Adjuvant Biophysical Therapies in Osteosarcoma
Abstract
:1. Introduction
2. Search Strategy
3. Physical Principle of Biophysical Stimuli
3.1. Hyperthermia (HT)
- Electromagnetic waves: To achieve the desired heat in target site, magnetic nanoparticles (MNPs) are first injected and subsequently exposed to an alternating magnetic field (AMF). The AMF frequency ranges from several KHz up to 10 MHz with sufficient penetration depth. The HT efficiency is affect by several parameters: frequency an amplitude of AMF, and size-dependent magnetic properties of the nanoparticles [16].
- Radio Frequency (RF): Non-ionizing radiation are employed as an adjuvant therapy to enhance the chemotherapy and radiotherapy effects. RF waves effectively penetrate into the deep sites by needle insertion directly into the tumor site, but this technique enhance the temperature in a non-specific and non-uniform manner causing hot spots within overlying healthy tissues. To avoid these disadvantages, it is useful the use of nanoparticles (gold nanoparticles) that reach the tumor site and release RF exposure. The heating rate is inversely proportional to particle size.
- Laser: localized hyperthermia is achieved by introduction of nanoparticles (such as gold nanoparticles) into the target site where the laser exposure causes a change in the medium photothermal properties and increases the local conversion of optical energy into heat, by exciting the PS electrons [17]
- Acoustic: see High Intensity Focused Ultrasound section
3.2. High Intensity Focused Ultrasound (HIFU)
3.3. Low Intensity Pulsed Ultrasound (LIPUS) and Sonodynamic Therapy (SDT)
3.4. Photodynamic Therapy (PDT)
4. Biophysical Therapies in Oncology
4.1. HT
4.2. HIFU
4.3. LIPUS and SDT
4.4. PDT
5. Application of Biophysical Therapies in Osteosarcoma
5.1. HT
5.1.1. HT and Chemotherapy
5.1.2. HT and Radiotherapy
5.1.3. HT and Nano- and Magnetic Nanoparticles
5.2. HIFU
- (1)
- NCT02076906—MRg-HIFU on pediatric solid tumors, whose purpose is to determine if MRgFUS ablative therapy is safe and feasible for children with refractory or relapsed solid tumors;
- (2)
- NCT02557854—HIFU hyperthermia with liposomal doxorubicin (DOXIL) for relapsed or refractory pediatric and young adult solid tumors, which aims at evaluating whether Doxil given prior to MR-HIFU hyperthermia (50 mg Doxil i.v. followed by MR-HIFU 42 °C for 30 min every four weeks) is safe for the treatment of pediatric and young adult patients with recurrent and refractory solid tumors;
- (3)
- NCT02536183 A phase I study of lyso-thermosensitive liposomal doxorubicin and MR-HIFU for pediatric refractory solid tumors, which evaluates the maximum tolerated dose and recommended phase 2 dose of lyso-thermosensitive liposomal doxorubicin (LTLD) administered in combination with MR-HIFU in children with relapsed/refractory solid tumors. LTLD is administered i.v. in combination with MR-HIFU ablation on day 1 of every 21-day cycle, receiving up to six cycles.
5.3. LIPUS and SDT
5.4. PDT
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bielack, S.; Kempf-Bielack, B.; Von Kalle, T.; Schwarz, R.; Wirth, T.; Kager, L.; Whelan, J. Controversies in childhood osteosarcoma. Minerva Pediatr. 2013, 65, 125–148. [Google Scholar]
- Bielack, S.S.; Kempf-Bielack, B.; Delling, G.; Exner, G.U.; Flege, S.; Helmke, K.; Kotz, R.; Salzer-Kuntschik, M.; Werner, M.; Winkelmann, W.; et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 2002, 20, 776–790. [Google Scholar] [CrossRef]
- Kager, L.; Zoubek, A.; Pötschger, U.; Kastner, U.; Flege, S.; Kempf-Bielack, B.; Branscheid, D.; Kotz, R.; Salzer-Kuntschik, M.; Winkelmann, W.; et al. Primary metastatic osteosarcoma: Presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J. Clin. Oncol. 2003, 21, 2011–2018. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.J.; Geller, D.S.; Gorlick, R. Therapy for osteosarcoma: Where do we go from here? Paediatr. Drugs 2008, 10, 315–327. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Hu, Z.; Yang, B.; Li, Q.; Wang, J.; Zheng, J.; Cao, W. 5-Aminolevulinic Acid-Based Sonodynamic Therapy Induces the Apoptosis of Osteosarcoma in Mice. PLoS ONE 2015, 10, e0132074. [Google Scholar] [CrossRef]
- Sakamoto, A.; Iwamoto, Y. Current status and perspectives regarding the treatment of osteo-sarcoma: Chemotherapy. Rev. Recent Clin. Trials 2008, 3, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Bickels, J.; Wittig, J.C.; Kollender, Y.; Henshaw, R.M.; Kellar-Graney, K.L.; Meller, I.; Malawer, M.M. Distal femur resection with endoprosthetic reconstruction: A long-term followup study. Clin. Orthop. Relat. Res. 2002, 400, 225–235. [Google Scholar] [CrossRef]
