholar] [CrossRef]
- Lanteigne, S.; Schindler, M.; McDonald, A. Distribution of metal(loid)s in smelter-derived particulate matter in soils, mineralogical insights into their retention and release in a low-T environment. Can. Mineral. 2014, 52, 453–471. [Google Scholar] [CrossRef]
- Coulson, M.G.; Bridges, E.M. The remote sensing of contaminated land. Int. J. Remote Sens. 1984, 5, 659–669. [Google Scholar] [CrossRef]
- Pitblado, J.R.; Gallie, E.A. Remote sensing and geographic information systems: Technologies for mapping and monitoring environmental health. In Restoration and Recovery of an Industrial Region; Gunn, J.M., Ed.; Springer Series on Environmental Management; Springer-Verlag: New York, NY, USA, 1995; pp. 299–311. [Google Scholar]
- Singhroy, V.; Kuhn, F. Remote sensing for characterizing and monitoring of hazardous waste sites—Case studies in Canada and Germany. Int. Arch. Photogram. Remote Sens. 1996, XXXI, Part B7. [Google Scholar]
- Champagne, C.M.; Abuelgasim, A.; Staenz, K.; Monet, S.; White, H.P. Ecological restoration from space: The use of remote sensing for monitoring land reclamation in Sudbury. In Proceedings of the 16th International Conference of the Society for Ecological Restoration, Victoria, BC, Canada, 24–26 August 2004.
- Davidson, J.; Gunn, J. Effects of land cover disturbance on stream invertebrate diversity and metal concentrations in a small urban industrial watershed. Hum. Ecol. Risk Assess. 2012, 18, 1078–1095. [Google Scholar] [CrossRef]
- Zubareva, O.N.; Skripal’shchikova, L.N.; Greshilova, N.V.; Kharuk, V.I. Zoning of landscapes exposed to technogenic emissions from the Norilsk Mining and Smelting Works. Russ. J. Ecol. 2003, 34, 415–419. [Google Scholar] [CrossRef]
- Pitblado, J.R.; Amiro, B.D. Landsat mapping of the industrially disturbed vegetation communities of Sudbury, Canada. Can. J. Remote Sens. 1982, 8, 17–28. [Google Scholar] [CrossRef]
- Allum, J.A.E.; Dreisinger, B.R. Remote sensing of vegetation change near Inco’s Sudbury mining complexes. Int. J. Remote Sens. 1987, 8, 399–416. [Google Scholar] [CrossRef]
- McCall, J.; Gunn, J.; Struik, H. Photo interpretative study of recovery of damaged lands near metal smelters of Sudbury, Canada. Water Air Soil Pollut. 1995, 85, 847–852. [Google Scholar] [CrossRef]
- Tømmervik, H.; Johansen, B.E.; Pedersen, J.P. Monitoring the effects of air pollution on terrestrial ecosystems in Varanger (Norway) and Nikel-Pechenga (Russia) using remote sensing. Sci. Total Environ. 1995, 160–161, 753–767. [Google Scholar] [CrossRef]
- Tømmervik, H.; Høgda, K.A.; Solheim, I. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Penninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sens. Environ. 2003, 85, 370–388. [Google Scholar] [CrossRef]
- Rigina, O. Detection of boreal forest decline with high-resolution panchromatic satellite imagery. Int. J. Remote Sens. 2003, 24, 1895–1912. [Google Scholar] [CrossRef]
- Abuelgasim, A.; Chung, C.-J.; Champagne, C.; Staenz, K.; Monet, S.; Fung, K. Use of multi-temporal remotely sensed data for monitoring land reclamation in Sudbury, Ontario (Canada). In 2005 International Workshop on the Analysis of Multi-Temporal Remote Sensing Images; Institute of Electrical and Electronics Engineers: Sydney, Australia, 2005; pp. 229–235. [Google Scholar]
- Lévesque, J.; Staenz, K. Monitoring mine tailings revegetation using multitemporal hyperspectral image data. Can. J. Remote Sens. 2008, 34, S172–S186. [Google Scholar] [CrossRef]
- Barnett, P.J.; Bajc, A.F. Quaternary geology. In The Physical Environment of the City of Great Sudbury; Rousell, D.H., Jansons, K.J., Eds.; Ontario Geological Survey: Sudbury, ON, Canada, 2002; Special Volume 6, pp. 57–85. [Google Scholar]
- Shang, J.; Lévesque, J.; Howarth, P.; Morris, B.; Staenz, K.; Yearwood, P. Preliminary investigation of acid mine drainage detection using casi data, Copper Cliff, Ontario, Canada. In Proceedings of the 21st Canadian Symposium on Remote Sensing, Ottawa, ON, Canada, 21–24 June 1999.
