Evaluation of Intensity- and Contour-Based Deformable Image Registration Accuracy in Pancreatic Cancer Patients
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. CT Image Acquisition
4.3. Treatment Planning and Dose Calculation
4.4. Deformable Image Registration Algorithm
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kraft, G. Tumor therapy with heavy charged particles. Prog. Part Nucl. Phys. 2000, 45, 473–544. [Google Scholar] [CrossRef]
- Ohno, T. Particle radiotherapy with carbon ion beams. EPMA J. 2013, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Irie, D.; Saitoh, J.I.; Shirai, K.; Abe, T.; Kubota, Y.; Sakai, M.; Noda, S.E.; Ohno, T.; Nakano, T. Verification of dose distribution in carbon ion radiation therapy for stage I lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Sakai, M.; Kubota, Y.; Saitoh, J.I.; Irie, D.; Shirai, K.; Okada, R.; Torikoshi, M.; Ohno, T.; Nakano, T. Robustness of patient positioning for interfractional error in carbon ion radiotherapy for stage I lung cancer: Bone matching versus tumor matching. Radiother. Oncol. 2018, 129, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Shiba, S.; Saitoh, J.I.; Irie, D.; Shirai, K.; Abe, T.; Kubota, Y.; Sakai, M.; Okada, R.; Ohno, T.; Nakano, T. Potential Pitfalls of a Fiducial Marker-matching Technique in Carbon-ion Radiotherapy for Lung Cancer. Anticancer Res. 2017, 37, 5673–5680. [Google Scholar] [PubMed]
- Abe, S.; Kubota, Y.; Shibuya, K.; Koyama, Y.; Abe, T.; Ohno, T.; Nakano, T. Fiducial marker matching versus vertebral body matching. Dosimetric impact of patient positioning in carbon ion radiotherapy for primary hepatic cancer. Phys. Med. 2017, 33, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Katoh, H.; Shibuya, K.; Shiba, S.; Abe, S.; Sakai, M.; Yuasa, D.; Tsuda, K.; Ohno, T.; Nakano, T. Comparison between bone matching and marker matching for evaluation of intra- and inter-fractional changes in accumulated dose of carbon-ion radiotherapy for hepatocellular carcinoma. Radiather. Oncol. 2019, 137, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Houweling, A.C.; Fukata, K.; Kubota, Y.; Shimada, H.; Rasch, C.R.; Ohno, T.; Bel, A.; Van Der Horst, A. The impact of interfractional anatomical changes on the accumulated dose in carbon ion therapy of pancreatic cancer patients. Radiother. Oncol. 2016, 119, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Shelley, L.E.A.; Scaife, J.E.; Romanchikova, M.; Harrison, K.; Forman, J.R.; Bates, A.M.; Noble, D.J.; Jena, R.; Parker, M.A.; Sutcliffe, M.P.F.; et al. Delivered dose can be a better predictor of rectal toxicity than planned dose in prostate radiotherapy. Radiother. Oncol. 2017, 123, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Chang, Y.; Brock, K.K.; Cazoulat, G.; Koay, E.J.; Koong, A.C.; Herman, J.M.; Park, P.C.; Poenisch, F.; Li, Q.; et al. Effect of setup and inter-fraction anatomical changes on the accumulated dose in CT-guided breath-hold intensity modulated proton therapy of liver malignancies. Radiother. Oncol. 2019, 134, 101–109. [Google Scholar] [CrossRef]
- Kawashiro, S.; Yamada, S.; Isozaki, Y.; Nemoto, K.; Tsuji, H.; Kamada, T. Carbon-ion radiotherapy for locoregional recurrence after primary surgery for pancreatic cancer. Radiother. Oncol. 2018, 129, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Kawashiro, S.; Yamada, S.; Okamoto, M.; Ohno, T.; Nakano, T.; Shinoto, M.; Shioyama, Y.; Nemoto, K.; Isozaki, Y.; Tsuji, H.; et al. Multi-institutional Study of Carbon-ion Radiotherapy for Locally Advanced Pancreatic Cancer: Japan Carbon-ion Radiation Oncology Study Group (J-CROS) Study 1403 Pancreas. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kubota, Y.; Tashiro, M.; Ohno, T. Value of Three-Dimensional Imaging Systems for Image-Guided Carbon Ion Radiotherapy. Cancers (Basel) 2019, 11, 297. [Google Scholar] [CrossRef] [PubMed]