- Fabroni, R.H.; Castagno, A.; Aguilera, A.L.; Steverlynck, A.M.; Zeballos, J. Long-term results of limb salvage with the Fabroni custom made endoprosthesis. Clin. Orthop. Relat. Res. 1999, 358, 41–52. [Google Scholar] [CrossRef]
- Kumta, S.M.; Leung, P.C.; Griffith, J.F.; Roebuck, D.J.; Chow, L.T.; Li, C.K. A technique for enhancing union of allograft to host bone. J. Bone Jt. Surg. Br. 1998, 80, 994–998. [Google Scholar] [CrossRef]
- Samardziski, M.; Zafiroski, G.; Tolevska, C.; Zafirova-Ivanovska, B.; Kostadinova-Kunovska, S.; Kalicanin-Markovska, M. Limb-sparing in patients with non-metastatic high-grade osteosarcoma. J. BUON 2009, 14, 63–69. [Google Scholar]
- Mittermayer, F.; Krepler, P.; Dominkus, M.; Schwameis, E.; Sluga, M.; Heinzl, H.; Kotz, R. Long-term followup of uncemented tumor endoprostheses for the lower extremity. Clin. Orthop. Relat. Res. 2001, 388, 167–177. [Google Scholar] [CrossRef]
- Rimner, A.; Brennan, M.F.; Zhang, Z.; Singer, S.; Alektiar, K.M. Influence of compartmental involvement on the patterns of morbidity in soft tissue sarcoma of the thigh. Cancer 2009, 115, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Eagan, M.J.; McAllister, D.R. Biology of allograft incorporation. Clin. Sports Med. 2009, 28, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Mroz, T.E.; Joyce, M.J.; Steinmetz, M.P.; Lieberman, I.H.; Wang, J.C. Musculoskeletal allograft risks and recalls in the United States. J. Am. Acad. Orthop. Surg. 2008, 16, 559–565. [Google Scholar] [CrossRef]
- Kossatz, S.; Grandke, J.; Couleaud, P.; Latorre, A.; Aires, A.; Crosbie-Staunton, K.; Ludwig, R.; Dähring, H.; Ettelt, V.; Lazaro-Carrillo, A.; et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 2015, 17, 66. [Google Scholar] [CrossRef]
- Beik, J.; Abed, Z.; Ghoreishi, F.S.; Hosseini-Nami, S.; Mehrzadi, S.; Shakeri-Zadeh, A.; Kamrava, S.K. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J. Control. Release 2016, 235, 205–221. [Google Scholar] [CrossRef]
- ter Haar, G. Therapeutic applications of ultrasound. Prog. Biophys. Mol. Biol. 2007, 93, 111–129. [Google Scholar] [CrossRef]
- Malietzis, G.; Monzon, L.; Hand, J.; Wasan, H.; Leen, E.; Abel, M.; Muhammad, A.; Price, P.; Abel, P. High-intensity focused ultrasound: Advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology. Br. J. Radiol. 2013, 86, 20130044. [Google Scholar] [CrossRef]
- Xin, Z.; Lin, G.; Lei, H.; Lue, T.F.; Guo, Y. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology. Transl. Androl. Urol. 2016, 5, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Watson, T. Ultrasound in contemporary physiotherapy practice. Ultrasonics 2008, 48, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; LU, M.; Ding, X.; Chen, F.; He, X.; Xu, C.; Zhou, H.; Wang, Q.; Hao, L.; Zou, J. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy. Sci. Rep. 2016, 6, 31833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barati, A.H.; Mokhtari-Dizaji, M.; Mozdarani, H.; Bathaie, S.Z.; Hassan, Z.M. Treatment of murine tumors using dual-frequency ultrasound in an experimental in vivo model. Ultrasound Med. Biol. 2009, 35, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fan, H.; Wang, Z.; Zheng, J.; Cao, W. Potentiation of scutellarin on human tongue carcinoma xenograft by low-intensity ultrasound. PLoS ONE 2013, 8, e59473. [Google Scholar] [CrossRef] [PubMed]
- Misík, V.; Riesz, P. Free radical intermediates in sonodynamic therapy. Ann. N. Y. Acad. Sci. 2000, 899, 335–348. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939. [Google Scholar] [CrossRef]
- St Denis, T.G.; Hamblin, M.R. Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy. Bioanalysis 2013, 5, 1099–1114. [Google Scholar] [CrossRef] [Green Version]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Kamkaew, A.; Chen, F.; Zhan, Y.; Majewski, R.L.; Cai, W. Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy. ACS Nano 2016, 10, 3918–3935. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Zhu, J.; Wang, Y.; Wang, J.; Fang, W.; Xia, K.; Shao, J.; Wu, M.; Liu, B.; Liang, C.; et al. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: From basic to deep. Oncotarget 2017, 8, 39833–39848. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.-H.; Lin, F.-L.; Hou, S.-M.; Liu, J.-F. Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells. Int. J. Mol. Sci. 2014, 15, 17380–17395. [Google Scholar] [CrossRef] [PubMed]
- Calderwood, S.K.; Asea, A. Targeting HSP70-induced thermotolerance for design of thermal sensitizers. Int. J. Hyperthermia 2002, 18, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Debes, A.; Oerding, M.; Willers, R.; Göbel, U.; Wessalowski, R. Sensitization of human Ewing’s tumor cells to chemotherapy and heat treatment by the bioflavonoid quercetin. Anticancer Res. 2003, 23, 3359–3366. [Google Scholar] [PubMed]
