An Antibody Specific for the Dog Leukocyte Antigen DR (DLA-DR) and Its Novel Methotrexate Conjugate Inhibit the Growth of Canine B Cell Lymphoma
Abstract
:1. Introduction
2. Results
2.1. Characterization of the B5-MTX Conjugate
2.2. Cytotoxicity of B5 and B5-MTX Against Canine Lymphoma/Leukemia Lines In Vitro
2.3. Therapeutic Efficacy of B5 and B5-MTX in NOD-SCID Mice Xenotransplanted with the CLBL1-Luc Cell Line
2.4. Detection of Soluble, Circulating DLA-DR Complexes with A B5-Based Immunoassay
3. Discussion
4. Materials and Methods
4.1. B5-MTX Conjugate Synthesis
4.2. Cell Lines
4.3. In Vitro Cytotoxicity Assays
4.4. In Vivo Monitoring of Anti-Tumor Effects of B5 and B5-MTX
4.5. Detection of Soluble DLA-DR Levels in the Blood Serum of Mice and Dogs
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Richards, K.L.; Suter, S.E. Man’s best friend: What can pet dogs teach us about non-Hodgkin’s lymphoma? Immunol. Rev. 2015, 263, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Zandvliet, M. Canine lymphoma: A review. Vet. Q. 2016, 36, 76–104. [Google Scholar] [CrossRef] [PubMed]
- Ito, D.; Frantz, A.M.; Modiano, J.F. Canine lymphoma as a comparative model for human non-Hodgkin lymphoma: Recent progress and applications. Vet. Immunol. Immunopathol. 2014, 159, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Dobson, J.M.; Samuel, S.; Milstein, H.; Rogers, K.; Wood, J.L.N. Canine neoplasia in the UK: Estimates of incidence rates from a population of insured dogs. J. Small Anim. Pract. 2002, 43, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Dorn, C.R.; Taylor, D.O.N.; Frye, F.L.; Hibbard, H.H. Survey of animal neoplasms in alameda and contra costa counties, california. i. methodology and description of cases. J. Natl. Cancer Inst. 1968, 40, 295–305. [Google Scholar] [PubMed]
- Yau, P.P.Y.; Dhand, N.K.; Thomson, P.C.; Taylor, R.M. Retrospective study on the occurrence of canine lymphoma and associated breed risks in a population of dogs in NSW (2001–2009). Aust. Vet. J. 2017, 95, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Jubala, C.M.; Wojcieszyn, J.W.; Valli, V.E.; Getzy, D.M.; Fosmire, S.P.; Coffey, D.; Bellgrau, D.; Modiano, J.F. CD20 expression in normal canine B cells and in canine non-Hodgkin lymphoma. Vet. Pathol. 2005, 42, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Ito, D.; Brewer, S.; Modiano, J.F.; Beall, M.J. Development of a novel anti-canine CD20 monoclonal antibody with diagnostic and therapeutic potential. Leuk. Lymphoma 2015, 56, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Aresu, L.; Comazzi, S.; Shi, J.; Worrall, E.; Clayton, J.; Humphries, W.; Hemmington, S.; Davis, P.; Murray, E.; et al. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine. PLoS ONE 2016, 11, e0148366. [Google Scholar] [CrossRef]
- Rue, S.M.; Eckelman, B.P.; Efe, J.A.; Bloink, K.; Deveraux, Q.L.; Lowery, D.; Nasoff, M. Identification of a candidate therapeutic antibody for treatment of canine B-cell lymphoma. Vet. Immunol. Immunopathol. 2015, 164, 148–159. [Google Scholar] [CrossRef]