- Shang, J.; Neville, R.; Staenz, K.; Sun, L.; Morris, B.; Howarth, P. Comparison of fully constrained and weakly constrained unmixing through mine-tailings composition mapping. Can. J. Remote Sens. 2008, 34, S92–S109. [Google Scholar] [CrossRef]
- Shang, J.; Morris, B.; Howarth, P.; Lévesque, J.; Staenz, K.; Neville, B. Mapping mine tailings surface mineralogy using hyperspectral remote sensing. Can. J. Remote Sens. 2009, 35, S126–S141. [Google Scholar] [CrossRef]
- Richter, N.; Staenz, K.; Kaufmann, H. Spectral unmixing of airborne hyperspectral data for baseline mapping of mine tailings areas. Int. J. Remote Sens. 2008, 29, 3937–3956. [Google Scholar] [CrossRef]
- Riaza, A.; Buzzi, J.; García-Meléndez, E.; Vázquez, I.; Bellido, E.; Carrère, V.; Müller, A. Pyrite mine waste and water mapping using Hymap and Hyperion hyperspectral data. Environ. Earth Sci. 2012, 66, 1957–1971. [Google Scholar] [CrossRef]
- Percival, J.B.; White, H.P.; Goodwin, T.A.; Parsons, M.B.; Smith, P.K. Mineralogy and spectral reflectance of soils and tailings from historical gold mines, Nova Scotia. Geochem-Explor. Env. A. 2014, 14, 3–16. [Google Scholar] [CrossRef]
- Brocoum, S.J.; Dalziel, I.W.D. The Sudbury Basin, the Southern Province, the Grenville Front, and the Penokean Orogeny. Geol. Soc. Am. Bull. 1974, 85, 1571–1580. [Google Scholar] [CrossRef]
- Green, A.G.; Milkereit, B.; Davidson, A.; Spencer, C.; Hutchinson, D.R.; Cannon, W.F.; Lee, M.W.; Agena, W.F.; Behrendt, J.C.; Hinze, W.J. Crustal structure of the Grenville front and adjacent terranes. Geology 1988, 16, 788–792. [Google Scholar] [CrossRef]
- Rivers, T.; van Gool, J.A.M.; Connelly, J.N. Contrasting tectonic styles in the northern Grenville province: Implications for the dynamics of orogenic fronts. Geology 1993, 21, 1127–1130. [Google Scholar] [CrossRef]
- Dressler, B.O. Sudbury Geological Compilation; Map 2491, Precambrian Geology Series, 1:50,000; Ontario Geological Survey: Sudbury, ON, Canada, 1984.
- Card, K.D. Metamorphism of the middle Precambrian (Alphebian) of the eastern Southern Province. In Metamorphism in the Canadian Shield; Geological Survey of Canada: Ottawa, ON, Canada, 1978; Paper 78-10; pp. 269–282. [Google Scholar]
- Card, K.D. Geology of the Sudbury-Manitoulin Area, Districts of Sudbury and Manitoulin; Report 166; Ontario Geological Survey: Sudbury, ON, Canada, 1978.
- Meyn, H.D. Geology of Hutton and Parkin Townships; Geological Report 80; Ontario Department of Mines: Sudbury, ON, Canada, 1970.
- Jackson, S.L.; Fyon, J.A. The Western Abitibi Subprovince in Ontario, In Geology of Ontario; Ontario Geological Survey: Sudbury, ON, Canada, 1991; Special Volume 4, Part 1; pp. 405–482.