- Mivechi, N.F.; Ouyang, H.; Monson, J.M.; Hahn, G.M. Correlation of heat resistance and HSP-70A mRNA levels in human tumor cells measured by competitive quantitative polymerase chain reaction. Int. J. Radiat. Oncol. Biol. Phys. 1994, 30, 141–149. [Google Scholar] [CrossRef]
- Trieb, K.; Blahovec, H.; Kubista, B. Effects of hyperthermia on heat shock protein expression, alkaline phosphatase activity and proliferation in human osteosarcoma cells. Cell Biochem. Funct. 2007, 25, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.-K.; Shen, E.; Hu, B. The induction of the apoptosis of cancer cell by sonodynamic therapy: A review. Chin. J. Cancer Res. 2012, 24, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.L.; Oleson, J.R.; Prosnitz, L.R.; Samulski, T.V.; Vujaskovic, Z.; Yu, D.; Sanders, L.L.; Dewhirst, M.W. Randomized trial of hyperthermia and radiation for superficial tumors. J. Clin. Oncol. 2005, 23, 3079–3085. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, J.; Bentzen, S.M.; Overgaard, J.; Gonzalez, D.G.; Hulshof, M.C.C.M.; Arcangeli, G.; Dahl, O.; Mella, O. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. Lancet 1995, 345, 540–543. [Google Scholar] [CrossRef]
- Valdagni, R.; Amichetti, M. Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymph nodes in stage IV head and neck patients. Int. J. Radiat. Oncol. Biol. Phys. 1994, 28, 163–169. [Google Scholar] [CrossRef]
- Van der Zee, J.; González González, D.; van Rhoon, G.C.; van Dijk, J.D.; van Putten, W.L.; Hart, A.A. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: A prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 2000, 355, 1119–1125. [Google Scholar] [CrossRef]
- Song, C.W.; Park, H.; Griffin, R.J. Improvement of tumor oxygenation by mild hyperthermia. Radiat. Res. 2001, 155, 515–528. [Google Scholar] [CrossRef]
- de Bree, E.; Rosing, H.; Michalakis, J.; Romanos, J.; Relakis, K.; Theodoropoulos, P.A.; Beijnen, J.H.; Georgoulias, V.; Tsiftsis, D.D. Intraperitoneal chemotherapy with taxanes for ovarian cancer with peritoneal dissemination. Eur. J. Surg. Oncol. 2006, 32, 666–670. [Google Scholar] [CrossRef] [PubMed]
- Kardyńska, M.; Paszek, A.; Śmieja, J.; Spiller, D.; Widłak, W.; White, M.R.H.; Paszek, P.; Kimmel, M. Quantitative analysis reveals crosstalk mechanisms of heat shock-induced attenuation of NF-κB signaling at the single cell level. PLoS Comput. Biol. 2018, 14, e1006130. [Google Scholar] [CrossRef] [PubMed]
- Issels, R.D.; Lindner, L.H.; Verweij, J.; Wust, P.; Reichardt, P.; Schem, B.-C.; Abdel-Rahman, S.; Daugaard, S.; Salat, C.; Wendtner, C.-M.; et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: A randomised phase 3 multicentre study. Lancet Oncol. 2010, 11, 561–570. [Google Scholar] [CrossRef]
- Pandita, T.K. Role of HSPs and telomerase in radiotherapy. Int. J. Hyperthermia 2005, 21, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Pandita, T.K.; Pandita, S.; Bhaumik, S.R. Molecular parameters of hyperthermia for radiosensitization. Crit. Rev. Eukaryot. Gene Expr. 2009, 19, 235–251. [Google Scholar] [CrossRef]
- Lutgens, L.; van der Zee, J.; Pijls-Johannesma, M.; De Haas-Kock, D.F.; Buijsen, J.; van Mastrigt, G.A.; Lammering, G.; De Ruysscher, D.K.M.; Lambin, P. Combined use of hyperthermia and radiation therapy for treating locally advanced cervical carcinoma. Cochrane Database Syst. Rev. 2010, CD006377. [Google Scholar]
- Oura, S.; Tamaki, T.; Hirai, I.; Yoshimasu, T.; Ohta, F.; Nakamura, R.; Okamura, Y. Radiofrequency ablation therapy in patients with breast cancers two centimeters or less in size. Breast Cancer 2007, 14, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.; Wust, P.; Fähling, H.; John, W.; Hinz, A.; Felix, R. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int. J. Hyperthermia 1993, 9, 51–68. [Google Scholar] [CrossRef]
- Minamimura, T.; Sato, H.; Kasaoka, S.; Saito, T.; Ishizawa, S.; Takemori, S.; Tazawa, K.; Tsukada, K. Tumor regression by inductive hyperthermia combined with hepatic embolization using dextran magnetite-incorporated microspheres in rats. Int. J. Oncol. 2000, 16, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Dutz, S.; Hergt, R. Magnetic particle hyperthermia—A promising tumour therapy? Nanotechnology 2014, 25, 452001. [Google Scholar] [CrossRef] [PubMed]
- Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Ghahremani, F.H.; Sazgarnia, A.; Bahreyni-Toosi, M.H.; Rajabi, O.; Aledavood, A. Efficacy of microwave hyperthermia and chemotherapy in the presence of gold nanoparticles: An in vitro study on osteosarcoma. Int. J. Hyperthermia 2011, 27, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Rahim, M.; Iram, S.; Khan, M.S.; Khan, M.S.; Shukla, A.R.; Srivastava, A.K.; Ahmad, S. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells. Colloids Surf. B Biointerfaces 2014, 117, 473–479. [Google Scholar] [CrossRef]