- Mogadas, N.; Sothmann, T.; Knopp, T.; Gauer, T.; Petersen, C.; Werner, R. Influence of deformable image registration on 4D dose simulation for extracranial SBRT: A multi-registration framework study. Radiother. Oncol. 2018, 127, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Motegi, K.; Tachibana, H.; Motegi, A.; Hotta, K.; Baba, H.; Akimoto, T. Usefulness of hybrid deformable image registration algorithms in prostate radiation therapy. J. Appl. Clin. Med. Phys. 2019, 20, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Sarudis, S.; Karlsson, A.; Bibac, D.; Nyman, J.; Bäck, A. Evaluation of deformable image registration accuracy for CT images of the thorax region. Phys. Med. 2019, 57, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Brock, K.K.; Mutic, S.; McNutt, T.R.; Li, H.; Kessler, M.L. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med. Phys. 2017, 44, 43–76. [Google Scholar] [CrossRef]
- Johnson, P.B.; Padgett, K.R.; Chen, K.L.; Dogan, N. Evaluation of the tool Reg Refine for user-guided deformable image registration. J. Appl. Clin. Med. Phys. 2016, 17, 158–170. [Google Scholar] [CrossRef]
- Calusi, S.; Labanca, G.; Zani, M.; Casati, M.; Marrazzo, L.; Noferini, L.; Talamonti, C.; Fusi, F.; Desideri, I.; Bonomo, P.; et al. A multiparametric method to assess the MIM deformable image registration algorithm. J. Appl. Clin. Med. Phys. 2019, 20, 75–82. [Google Scholar] [CrossRef]
- Kubota, Y.; Tashiro, M.; Shinohara, A.; Abe, S.; Souda, S.; Okada, R.; Ishii, T.; Kanai, T.; Ohno, T.; Nakano, T. Development of an automatic evaluation method for patient positioning error. J. Appl. Clin. Med. Phys. 2015, 16, 100–111. [Google Scholar] [CrossRef]
- Ohno, T.; Kanai, T.; Yamada, S.; Yusa, K.; Tashiro, M.; Shimada, H.; Torikai, K.; Yoshida, Y.; Kitada, Y.; Katoh, H.; et al. Carbon ion radiotherapy at the Gunma University heavy ion medical center: New facility set-up. Cancers 2011, 3, 4046–4060. [Google Scholar] [CrossRef] [PubMed]
- Renner, T.R.; Chu, W.T. Wobbler facility for biomedical experiments. Med. Phys 1987, 14, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Kanai, T.; Endo, M.; Minohara, S.; Miyahara, N.; Koyama-Ito, H.; Tomura, H.; Matsufuji, N.; Futami, Y.; Fukumura, A.; Hiraoka, T.; et al. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 201–210. [Google Scholar] [CrossRef]
Case | Volume | Parameter | RIR | iDIR | cDIR | hDIR |
---|---|---|---|---|---|---|
SP-SP | CTV | V95 (%) | 2.10 (0–5.94) | 0.06 (0–1.28) | 0.74 (0–2.97) | 0.36 (0–1.10) |
GTV | V95 (%) | 0.00 (0–0.67) | 0.00 (0–0.28) | 0.00 (0–1.98) | 0.00 (0–0.93) | |
Stomach | V50 (%) | 9.38 (2.99–22.18) | 6.79 (0.84–19.99) | 6.39 (0.18–17.38) | 6.68 (1.15–19.01) | |
V10 (%) | 13.77 (7.38–23.54) | 14.33 (6.88–22.22) | 14.51 (6.90–22.49) | 13.29 (6.74–24.60) | ||
Duodenum | V50 (%) | 6.49 (0.24–18.42) | 3.39 (0.47–16.76) | 1.43 (0.10–11.85) | 1.77 (0.30–22.84) | |
V10 (%) | 5.48 (0.04–19.78) | 3.41 (0.69–28.10) | 4.71 (0.10–11.85) | 5.71 (0.30–22.84) | ||
PR-PR | CTV | V95 (%) | 2.95 (0.40–6.12) | 2.40 (1.34–3.24) | 2.60 (0.57–5.61) | 2.40 (1.79–4.21) |