- Easton, R.M. The Grenville Province and the Proterozoic history of central and southern Ontario. In Geology of Ontario; Ontario Geological Survey: Sudbury, ON, Canada, 1991; Special Volume 4, Part 2; pp. 715–904. [Google Scholar]
- Winterhalder, K. Early history of human activities in the Sudbury area and ecological damage to the landscape. In Restoration and Recovery of an Industrial Region; Gunn, J.M., Ed.; Springer Series on Environmental Management; Springer-Verlag: New York, NY, USA, 1995; pp. 17–31. [Google Scholar]
- Hutchinson, T.C.; Whitby, L.M. Forest ecosystem near the Sudbury smelting region of Canada. Water Air Soil Pollut. 1977, 7, 421–438. [Google Scholar] [CrossRef]
- Freedman, B. Environmental Toxicology: The Impacts of Pollution and Other Stresses on Ecosystem Structure and Function; Academic Press: London, UK, 1989; pp. 68–93. [Google Scholar]
- Peters, T.H. Rehabilitation of mine tailings: A case of complete ecosystem reconstruction and revegetation of industrially stressed lands in the Sudbury area, Ontario, Canada. In Effects of Pollutants at the Ecosystem Level; Sheehan, P.J., Miller, D.R., Butler, G.C., Bourdeau, P., Eds.; John Wiley and Sons: New York, USA, 1984; pp. 403–421. [Google Scholar]
- Peters, T.H. Revegetation of the Copper Cliff tailings area. In Restoration and Recovery of an Industrial Region; Gunn, J.M., Ed.; Springer Series on Environmental Management: New York, NY, USA, 1995; Chapter 9; pp. 123–133. [Google Scholar]
- Keller, W.; Heneberry, J.H.; Gunn, J.M. Effects of emission reductions from the Sudbury smelters on the recovery of acid- and metal-damaged lakes. J. Aquat. Ecosyst. Stress Rec. 1999, 6, 189–198. [Google Scholar] [CrossRef]
- Goetz, A.F.H.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging spectroscopy for Earth remote sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.R.; Rogge, D.; Hitchcock, R.; Ijewliw, O.; Wright, D. Mapping lithology in Canada’s Arctic: Application of hyperspectral data using the minimum noise fraction transformation and matched filtering. Can. J. Earth Sci. 2005, 42, 2173–2193. [Google Scholar] [CrossRef]
- Harris, J.R.; McGregor, R.; Budkewitsch, P. Geological analysis of hyperspectral data over southwest Baffin Island: Methods for producing spectral maps that relate to variations in surface lithologies. Can. J. Remote Sens. 2010, 36, 412–435. [Google Scholar] [CrossRef]
- Harris, J.R.; Wickert, L.; Lynds, T.; Behnia, P.; Rainbird, R.; Grunsky, E.; McGregor, R.; Schetselaar, E. Remote predictive mapping 3. Optical remote sensing—A review for remote predictive geological mapping in northern Canada. Geosci. Can. 2011, 38, 49–83. [Google Scholar]
- Rogge, D.; Bachmann, M.; Rivard, B.; Feng, J. Spatial sub-sampling using local endmembers for adapting OSP and SSEE for large-scale hyperspectral surveys. IEEE J. Sel. Top. Appl. 2012, 5, 183–195. [Google Scholar] [CrossRef]
- Rogge, D.; Rivard, B.; Segl, K.; Grant, B.; Feng, J. Mapping of Ni-Cu-PGE ore hosting ultramafic rocks using airborne and simulated EnMAP hyperspectral imagery, Nunavik, Canada. Remote Sens. Environ. 2014, 152, 302–317. [Google Scholar] [CrossRef]
- Van der Meer, F.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Pearlman, J.; Barry, P.; Segal, C.; Shepanski, J.; Beiso, D.; Carman, S. Hyperion, a space-based imaging spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1160–1173. [Google Scholar] [CrossRef]
- Middleton, E.M.; Ungar, S.G.; Mandl, D.J.; Ong, L.; Frye, S.W.; Campbell, P.E.; Landis, D.R.; Young, J.P.; Pollack, N.H. The Earth Observing One (EO-1) satellite mission: Over a decade in space. IEEE J. Sel. Top. Appl. 2013, 6, 243–256. [Google Scholar] [CrossRef]