- O’Neal, D.P.; Hirsch, L.R.; Halas, N.J.; Payne, J.D.; West, J.L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004, 209, 171–176. [Google Scholar] [CrossRef]
- De Aberasturi, D.J.; Serrano-Montes, A.B.; Liz-Marzán, L.M. Modern Applications of Plasmonic Nanoparticles: From Energy to Health. Adv. Opt. Mater. 2015, 3, 602–617. [Google Scholar] [CrossRef]
- Wang, F.; Shen, Y.; Zhang, W.; Li, M.; Wang, Y.; Zhou, D.; Guo, S. Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod. J. Control. Release 2014, 196, 37–51. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, F.; Wang, Y.; Wang, J.; Yu, Y.; Guo, S.; Chen, R.; Zhou, D. pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. J. Control. Release 2016, 232, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Dinarvand, R.; Khodaverdi, E.; Atyabi, F.; Erfan, M. Thermoresponsive drug delivery using liquid crystal-embedded cellulose nitrate membranes. Drug Deliv. 2006, 13, 345–350. [Google Scholar] [CrossRef]
- Chu, K.F.; Dupuy, D.E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer 2014, 14, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Napoli, A.; Anzidei, M.; Ciolina, F.; Marotta, E.; Cavallo Marincola, B.; Brachetti, G.; Di Mare, L.; Cartocci, G.; Boni, F.; Noce, V.; et al. MR-guided high-intensity focused ultrasound: Current status of an emerging technology. Cardiovasc. Intervent. Radiol. 2013, 36, 1190–1203. [Google Scholar] [CrossRef] [PubMed]
- Tempany, C.M.C.; McDannold, N.J.; Hynynen, K.; Jolesz, F.A. Focused ultrasound surgery in oncology: Overview and principles. Radiology 2011, 259, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, M.D.; Ghanouni, P.; Kanaev, S.V.; Iozeffi, D.; Gianfelice, D.; Fennessy, F.M.; Kuten, A.; Meyer, J.E.; LeBlang, S.D.; Roberts, A.; et al. Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: Phase III trial results. J. Natl. Cancer Inst. 2014, 106. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, H.; Zhang, L.; Li, K.; Su, H.; Jin, C.; Zhou, K.; Bai, J.; Wu, F.; Wang, Z. Primary bone malignancy: Effective treatment with high-intensity focused ultrasound ablation. Radiology 2010, 255, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Hung, B.P. The effect of high intensity focused ultrasound ablation of human breast cancer. Surgery 2010, 147, 466–467. [Google Scholar] [CrossRef]
- Illing, R.O.; Kennedy, J.E.; Wu, F.; ter Haar, G.R.; Protheroe, A.S.; Friend, P.J.; Gleeson, F.V.; Cranston, D.W.; Phillips, R.R.; Middleton, M.R. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br. J. Cancer 2005, 93, 890–895. [Google Scholar] [CrossRef]
- Liberman, B.; Gianfelice, D.; Inbar, Y.; Beck, A.; Rabin, T.; Shabshin, N.; Chander, G.; Hengst, S.; Pfeffer, R.; Chechick, A.; et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: A multicenter study. Ann. Surg. Oncol. 2009, 16, 140–146. [Google Scholar] [CrossRef]
- McDannold, N.; Clement, G.T.; Black, P.; Jolesz, F.; Hynynen, K. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: Initial findings in 3 patients. Neurosurgery 2010, 66, 323–332, discussion 332. [Google Scholar] [CrossRef]
- Sung, H.Y.; Jung, S.E.; Cho, S.H.; Zhou, K.; Han, J.-Y.; Han, S.T.; Kim, J.I.; Kim, J.K.; Choi, J.Y.; Yoon, S.K.; et al. Long-term outcome of high-intensity focused ultrasound in advanced pancreatic cancer. Pancreas 2011, 40, 1080–1086. [Google Scholar] [CrossRef]
- Uchida, T.; Nakano, M.; Hongo, S.; Shoji, S.; Nagata, Y.; Satoh, T.; Baba, S.; Usui, Y.; Terachi, T. High-intensity focused ultrasound therapy for prostate cancer. Int. J. Urol. 2012, 19, 187–201. [Google Scholar] [CrossRef]
- Wijlemans, J.W.; Bartels, L.W.; Deckers, R.; Ries, M.; Mali, W.P.T.M.; Moonen, C.T.W.; van den Bosch, M.A.A.J. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours. Cancer Imaging 2012, 12, 387–394. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.-B. High-intensity focused ultrasound tumor ablation: Review of ten years of clinical experience. Front. Med. China 2010, 4, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Al-Bataineh, O.; Jenne, J.; Huber, P. Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat. Rev. 2012, 38, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Jenne, J.W.; Preusser, T.; Günther, M. High-intensity focused ultrasound: Principles, therapy guidance, simulations and applications. Z. Med. Phys. 2012, 22, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Kobus, T.; McDannold, N. Update on Clinical Magnetic Resonance-Guided Focused Ultrasound Applications. Magn. Reso.n Imaging Clin. N. Am. 2015, 23, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Carina, V.; Costa, V.; Raimondi, L.; Pagani, S.; Sartori, M.; Figallo, E.; Setti, S.; Alessandro, R.; Fini, M.; Giavaresi, G. Effect of low-intensity pulsed ultrasound on osteogenic human mesenchymal stem cells commitment in a new bone scaffold. J. Appl. Biomater. Funct. Mater. 2017, 15, e215–e222. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.; Carina, V.; Fontana, S.; De Luca, A.; Monteleone, F.; Pagani, S.; Sartori, M.; Setti, S.; Faldini, C.; Alessandro, R.; et al. Osteogenic commitment and differentiation of human mesenchymal stem cells by low-intensity pulsed ultrasound stimulation. J. Cell. Physiol. 2018, 233, 1558–1573. [Google Scholar] [CrossRef]