- Weiskopf, K.; Anderson, K.L.; Ito, D.; Schnorr, P.J.; Tomiyasu, H.; Ring, A.M.; Bloink, K.; Efe, J.; Rue, S.; Lowery, D.; et al. Eradication of Canine Diffuse Large B-Cell Lymphoma in a Murine Xenograft Model with CD47 Blockade and Anti-CD20. Cancer Immunol. Res. 2016, 4, 1072–1087. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.; Gupta, P.; Chen, X.; Cardillo, T.M.; Furman, R.R.; Chen, S.; Chang, C.H.; Goldenberg, D.M. Therapy of B-cell malignancies by anti-HLA-DR humanized monoclonal antibody, IMMU-114, is mediated through hyperactivation of ERK and JNK MAP kinase signaling pathways. Blood 2010, 115, 5180–5190. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, F.R.; Sale, G.E.; Storb, R.; Charrier, K.; Deeg, H.J.; Graham, T.; Wulff, J.C. Phenotyping of canine lymphoma with monoclonal antibodies directed at cell surface antigens: Classification, morphology, clinical presentation and response to chemotherapy. Hematol. Oncol. 1984, 2, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.; Balkman, C.; Chen, S.; Rassnick, K.; McEntee, M.; Page, R.; Goldenberg, D.M. Evaluation of anti-human leukocyte antigen-DR monoclonal antibody therapy in spontaneous canine lymphoma. Leuk. Lymphoma 2011, 52, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Bridges, S.H.; Kruisbeek, A.M.; Longo, D. Selective in vivo antitumor effects of monoclonal anti-I-A antibody on B cell lymphoma. J. Immunol. 1987, 139, 4242–4249. [Google Scholar] [PubMed]
- Lin, T.S.; Stock, W.; Xu, H.; Phelps, M.A.; Lucas, M.S.; Guster, S.K.; Briggs, B.R.; Cheney, C.; Porcu, P.; Flinn, I.W.; et al. A phase I/II dose escalation study of apolizumab (Hu1D10) using a stepped-up dosing schedule in patients with chronic lymphocytic leukemia and acute leukemia. Leuk. Lymphoma 2009, 50, 1958–1963. [Google Scholar] [CrossRef]
- Subcutaneous Injections of IMMU-114 (Anti-HLA-DR IgG4 Monoclonal Antibody): Initial Results of a Phase I First-in-Man Study in Hematologic Malignancies. Blood 2015, 126, 2740.
- Cardillo, T.M.; Govindan, S.V.; Zalath, M.B.; Rossi, D.L.; Wang, Y.; Chang, C.-H.; Goldenberg, D.M. IMMU-140, a Novel SN-38 Antibody-Drug Conjugate Targeting HLA-DR, Mediates Dual Cytotoxic Effects in Hematologic Cancers and Malignant Melanoma. Mol. Cancer Ther. 2018, 17, 150–160. [Google Scholar] [CrossRef]
- Lisowska, M.; Pawlak, A.; Kutkowska, J.; Hildebrand, W.; Ugorski, M.; Rapak, A.; Miazek, A. Development of novel monoclonal antibodies to dog leukocyte antigen DR displaying direct and immune-mediated cytotoxicity toward canine lymphoma cell lines. Hematol. Oncol. 2018, 36, 554–560. [Google Scholar] [CrossRef]
- Jolivet, J.; Cowan, K.H.; Curt, G.A.; Clendeninn, N.J.; Chabner, B.A. The Pharmacology and Clinical Use of Methotrexate. N. Engl. J. Med. 1983, 309, 1094–1104. [Google Scholar] [CrossRef]
- Pawlak, A.; Kutkowska, J.; Obmińska-Mrukowicz, B.; Rapak, A. Methotrexate induces high level of apoptosis in canine lymphoma/leukemia cell lines. Res. Vet. Sci. 2017, 114, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Pohlen, M.; Gerth, H.; Liersch, R.; Koschmieder, S.; Mesters, R.M.; Kessler, T.; Appelmann, I.; Müller-Tidow, C.; Berdel, W.E. Primary mediastinal large B-cell and Burkitt’s/Burkitt-like lymphoma: Efficacy and toxicity of a rituximab and methotrexate based regimen (GMALL B-ALL/NHL 2002 protocol). Onkologie 2011, 34, 69–70. [Google Scholar]