GTV | V95 (%) | 2.59 (0.69–4.15) | 1.95 (0.76–4.13) | 3.71 (0.19–8.30) | 2.10 (0.98–4.62) | |
Stomach | V50 (%) | 0.11 (0.00–1.22) | 0.15 (0.04–3.81) | 0.25 (0.00–2.32) | 0.23 (0.07–2.54) | |
V10 (%) | 2.57 (1.22–7.45) | 1.41 (0.35–9.50) | 1.72 (1.11–10.81) | 1.05 (0.70–11.26) | ||
Duodenum | V50 (%) | 0.22 (0.00–2.45) | 0.04 (0.00–0.98) | 0.12 (0.00–2.15) | 0.24 (0.00–2.32) | |
V10 (%) | 0.78 (0.21–15.28) | 1.41 (0.18–4.82) | 1.56 (0.37–11.50) | 2.21 (0.73–7.34) | ||
SP-PR | CTV | V95 (%) | 4.15 (0.15–10.20) | 3.18 (0.42–7.95) | 3.17 (1.43–9.46) | 1.50 (1.15–4.86) |
GTV | V95 (%) | 2.15 (0.00–9.16) | 3.02 (0.00–3.57) | 5.01 (0.00–13.25) | 3.11 (0.00–13.15) | |
Stomach | V50 (%) | 1.51 (0.02–4.40) | 4.01 (0.00–12.15) | 0.51 (0.00–8.05) | 1.97 (0.00–12.91) | |
V10 (%) | 6.97 (0.31–21.37) | 7.96 (0.28–13.51) | 5.81 (0.25–30.05) | 7.56 (0.01–11.34) | ||
Duodenum | V50 (%) | 0.82 (0.08–3.93) | 0.91 (0.02–2.09) | 0.53 (0.00–9.30) | 0.98 (0.00–8.77) | |
V10 (%) | 3.96 (1.74–22.19) | 5.10 (0.12–30.80) | 3.31 (2.02–19.89) | 4.83 (0.81–17.98) | ||
All | CTV | V95 (%) | 2.47 (0–10.20) | 1.65 (0–7.95) | 2.24 (0–9.46) | 1.50 (0–4.86) |
GTV | V95 (%) | 0.84 (0–9.16) | 0.81 (0–4.13) | 2.47 (0–13.25) | 1.59 (0–13.15) | |
Stomach | V50 (%) | 1.60 (0.00–22.18) | 2.94 (0.00–19.99) | 0.85 (0.00–17.38) | 2.46 (0.00–19.01) | |
V10 (%) | 7.42 (0.31–23.54) | 8.19 (0.28–22.22) | 8.40 (0.25–30.05) | 7.56 (0.01–24.60) | ||
Duodenum | V50 (%) | 0.68 (0.00–18.42) | 0.91 (0.00–16.76) | 0.58 (0.00–9.30) | 0.68 (0.00–11.20) | |
V10 (%) | 2.10 (0.04–22.19) | 2.06 (0.12–30.80) | 2.48 (0.10–19.89) | 3.78 (0.30–22.84) |
Patient | Sex | Age | Patient Position | Tumor Position | Tumor Volume (mL) | Stomachic Volume (mL) | Duodenal Volume (mL) |
---|---|---|---|---|---|---|---|
1 | F | 50 | SP0, PR0 | Body | 22.4 ± 3.3 | 238.3 ± 79.3 | 48.9 ± 6.3 |
2 | F | 84 | SP0, PR10 | Head | 35.3 ± 2.6 | 185.1 ± 46.6 | 100.4 ± 19.0 |
3 | M | 82 | SP0, PR350 | Body | 30.8 ± 2.1 | 227.0 ± 47.4 | 63.3 ± 14.3 |
4 | F | 61 | SP0, PR0 | Body | 26.0 ± 1.7 | 185.1 ± 31.1 | 48.0 ± 1.5 |
5 | F | 77 | SP0, RP350 | Body | 20.8 ± 2.6 | 151.7 ± 20.3 | 54.0 ± 7.9 |
6 | M | 74 | SP0, PR0 | Body | 40.2 ± 3.4 | 153.5 ± 25.7 | 77.8 ± 15.3 |
Median | - | 75.5 | - | - | 28.4 | 185.1 | 58.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubota, Y.; Okamoto, M.; Li, Y.; Shiba, S.; Okazaki, S.; Komatsu, S.; Sakai, M.; Kubo, N.; Ohno, T.; Nakano, T. Evaluation of Intensity- and Contour-Based Deformable Image Registration Accuracy in Pancreatic Cancer Patients. Cancers 2019, 11, 1447. https://doi.org/10.3390/cancers11101447
Kubota Y, Okamoto M, Li Y, Shiba S, Okazaki S, Komatsu S, Sakai M, Kubo N, Ohno T, Nakano T. Evaluation of Intensity- and Contour-Based Deformable Image Registration Accuracy in Pancreatic Cancer Patients. Cancers. 2019; 11(10):1447. https://doi.org/10.3390/cancers11101447
Chicago/Turabian StyleKubota, Yoshiki, Masahiko Okamoto, Yang Li, Shintaro Shiba, Shohei Okazaki, Shuichiro Komatsu, Makoto Sakai, Nobuteru Kubo, Tatsuya Ohno, and Takashi Nakano. 2019. "Evaluation of Intensity- and Contour-Based Deformable Image Registration Accuracy in Pancreatic Cancer Patients" Cancers 11, no. 10: 1447. https://doi.org/10.3390/cancers11101447
APA StyleKubota, Y., Okamoto, M., Li, Y., Shiba, S., Okazaki, S., Komatsu, S., Sakai, M., Kubo, N., Ohno, T., & Nakano, T. (2019). Evaluation of Intensity- and Contour-Based Deformable Image Registration Accuracy in Pancreatic Cancer Patients. Cancers, 11(10), 1447. https://doi.org/10.3390/cancers11101447