- Mauck, R.L.; Nicoll, S.B.; Seyhan, S.L.; Ateshian, G.A.; Hung, C.T. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 2003, 9, 597–611. [Google Scholar] [CrossRef]
- Wood, A.K.W.; Sehgal, C.M. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med. Biol. 2015, 41, 905–928. [Google Scholar] [CrossRef]
- Liu, X.-H.; Li, S.; Wang, M.; Dai, Z.-J. Current Status and Future Perspectives of Sonodynamic Therapy and Sonosensitiers. Asian Pac. J. Cancer Prev. 2015, 16, 4489–4492. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Quan, X.; Xu, C.; Dan, L.; Guo, H.; Leung, W. Hematoporphyrin monomethyl ether enhances the killing action of ultrasound on osteosarcoma in vivo. J. Ultrasound Med. 2009, 28, 1695–1702. [Google Scholar] [CrossRef]
- Tian, Z.; Quan, X.; Leung, A.W.; Xiang, J.; Xu, C. Hematoporphyrin monomethyl ether enhances the killing of ultrasound on osteosarcoma cells involving intracellular reactive oxygen species and calcium ion elevation. Integr. Cancer Ther. 2010, 9, 365–369. [Google Scholar] [CrossRef]
- Cochran, M.C.; Eisenbrey, J.; Ouma, R.O.; Soulen, M.; Wheatley, M.A. Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int. J. Pharm. 2011, 414, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Sorace, A.G.; Warram, J.M.; Umphrey, H.; Hoyt, K. Microbubble-mediated ultrasonic techniques for improved chemotherapeutic delivery in cancer. J. Drug Target. 2012, 20, 43–54. [Google Scholar] [CrossRef]
- Yoshida, T.; Kondo, T.; Ogawa, R.; Feril, L.B.; Zhao, Q.-L.; Watanabe, A.; Tsukada, K. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells. Cancer Chemother. Pharmacol. 2008, 61, 559–567. [Google Scholar] [CrossRef]
- Li, F.; Jin, L.; Wang, H.; Wei, F.; Bai, M.; Shi, Q.; Du, L. The dual effect of ultrasound-targeted microbubble destruction in mediating recombinant adeno-associated virus delivery in renal cell carcinoma: Transfection enhancement and tumor inhibition. J. Gene Med. 2014, 16, 28–39. [Google Scholar] [CrossRef]
- Wang, D.S.; Panje, C.; Pysz, M.A.; Paulmurugan, R.; Rosenberg, J.; Gambhir, S.S.; Schneider, M.; Willmann, J.K. Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer. Radiology 2012, 264, 721–732. [Google Scholar] [CrossRef]
- Sawai, Y.; Murata, H.; Koto, K.; Matsui, T.; Horie, N.; Ashihara, E.; Maekawa, T.; Fushiki, S.; Kubo, T. Effects of low-intensity pulsed ultrasound on osteosarcoma and cancer cells. Oncol. Rep. 2012, 28, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Carina, V.; Costa, V.; Pagani, S.; De Luca, A.; Raimondi, L.; Bellavia, D.; Setti, S.; Fini, M.; Giavaresi, G. Inhibitory effects of low intensity pulsed ultrasound on osteoclastogenesis induced in vitro by breast cancer cells. J. Exp. Clin. Cancer Res. 2018, 37, 197. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Li, Z.; Zhang, X. Progress of photodynamic therapy applications in the treatment of musculoskeletal sarcoma (Review). Oncol. Lett. 2014, 8, 1403–1408. [Google Scholar] [CrossRef] [Green Version]
- Vera, R.E.; Lamberti, M.J.; Rivarola, V.A.; Rumie Vittar, N.B. Developing strategies to predict photodynamic therapy outcome: The role of melanoma microenvironment. Tumour Biol. 2015, 36, 9127–9136. [Google Scholar] [CrossRef]
- Cheung, K.K.-Y.; Chan, J.Y.-W.; Fung, K.-P. Antiproliferative effect of pheophorbide a-mediated photodynamic therapy and its synergistic effect with doxorubicin on multiple drug-resistant uterine sarcoma cell MES-SA/Dx5. Drug Chem. Toxicol. 2013, 36, 474–483. [Google Scholar] [CrossRef]
- Yamauchi, M.; Honda, N.; Hazama, H.; Tachikawa, S.; Nakamura, H.; Kaneda, Y.; Awazu, K. A novel photodynamic therapy for drug-resistant prostate cancer cells using porphyrus envelope as a novel photosensitizer. Photodiagnosis Photodyn. Ther. 2014, 11, 48–54. [Google Scholar] [CrossRef]
- Lindsay, J.; Esposti, M.D.; Gilmore, A.P. Bcl-2 proteins and mitochondria—Specificity in membrane targeting for death. Biochim. Biophys. Acta 2011, 1813, 532–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goler-Baron, V.; Assaraf, Y.G. Overcoming multidrug resistance via photodestruction of ABCG2-rich extracellular vesicles sequestering photosensitive chemotherapeutics. PLoS ONE 2012, 7, e35487. [Google Scholar] [CrossRef] [PubMed]
