Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8
Abstract
:1. Introduction
- (1)
- testing various spectral band combinations for mapping glaciers from raw DNs;
- (2)
- comparison of glacier outlines derived from OLI and MSI using raw DNs;
- (3)
- mapping bare ice and snow using top of atmosphere reflectance (TOAR) from MSI.
2. Study Regions and Datasets
3. Methods
3.1. Sensor Characteristics
3.2. Analysing Band Ratios and Thresholds in Test Region 1 (Northern Tibet)
- (a)
- the red/SWIR ratio (MSI4/MSI11) with an additional threshold in the blue band (MSI2) for improved classification of ice in shadow [7];
- (b)
- the red/SWIR ratio (MSI4/MSI12) using the second SWIR band (center wavelength 2.19 μm);
- (c)
3.3. Glacier Mapping in Test Region 2 (Swiss Alps)
- (d)
- the red/SWIR band ratio at 30 m resolution: OLI4/OLI6 > th1;
- (e)
- a new band ratio with the 15 m panchromatic band: OLI8/OLI6 > th1;
- (f)
- for Sentinel-2A, a 10 m resolution dataset from the ratio MSI4/MSI11 > th1 and MSI2 > th2.
3.4. Mapping Snow and Ice Facies in Test Region 3 (Austria)
- (g)
- NDSI ≥ 0.20;
- (h)
- 0 ≤ MSI4/MSI11 ≤ 2;
- (i)
- MSI2/MSI4 ≤ 1.20;
- (j)
- 0 ≤ MSI8/MSI11 ≤ 1.
4. Results
4.1. Threshold and Band Ratio Tests on MSI in Region 1
4.2. Glacier Mapping in Test Region 2 with MSI and OLI
4.3. Snow and Ice Facies
5. Discussion
5.1. Combination of Sentinel-2 MSI Band Ratios and Threshold Sensitivity
5.2. Glacier Mapping with MSI Compared to OLI
5.3. Classification of Ice and Snow Facies
5.4. Consequences of the High Temporal Resolution
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ASTER | Advanced Thermal Emission and reflection Radiometer |
DEM | Digital Elevation Model |
DGPS | Differential Global Positioning System |
DN | digital number |
ETM+ | Enhanced Thematic Mapper + |
FCC | False Color Composite |
L8 | Landsat 8 |
MSI | Multispectral Instrument |
NDSI | Normalised Difference Snow Index |
NIR | Near Infrared |
OLI | Operational Land Imager |
RGB | Red, Green, and Blue |
RGI | Randolph Glacier Inventory |
S2A/B | Sentinel-2A/B |
SRTM | Shuttle Radar Topography Mission |
SWIR | Shortwave Infrared |
th1/2 | threshold 1/2 |
TOAR | Top of Atmosphere Reflectance |
TM | Thematic Mapper |
USGS | United States Geological Survey |
UTM | Universal Transverse Mercator |
VNIR | Visible and Near Infrared |
References
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Vaughan, D.G.; Comiso, J.C.; Allison, I.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, F.; Ren, J.; et al. Observations: Cryosphere. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2013; pp. 317–382. [Google Scholar]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph glacier inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Dozier, J. Spectral signature of alpine snow cover from Landsat 5 TM. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. The new remote-sensing-derived Swiss glacier inventory: I. Methods. Ann. Glaciol. 2002, 34, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Albert, T.H. Evaluation of remote sensing techniques for ice-area classification applied to the tropical Quelccaya Ice Cap, Peru. Polar Geogr. 2002, 26, 210–226. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A. Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island. Ann. Glaciol. 2005, 42, 59–66. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based glacier inventory of western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Frey, H.; Paul, F.; Strozzi, T. Compilation of a glacier inventory for the western Himalayas from satellite data: Methods, challenges and results. Remote Sens. Environ. 2012, 124, 832–843. [Google Scholar] [CrossRef] [Green Version]
- Rastner, P.; Bolch, T.; Mölg, N.; Machguth, H.; LeBris, R.; Paul, F. The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere 2012, 6, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Mölg, N. Hasty retreat of glaciers in northern Patagonia from 1985 to 2011. J. Glaciol. 2014, 60, 1033–1043. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Paul, F.; Huggel, C.; Kääb, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 2004, 89, 510–518. [Google Scholar] [CrossRef]
- Shukla, A.; Arora, M.; Gupta, R. Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sens. Environ. 2010, 114, 1378–1387. [Google Scholar] [CrossRef]
- Racoviteanu, A.; Williams, M.W. Decision tree and texture analysis for mapping debris-covered glaciers in the Kangchenjunga area, Eastern Himalaya. Remote Sens. 2012, 4, 3078–3109. [Google Scholar] [CrossRef]
- Robson, B.A.; Nuth, C.; Dahl, S.O.; Hölbling, D.; Strozzi, T.; Nielsen, P.R. Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sens. Environ. 2015, 170, 372–387. [Google Scholar] [CrossRef]
- Kääb, A.; Winsvold, S.H.; Altena, B.; Nuth, C.; Nagler, T.; Wuite, J. Glacier Remote Sensing using Sentinel-2. Part I: Radiometric and geometric performance, application to ice velocity. Remote Sens. 2016. [Google Scholar] [CrossRef]
- Bippus, G. Characteristics of Summer Snow Areas on Glaciers Observed by Means of Landsat Data. Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, 2011. [Google Scholar]
- Rabatel, A.; Dedieu, J.-P.; Thibert, E.; Letréguilly, A.; Vincent, C. Twenty-five years (1981–2005) of equilibrium-line altitude and mass balance reconstruction on Glacier Blanc in the French Alps using remote sensing methods and meteorological data. J. Glaciol. 2008, 54, 307–314. [Google Scholar] [CrossRef]
- Barandun, M.; Huss, M.; Sold, L.; Farinotti, D.; Azisov, E.; Salzmann, N.; Usubaliev, R.; Merkushkin, A.; Hoelzle, M. Re-analysis of seasonal mass balance at Abramov Glacier 1968–2014. J. Glaciol. 2015, 61, 1103–1117. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P.; de Jong, S.M.; Bierkens, M.F.P. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Frei, C.; Schär, C. A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Clim. 1998, 18, 873–900. [Google Scholar] [CrossRef]
- Böhner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 2006, 35, 279–295. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 Mission Status Report. Available online: https://sentinel.esa.int/documents/247904/1943503/Sentinel-2_Mission_Status_Report_11-Period_24-30_Oct_2015 (accessed on 27 June 2016).