- Asner, G.P.; Heidebrecht, K.B. Imaging spectroscopy for desertification studies: Comparing AVIRIS and EO-1 Hyperion in Argentina drylands. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1283–1296. [Google Scholar] [CrossRef]
- Kruse, F.; Boardman, J.; Huntington, J. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef]
- Kruse, F.A.; Perry, S.L.; Caballero, A. District-level mineral survey using airborne hyperspectral data, Los Menucos, Argentina. Ann. Geophys. 2006, 49, 83–92. [Google Scholar]
- Hubbard, B.E.; Crowley, J.K. Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER, and Hyperion imagery: Data dimensionality issues and solutions. Remote Sens. Environ. 2005, 99, 173–186. [Google Scholar] [CrossRef]
- Xu, D.-Q.; Ni, G.-Q.; Jian, L.-L.; Shen, Y.-T.; Li, T.; Ge, S.-L.; Shu, X.-B. Exploring for natural gas using reflectance spectra of surface soils. Adv. Space Res. 2008, 41, 1800–1817. [Google Scholar] [CrossRef]
- Kodikara, G.R.L.; Woldai, T.; van Ruitenbeek, F.J.A.; Kuria, Z.; van der Meer, F.; Shepherd, K.D.; van Hummel, G.J. Hyperspectral remote sensing of evaporate minerals and associated sediments in Lake Magadi area, Kenya. Int. J. Appl. Earth Obs. 2012, 14, 22–32. [Google Scholar] [CrossRef]
- Rogass, C.; Mielke, C.; Scheffler, D.; Boesche, N.K.; Lausch, A.; Lubitz, C.; Brell, M.; Spengler, D.; Eisele, A.; Segl, K.; Guanter, L. Reduction of uncorrelated striping noise—Applications for hyperspectral pushbroom acquisitions. Remote Sens. 2014, 6, 11082–11106. [Google Scholar] [CrossRef]
- Hubbard, B.E.; Crowley, J.K.; Zimbelman, D.R. Comparative alteration mineral mapping using visible to shortwave (0.4–2.4 μm) Hyperion, ALI, and ASTER imagery. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1401–1410. [Google Scholar] [CrossRef]
- Sgavetti, M.; Pompilio, L.; Meli, S. Reflectance spectroscopy (0.3–2.5 μm) at various scales for bulk-rock identification. Geosphere 2006, 2, 142–160. [Google Scholar] [CrossRef]
- Gersman, R.; Ben-Dor, E.; Beyth, M.; Avigad, D.; Abraha, M.; Kibreab, A. Mapping of hydrothermally altered rocks by the EO-1 Hyperion sensor, northern Danakil Depression, Eritrea. Int. J. Remote Sens. 2008, 29, 3911–3936. [Google Scholar] [CrossRef]
- Khan, S.D.; Jacobson, S. Remote sensing and geochemistry for detecting hydrocarbon microseepages. Geol. Soc. Am. Bull. 2008, 120, 96–105. [Google Scholar] [CrossRef]
- Leverington, D.W. Discrimination of geological end members using Hyperion imagery: Preliminary results, Big Bend National Park, Texas. IEEE Geosci. Remote Sens. Symp. 2008, 2, II-1266–II-1269. [Google Scholar]
- Leverington, D.W. Discrimination of sedimentary lithologies using Hyperion and Landsat TM data: A case study at Melville Island, Canadian High Arctic. Int. J. Remote Sens. 2010, 31, 233–260. [Google Scholar] [CrossRef]
- Bishop, C.A.; Liu, J.G.; Mason, P.J. Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China. Int. J. Remote Sens. 2011, 32, 2409–2426. [Google Scholar] [CrossRef]
- Zhang, T.; Shao, Y.; Gong, H.; Li, L.; Wang, L. Salt content distribution and paleoclimatic significance of the Lop Nur “Ear” feature: Results from analysis of EO-1 Hyperion imagery. Remote Sens. 2014, 6, 7783–7799. [Google Scholar] [CrossRef]
- White, H.; Abuelgasim, A. Monitoring environmental remediation: Hyperspectral mapping of re-vegetated areas affected by smelting operations in Sudbury, Canada. In Proceedings of the 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), IEEE, Reykjavik, Iceland, 14–16 June 2010.