- Barathan, M.; Mariappan, V.; Shankar, E.M.; Abdullah, B.J.J.; Goh, K.L.; Vadivelu, J. Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases. Cell Death Dis. 2013, 4, e697. [Google Scholar] [CrossRef]
- Chen, B.; Pogue, B.W.; Hoopes, P.J.; Hasan, T. Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 1216–1226. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J.W.; Greco, W.R.; Bellnier, D.A.; Vaughan, L.; Henderson, B.W. Photodynamic therapy: A means to enhanced drug delivery to tumors. Cancer Res. 2003, 63, 8126–8131. [Google Scholar] [PubMed]
- Wang, D.; Wang, T.; Liu, J.; Yu, H.; Jiao, S.; Feng, B.; Zhou, F.; Fu, Y.; Yin, Q.; Zhang, P.; et al. Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy. Nano Lett. 2016, 16, 5503–5513. [Google Scholar] [CrossRef]
- Gao, W.; Wang, Z.; Lv, L.; Yin, D.; Chen, D.; Han, Z.; Ma, Y.; Zhang, M.; Yang, M.; Gu, Y. Photodynamic Therapy Induced Enhancement of Tumor Vasculature Permeability Using an Upconversion Nanoconstruct for Improved Intratumoral Nanoparticle Delivery in Deep Tissues. Theranostics 2016, 6, 1131–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.S.; Cui, L.; Wang, F.; Chen, J.; Zheng, G. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Adv. Healthc. Mater. 2014, 3, 1240–1249. [Google Scholar] [CrossRef]
- Fan, Q.-Y.; Ma, B.-A.; Zhou, Y.; Zhang, M.-H.; Hao, X.-B. Bone tumors of the extremities or pelvis treated by microwave-induced hyperthermia. Clin. Orthop. Relat. Res. 2003, 165–175. [Google Scholar] [CrossRef]
- Suk, K.-S.; Shin, K.-H.; Hahn, S.-B. Limb salvage using original low heat-treated tumor-bearing bone. Clin. Orthop. Relat. Res. 2002, 385–393. [Google Scholar] [CrossRef]
- Debes, A.; Willers, R.; Göbel, U.; Wessalowski, R. Role of heat treatment in childhood cancers: Distinct resistance profiles of solid tumor cell lines towards combined thermochemotherapy. Pediatr. Blood Cancer 2005, 45, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Ma, Y.; Zhao, H.; Li, W.; Li, X.; Yun, Z.; Zhao, G.; Ma, B.; Fan, Q. The effect of temperature-control microwave on HELA and MG-63 cells. J. Cancer Res. Ther. 2018, 14, S152–S158. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Yanagawa, T.; Watanabe, H.; Takagishi, K. Hyperthermia reduces migration of osteosarcoma by suppression of autocrine motility factor. Oncol. Rep. 2012, 28, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Moise, S.; Byrne, J.M.; El Haj, A.J.; Telling, N.D. The potential of magnetic hyperthermia for triggering the differentiation of cancer cells. Nanoscale 2018, 10, 20519–20525. [Google Scholar] [CrossRef]
- Han, K.; Dang, P.; Bian, N.; Chen, X.; Yang, T.; Fan, Q.; Zhou, Y.; Zhao, T.; Wang, P. Is Limb Salvage With Microwave-induced Hyperthermia Better Than Amputation for Osteosarcoma of the Distal Tibia? Clin. Orthop. Relat. Res. 2017, 475, 1668–1677. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Gong, W.H.; Li, X.C.; Zou, C.P.; Jiang, G.J.; Li, X.H.; Feng, D.P. Synergistic increase in the sensitivity of osteosarcoma cells to thermochemotherapy with combination of paclitaxel and etoposide. Mol. Med. Rep. 2012, 6, 1013–1017. [Google Scholar] [CrossRef]
- Huang, T.; Gong, W.; Li, X.; Zou, C.; Jiang, G.; Li, X.; Feng, D. Enhancement of osteosarcoma cell sensitivity to cisplatin using paclitaxel in the presence of hyperthermia. Int. J. Hyperthermia 2013, 29, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Hori, T.; Kondo, T.; Lee, H.; Song, C.W.; Park, H.J. Hyperthermia enhances the effect of β-lapachone to cause γH2AX formations and cell death in human osteosarcoma cells. Int. J. Hyperthermia 2011, 27, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Krause, C.; Klüttermann, K.; Mauz-Körholz, C. Molecular mechanisms and gene regulation of melphalan- and hyperthermia-induced apoptosis in Ewing sarcoma cells. Anticancer Res. 2008, 28, 2585–2593. [Google Scholar] [PubMed]
- Issels, R.D.; Lindner, L.H.; Verweij, J.; Wessalowski, R.; Reichardt, P.; Wust, P.; Ghadjar, P.; Hohenberger, P.; Angele, M.; Salat, C.; et al. Effect of Neoadjuvant Chemotherapy Plus Regional Hyperthermia on Long-term Outcomes Among Patients with Localized High-Risk Soft Tissue Sarcoma: The EORTC 62961-ESHO 95 Randomized Clinical Trial. JAMA Oncol. 2018, 4, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Tancredi, A.; Ciuffreda, L.; Cuttitta, A.; Scaramuzzi, R.; Sabatino, R.; Scaramuzzi, G. Hyperthermia in the treatment of post-actinic osteosarcomas: Our anecdotal experience. Eurasian J. Med. 2011, 43, 115–118. [Google Scholar] [CrossRef]
- Arlen, M.; Higinbotham, N.L.; Huvos, A.G.; Marcove, R.C.; Miller, T.; Shah, I.C. Radiation-induced sarcoma of bone. Cancer 1971, 28, 1087–1099. [Google Scholar] [CrossRef] [Green Version]