- Smyth, M.J.; Pietersz, G.A.; McKenzie, I.F.C. The mode of action of Methotrexate-monoclonal antibody conjugates. Immunol. Cell Biol. 1987, 65, 189–200. [Google Scholar] [CrossRef]
- Bakela, K.; Kountourakis, N.; Aivaliotis, M.; Athanassakis, I. Soluble MHC-II proteins promote suppressive activity in CD4+ T cells. Immunology 2015, 144, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.; Idris, S.-Z.; Lee, L.J.; Dhaliwal, J.S.; Mohd Ibrahim, H.; Osman, R.; Abdullah, M. Increased soluble HLA-DRB1 in B-cell acute lymphoblastic leukaemia. Malays. J. Pathol. 2015, 37, 83–90. [Google Scholar] [PubMed]
- Dan, N.; Setua, S.; Kashyap, V.K.; Khan, S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. Antibody-drug conjugates for cancer therapy: Chemistry to clinical implications. Pharmaceuticals 2018, 11, 32. [Google Scholar]
- Stein, R.; Mattes, M.J.; Cardillo, T.M.; Hansen, H.J.; Chang, C.H.; Burton, J.; Govindan, S.; Goldenberg, D.M. CD74: A new candidate target for the immunotherapy of B-cell neoplasms. Clin. Cancer Res. 2007, 13, 5556s–5563s. [Google Scholar] [CrossRef]
- Fuenmayor, J.; Montaño, R.F. Novel antibody-based proteins for cancer immunotherapy. Cancers 2011, 3, 3370–3393. [Google Scholar] [CrossRef] [PubMed]
- Walling, J. From methotrexate to pemetrexed and beyond. A review of the pharmacodynamic and clinical properties of antifolates. Investig. New Drugs 2006, 24, 37–77. [Google Scholar] [CrossRef]
- Morrison, W.B. Cancer Chemotherapy: An Annotated History. J. Vet. Intern. Med. 2010, 24, 1249–1262. [Google Scholar] [CrossRef]
- Longo-Sorbello, G.S.A.; Bertino, J.R. Current understanding of methotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials. Haematologica 2001, 86, 121–127. [Google Scholar] [PubMed]
- Rowland, A.J.; Harper, M.E.; Wilson, D.W.; Griffiths, K. The effect of an anti-membrane antibody-methotrexate conjugate on the human prostatic tumour line pc3. Br. J. Cancer 1990, 61, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Mone, A.P.; Huang, P.; Pelicano, H.; Cheney, C.M.; Green, J.M.; Tso, J.Y.; Johnson, A.J.; Jefferson, S.; Lin, T.S.; Byrd, J.C. Hu1D10 induces apoptosis concurrent with activation of the AKT survival pathway in human chronic lymphocytic leukemia cells. Blood 2004, 103, 1846–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drénou, B.; Blancheteau, V.; Burgess, D.H.; Fauchet, R.; Charron, D.J.; Mooney, N.A. A caspase-independent pathway of MHC class II antigen-mediated apoptosis of human B lymphocytes. J. Immunol. 1999, 163, 4115–4124. [Google Scholar]
- Rebmann, V.; Ugurel, S.; Tilgen, W.; Reinhold, U.; Grosse-Wilde, H. Soluble HLA-DR is a potent predictive indicator of disease progression in serum from early-stage melanoma patients. Int. J. Cancer 2002, 100, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Bakela, K.; Athanassakis, I. Soluble major histocompatibility complex molecules in immune regulation: Highlighting class II antigens. Immunology 2018, 153, 315–324. [Google Scholar] [CrossRef]