- PCI. Geomatica 10 Documentation; PCI Geomatics: Richmond Hill, ON, Canada, 2005. [Google Scholar]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The Spectral Image Processing System (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Boardman, J.W. Inversion of imaging spectrometry data using singular value decomposition. In Proceedings of the International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July 1989; Volume 4, pp. 2069–2072.
- Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction; Springer: New York, NY, USA, 2012. [Google Scholar]
- Environment for Visualizing Images (ENVI). Exelis, Boulder, USA. Available online: http://www.harrisgeospatial.com/IntelliEarthSolutions/GeospatialProducts/ENVI.aspx (accessed on 30 March 2016).
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Gallant, S.I. Neural Network Learning and Expert Systems; MIT Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Leverington, D.W.; Moon, W.M. Landsat-TM-based discrimination of lithological units associated with the Purtuniq ophiolite, Quebec, Canada. Remote Sens. 2012, 4, 1208–1231. [Google Scholar] [CrossRef]
- Cracknell, M.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef]
- Leverington, D.W.; Duguay, C.R. Evaluation of three supervised classifiers in mapping “depth to late-summer frozen ground”, central Yukon Territory. Can. J. Remote Sens. 1996, 22, 163–174. [Google Scholar] [CrossRef]
Class | SAM | NN | ML (No Null Class) | ML (With Null Class) | ||||
---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | |
coated bedrock | 35.7% | - | 84.9% | - | 93.7% | - | 69.8% | - |
uncoated bedrock | 0.0% | 0.0% | 0.0% | 0.0% | 2.0% | 0.0% | 0.0% | 0.0% |
asphalt | 0.6% | 0.2% | 20.4% | 1.5% | 30.2% | 1.5% | 5.6% | 0.0% |
tailings | 7.7% | 25.7% | 0.6% | 4.0% | 6.9% | 1.0% | 0.0% | 0.2% |
vegetation | 0.0% | 2.5% | 0.0% | 9.6% | 0.4% | 3.8% | 0.0% | 0.4% |
water (clear) | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
water (turbid) | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Class | SAM | NN | ML (No Null Class) | ML (With Null Class) | ||||
---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | |
coated bedrock | 19.5% | - | 97.9% | - | 97.9% | - | 69.3% | - |
asphalt | 59.2% | 19.5% | 16.3% | 2.1% | 14.5% | 2.1% | 0.4% | 0.3% |
slag | 1.7% | 0.0% | 0.8% | 0.0% | 24.6% | 0.0% | 0.0% | 0.0% |
sediment | 7.7% | 0.9% | 1.4% | 0.0% | 0.5% | 0.0% | 0.0% | 0.0% |
vegetation | 0.0% | 0.3% | 4.2% | 0.0% | 3.4% | 0.0% | 0.8% | 0.0% |
water | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leverington, D.W.; Schindler, M. Detection and Mapping of Black Rock Coatings Using Hyperion Images: Sudbury, Ontario, Canada. Remote Sens. 2016, 8, 301. https://doi.org/10.3390/rs8040301
Leverington DW, Schindler M. Detection and Mapping of Black Rock Coatings Using Hyperion Images: Sudbury, Ontario, Canada. Remote Sensing. 2016; 8(4):301. https://doi.org/10.3390/rs8040301
Chicago/Turabian StyleLeverington, David W., and Michael Schindler. 2016. "Detection and Mapping of Black Rock Coatings Using Hyperion Images: Sudbury, Ontario, Canada" Remote Sensing 8, no. 4: 301. https://doi.org/10.3390/rs8040301
APA StyleLeverington, D. W., & Schindler, M. (2016). Detection and Mapping of Black Rock Coatings Using Hyperion Images: Sudbury, Ontario, Canada. Remote Sensing, 8(4), 301. https://doi.org/10.3390/rs8040301