- Maghami, E.G.; St-John, M.; Bhuta, S.; Abemayor, E. Postirradiation sarcoma: A case report and current review. Am. J. Otolaryngol. 2005, 26, 71–74. [Google Scholar] [CrossRef]
- Del Pino, P. Tailoring the interplay between electromagnetic fields and nanomaterials toward applications in life sciences: A review. J. Biomed. Opt. 2014, 19, 101507. [Google Scholar] [CrossRef] [PubMed]
- Shido, Y.; Nishida, Y.; Suzuki, Y.; Kobayashi, T.; Ishiguro, N. Targeted hyperthermia using magnetite cationic liposomes and an alternating magnetic field in a mouse osteosarcoma model. J. Bone Jt. Surg. Br. 2010, 92, 580–585. [Google Scholar] [CrossRef] [Green Version]
- Alcaide, M.; Ramírez-Santillán, C.; Feito, M.J.; Matesanz, M.; de la Concepción Matesanz, M.; Ruiz-Hernández, E.; Arcos, D.; Vallet-Regí, M.; Portolés, M.T. In vitro evaluation of glass-glass ceramic thermoseed-induced hyperthermia on human osteosarcoma cell line. J. Biomed. Mater. Res. A 2012, 100, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Gamal-Eldeen, A.M.; Abdel-Hameed, S.A.M.; El-Daly, S.M.; Abo-Zeid, M.A.M.; Swellam, M.M. Cytotoxic effect of ferrimagnetic glass-ceramic nanocomposites on bone osteosarcoma cells. Biomed. Pharmacother. 2017, 88, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Makridis, A.; Chatzitheodorou, I.; Topouridou, K.; Yavropoulou, M.P.; Angelakeris, M.; Dendrinou-Samara, C. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 63, 663–670. [Google Scholar] [CrossRef]
- Saldívar-Ramírez, M.M.G.; Sánchez-Torres, C.G.; Cortés-Hernández, D.A.; Escobedo-Bocardo, J.C.; Almanza-Robles, J.M.; Larson, A.; Reséndiz-Hernández, P.J.; Acuña-Gutiérrez, I.O. Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia. J. Mater. Sci. Mater. Med. 2014, 25, 2229–2236. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Manivasagan, P.; Bharathiraja, S.; Santha Moorthy, M.; Nguyen, V.T.; Kim, H.H.; Nam, S.Y.; Lee, K.D.; Oh, J. Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment. Nanomaterials 2017, 7, 426. [Google Scholar] [CrossRef] [PubMed]
- Li Volsi, A.; Scialabba, C.; Vetri, V.; Cavallaro, G.; Licciardi, M.; Giammona, G. Near-Infrared Light Responsive Folate Targeted Gold Nanorods for Combined Photothermal-Chemotherapy of Osteosarcoma. ACS Appl. Mater. Interfaces 2017, 9, 14453–14469. [Google Scholar] [CrossRef]
- Pan, S.; Xing, H.; Fu, X.; Yu, H.; Yang, Z.; Yang, Y.; Sun, W. The Effect of Photothermal Therapy on Osteosarcoma with Polyacrylic Acid-Coated Gold Nanorods. Dose Response 2018, 16. [Google Scholar] [CrossRef] [PubMed]
- Bielack, S.S.; Marina, N.; Bernstein, M. High-intensity focused ultrasound (HIFU) is not indicated for treatment of primary bone sarcomas. Cancer 2011, 117, 2822–2823. [Google Scholar] [CrossRef] [PubMed]
- Konski, A. High-intensity focused ultrasound in the treatment of bone tumors: Another treatment option for palliation and primary treatment? Cancer 2010, 116, 3754–3755. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, W.; Fan, W.; Huang, J.; Zhang, F.; Wu, P. Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound. Cancer 2010, 116, 3934–3942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Wu, P.; Zhang, L.; Fan, W.; Huang, J.; Zhang, F. Osteosarcoma: Limb salvaging treatment by ultrasonographically guided high-intensity focused ultrasound. Cancer Biol. Ther. 2009, 8, 1102–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orgera, G.; Monfardini, L.; Della Vigna, P.; Zhang, L.; Bonomo, G.; Arnone, P.; Padrenostro, M.; Orsi, F. High-intensity focused ultrasound (HIFU) in patients with solid malignancies: Evaluation of feasibility, local tumour response and clinical results. Radiol. Med. 2011, 116, 734–748. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Tang, L.; Lin, F.; Yao, Y.; Shen, Z.; Zhou, X. High-intensity focused ultrasound: Noninvasive treatment for local unresectable recurrence of osteosarcoma. Surg. Oncol. 2015, 24, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, T.; Sato, K.; Matsui, T.; Sawada, S.; Muramatsu, Y.; Kawanami, K.; Deie, M. Inhibitory effects of low-intensity pulsed ultrasound sonication on the proliferation of osteosarcoma cells. Oncol. Lett. 2017, 14, 3071–3076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Li, W.; Geng, S.; Meng, Q.-G.; Bi, Z.-G. Apoptosis induced by sonodynamic therapy in human osteosarcoma cells in vitro. Mol. Med. Rep. 2015, 12, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.N.; Zhou, Q.; Yang, B.; Hu, Z.; Wang, J.H.; Li, Q.S.; Cao, W.W. Mechanism of rat osteosarcoma cell apoptosis induced by a combination of low-intensity ultrasound and 5-aminolevulinic acid in vitro. Genet. Mol. Res. 2015, 14, 9604–9613. [Google Scholar] [CrossRef]