- Paul, F.; Frey, H.; LeBris, R. A new glacier inventory for the European Alps from Landsat TM scenes of 2003: Challenges and results. Ann. Glaciol. 2011, 52, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Frequently Asked Questions about the Landsat Missions. Available online: http://landsat.usgs.gov/band_designations_landsat_satellites.php (accessed on 1 July 2016).
- ASTER Instrument Characteristics. Available online: https://asterweb.jpl.nasa.gov/characteristics.asp (accessed on 1 July 2016).
- Bayr, K.J.; Hall, D.; Kovalick, W.M. Observations on glaciers in the eastern Austrian Alps using satellite data. Int. J. Remote Sens. 1994, 15, 1733–1742. [Google Scholar] [CrossRef]
- Winsvold, S.H.; Andreassen, L.M.; Kienholz, C. Glacier area and length changes in Norway from repeat inventories. Cryosphere 2014, 8, 1885–1903. [Google Scholar] [CrossRef]
- Ekstrand, S. Landsat TM-based forest damage assessment: Correction for topographic effects. Photogramm. Eng. Remote Sens. 1996, 62, 151–161. [Google Scholar]
- Lambrecht, A.; Kuhn, M. Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Ann. Glaciol. 2007, 46, 177–184. [Google Scholar] [CrossRef]
- Winsvold, S.H.; Kääb, A.; Nuth, C. Regional glacier mapping using optical satellite data time series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016. [Google Scholar] [CrossRef]
- Andreassen, L.M.; Paul, F.; Kääb, A.; Hausberg, J.E. Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere 2008, 2, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Huggel, C.; Kääb, A.; Haeberli, W.; Teysseire, P.; Paul, F. Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Can. Geotech. J. 2002, 39, 316–330. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Le Bris, R.; et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.; Huss, M.; Barboux, C.; Hoelzle, M. The new Swiss Glacier Inventory SGI2010: Relevance of using high-resolution source data in areas dominated by very small glaciers. Arct. Antarct. Alp. Res. 2014, 46, 933–945. [Google Scholar] [CrossRef]
- Gardent, M.; Rabatel, A.; Dedieu, J.P.; Deline, P. Multitemporal glacier inventory of the French Alps from the late 1960s to the late 2000s. Glob. Planet. Chang. 2014, 120, 24–37. [Google Scholar] [CrossRef]
- Selkowitz, D.J.; Forster, R.R. An automated approach for mapping persistent ice and snow cover over high latitude regions. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
Test Site | Satellite | Sensor | MSI Tile or Path-Row | Date | Region | Product | Quantization |
---|---|---|---|---|---|---|---|
1 | Sentinel 2A | MSI | T45SWA | 18 November 2015 | Tibet | Ramp-up Phase | 1–10,000 |
2 | Sentinel 2A | MSI | T32TMS | 29 August 2015 | Alps (CH) | Commissioning Phase | 1–1000 |
2 | Landsat 8 | OLI | 195-028 | 31 August 2015 | Alps (CH) | USGS L1T | 16 bit |
3 | Sentinel 2A | MSI | T32TQT | 13 August 2015 | Alps (AT) | Commissioning Phase | 1–1000 |
Band Number | Landsat | Sentinel-2A | Terra | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Band | TM | ETM+ | OLI | MSI | AST | TM | ETM+ | OLI | MSI | ASTER |
Blue | 1 | 1 | 2 | 2 | - | 0.45–0.52 | 0.45–0.52 | 0.45–0.51 | - | |
Green | 2 | 2 | 3 | 3 | 1 | 0.52–0.60 | 0.53–0.61 | 0.53–0.60 | ||
Red | 3 | 3 | 4 | 4 | 2 | 0.63–0.69 | 0.63–0.69 | 0.63–0.68 | ||
NIR | 4 | 4 | 5 | 8 | 3 | 0.76–0.90 | 0.76–0.90 | 0.85–0.89 | ||
SWIR | 5 | 5 | 6 | 11 | 4 | 1.55–1.75 | 1.55–1.75 | 1.56–1.66 | 1.60–1.70 | |
SWIR | 7 | 7 | 7 | 12 | 5–9 | 2.08–2.35 | 2.09–2.35 | 2.10–2.30 | 2.15–2.43 | |
Pan | - | 8 | 8 | - | - | - | - | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sens. 2016, 8, 575. https://doi.org/10.3390/rs8070575
Paul F, Winsvold SH, Kääb A, Nagler T, Schwaizer G. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sensing. 2016; 8(7):575. https://doi.org/10.3390/rs8070575
Chicago/Turabian StylePaul, Frank, Solveig H. Winsvold, Andreas Kääb, Thomas Nagler, and Gabriele Schwaizer. 2016. "Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8" Remote Sensing 8, no. 7: 575. https://doi.org/10.3390/rs8070575
APA StylePaul, F., Winsvold, S. H., Kääb, A., Nagler, T., & Schwaizer, G. (2016). Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sensing, 8(7), 575. https://doi.org/10.3390/rs8070575