- Goszczyński, T.M.; Filip-Psurska, B.; Kempińska, K.; Wietrzyk, J.; Boratyński, J. Hydroxyethyl starch as an effective methotrexate carrier in anticancer therapy. Pharmacol. Res. Perspect. 2014, 2, e00047. [Google Scholar] [CrossRef]
- Ciekot, J.; Goszczyński, T.; Boratyński, J. Methods for methotrexate determination in macromolecular conjugates drug carrier. Acta Pol. Pharm. Drug Res. 2012, 69, 1342–1346. [Google Scholar]
- Rutgen, B.C.; Hammer, S.E.; Gerner, W.; Christian, M.; de Arespacochaga, A.G.; Willmann, M.; Kleiter, M.; Schwendenwein, I.; Saalmuller, A. Establishment and characterization of a novel canine B-cell line derived from a spontaneously occurring diffuse large cell lymphoma. Leuk. Res. 2010, 34, 932–938. [Google Scholar] [CrossRef]
- Pawlak, A.; Rapak, A.; Drynda, A.; Poradowski, D.; Zbyryt, I.; Dzimira, S.; Suchanski, J.; Obminska-Mrukowicz, B. Immunophenotypic characterization of canine malignant lymphoma: A retrospective study of cases diagnosed in Poland Lower Silesia, over the period 2011–2013. Vet. Comp. Oncol. 2016, 14 (Suppl. 1), 52–60. [Google Scholar] [CrossRef]
- Nakaichi, M.; Taura, Y.; Kanki, M.; Mamba, K.; Momoi, Y.; Tsujimoto, H.; Nakama, S. Establishment and characterization of a new canine B-cell leukemia cell line. J. Vet. Med. Sci. 1996, 58, 469–471. [Google Scholar] [CrossRef] [PubMed]
Cell Line | B5 | 1 B5-MTX | ||
---|---|---|---|---|
IC50 nM | Maximum Inhibition (%) | IC50 nM | Maximum Inhibition (%) | |
CLBL1 | 9.53 | 69 | 5 | 85 |
CLB70 | 11.5 | 65 | 6.25 | 88 |
GL-1 | n.d. | <2 | n.d. | <1 |
Treatment | N | TTP (Days) ± S.D. | %PR (TF) | (p) B5 versus Others | (p) B5-MTX versus Others |
---|---|---|---|---|---|
B5-MTX | 3 | 28.0 ± 8.49 | 100 (1) | n.s. | N.A. |
B5 | 5 | 22.0 ± 2.45 | 100 (0) | N.A. | n.s. |
MTX | 8 | 14.0 ± 1.00 | 0 | <0.01 | n.s. |
IgG | 8 | 13.5 ± 0.86 | 0 | <0.001 | <0.05 |
PBS | 8 | 14.7 ± 0.69 | 0 | n.s. | n.s. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisowska, M.; Milczarek, M.; Ciekot, J.; Kutkowska, J.; Hildebrand, W.; Rapak, A.; Miazek, A. An Antibody Specific for the Dog Leukocyte Antigen DR (DLA-DR) and Its Novel Methotrexate Conjugate Inhibit the Growth of Canine B Cell Lymphoma. Cancers 2019, 11, 1438. https://doi.org/10.3390/cancers11101438
Lisowska M, Milczarek M, Ciekot J, Kutkowska J, Hildebrand W, Rapak A, Miazek A. An Antibody Specific for the Dog Leukocyte Antigen DR (DLA-DR) and Its Novel Methotrexate Conjugate Inhibit the Growth of Canine B Cell Lymphoma. Cancers. 2019; 11(10):1438. https://doi.org/10.3390/cancers11101438
Chicago/Turabian StyleLisowska, Marta, Magdalena Milczarek, Jarosław Ciekot, Justyna Kutkowska, Wojciech Hildebrand, Andrzej Rapak, and Arkadiusz Miazek. 2019. "An Antibody Specific for the Dog Leukocyte Antigen DR (DLA-DR) and Its Novel Methotrexate Conjugate Inhibit the Growth of Canine B Cell Lymphoma" Cancers 11, no. 10: 1438. https://doi.org/10.3390/cancers11101438
APA StyleLisowska, M., Milczarek, M., Ciekot, J., Kutkowska, J., Hildebrand, W., Rapak, A., & Miazek, A. (2019). An Antibody Specific for the Dog Leukocyte Antigen DR (DLA-DR) and Its Novel Methotrexate Conjugate Inhibit the Growth of Canine B Cell Lymphoma. Cancers, 11(10), 1438. https://doi.org/10.3390/cancers11101438