- Gong, H.-Y.; Sun, M.-X.; Hu, S.; Tao, Y.-Y.; Gao, B.; Li, G.-D.; Cai, Z.-D.; Yao, J.-Z. Benzochloroporphyrin derivative induced cytotoxicity and inhibition of tumor recurrence during photodynamic therapy for osteosarcoma. Asian Pac. J. Cancer Prev. 2013, 14, 3351–3355. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Lai, X.; Wang, X.; Leung, A.W.; Zhang, H.; Xu, C. Photodynamic action of methylene blue in osteosarcoma cells in vitro. Photodiagnosis Photodyn. Ther. 2014, 11, 13–19. [Google Scholar] [CrossRef]
- Huang, Q.; Ou, Y.-S.; Tao, Y.; Yin, H.; Tu, P.-H. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells. Apoptosis 2016, 21, 749–760. [Google Scholar] [CrossRef] [Green Version]
- Imani, R.; Dillert, R.; Bahnemann, D.W.; Pazoki, M.; Apih, T.; Kononenko, V.; Repar, N.; Kralj-Iglič, V.; Boschloo, G.; Drobne, D.; et al. Multifunctional Gadolinium-Doped Mesoporous TiO2 Nanobeads: Photoluminescence, Enhanced Spin Relaxation, and Reactive Oxygen Species Photogeneration, Beneficial for Cancer Diagnosis and Treatment. Small 2017, 13, 1700349. [Google Scholar] [CrossRef]
- Li, K.-T.; Chen, Q.; Wang, D.-W.; Duan, Q.-Q.; Tian, S.; He, J.-W.; Ou, Y.-S.; Bai, D.-Q. Mitochondrial pathway and endoplasmic reticulum stress participate in the photosensitizing effectiveness of AE-PDT in MG63 cells. Cancer Med. 2016, 5, 3186–3193. [Google Scholar] [CrossRef]
- Matsubara, T.; Kusuzaki, K.; Matsumine, A.; Satonaka, H.; Shintani, K.; Nakamura, T.; Uchida, A. Methylene blue in place of acridine orange as a photosensitizer in photodynamic therapy of osteosarcoma. In Vivo 2008, 22, 297–303. [Google Scholar]
- Nagai, Y.; Aizawa, S.; Iriuchishima, T.; Goto, B.; Nagaoka, M.; Tokuhashi, Y.; Saito, A. Phototoxic effect of na-pheophorbide a toward osteosarcoma cells in vitro using a laser diode. Photomed. Laser Surg. 2014, 32, 481–489. [Google Scholar] [CrossRef]
- Reidy, K.; Campanile, C.; Muff, R.; Born, W.; Fuchs, B. mTHPC-mediated photodynamic therapy is effective in the metastatic human 143B osteosarcoma cells. Photochem. Photobiol. 2012, 88, 721–727. [Google Scholar] [CrossRef]
- Sun, M.; Zhou, C.; Zeng, H.; Puebla-Osorio, N.; Damiani, E.; Chen, J.; Wang, H.; Li, G.; Yin, F.; Shan, L.; et al. Hiporfin-mediated photodynamic therapy in preclinical treatment of osteosarcoma. Photochem. Photobiol. 2015, 91, 533–544. [Google Scholar] [CrossRef]
- Sun, M.; Zhou, C.; Zeng, H.; Yin, F.; Wang, Z.; Yao, J.; Hua, Y.; Cai, Z. Benzochloroporphyrin derivative photosensitizer-mediated photodynamic therapy for Ewing sarcoma. J. Photochem. Photobiol. B Biol. 2016, 160, 178–184. [Google Scholar] [CrossRef]
- Tu, P.; Huang, Q.; Ou, Y.; Du, X.; Li, K.; Tao, Y.; Yin, H. Aloe-emodin-mediated photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell line MG-63 through the ROS/JNK signaling pathway. Oncol. Rep. 2016, 35, 3209–3215. [Google Scholar] [CrossRef] [Green Version]
- White, B.; Rossi, V.; Baugher, P.J. Aminolevulinic Acid-Mediated Photodynamic Therapy Causes Cell Death in MG-63 Human Osteosarcoma Cells. Photomed. Laser Surg. 2016, 34, 400–405. [Google Scholar] [CrossRef]
- Zeng, H.; Sun, M.; Zhou, C.; Yin, F.; Wang, Z.; Hua, Y.; Cai, Z. Hematoporphyrin monomethyl ether-mediated photodynamic therapy selectively kills sarcomas by inducing apoptosis. PLoS ONE 2013, 8, e77727. [Google Scholar] [CrossRef]
- Tsai, S.-R.; Yin, R.; Huang, Y.-Y.; Sheu, B.-C.; Lee, S.-C.; Hamblin, M.R. Low-level light therapy potentiates NPe6-mediated photodynamic therapy in a human osteosarcoma cell line via increased ATP. Photodiagnosis Photodyn. Ther. 2015, 12, 123–130. [Google Scholar] [CrossRef]
- Yanase, S.; Nomura, J.; Matsumura, Y.; Watanabe, Y.; Tagawa, T. Synergistic increase in osteosarcoma cell sensitivity to photodynamic therapy with aminolevulinic acid hexyl ester in the presence of hyperthermia. Photomed. Laser Surg. 2009, 27, 791–797. [Google Scholar] [CrossRef]
- Burch, S.; London, C.; Seguin, B.; Rodriguez, C.; Wilson, B.C.; Bisland, S.K. Treatment of canine osseous tumors with photodynamic therapy: A pilot study. Clin. Orthop. Relat. Res. 2009, 467, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Satonaka, H.; Kusuzaki, K.; Akeda, K.; Tsujii, M.; Iino, T.; Uemura, T.; Matsubara, T.; Nakamura, T.; Asanuma, K.; Matsumine, A.; et al. Acridine orange inhibits pulmonary metastasis of mouse osteosarcoma. Anticancer Res. 2011, 31, 4163–4168. [Google Scholar] [PubMed]
- Yu, W.; Ye, M.; Zhu, J.; Wang, Y.; Liang, C.; Tang, J.; Tao, H.; Shen, Y. Zinc phthalocyanine encapsulated in polymer micelles as a potent photosensitizer for the photodynamic therapy of osteosarcoma. Nanomedicine 2018, 14, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Wang, Y.; Zhu, J.; Jin, L.; Liu, B.; Xia, K.; Wang, J.; Gao, J.; Liang, C.; Tao, H. Autophagy inhibitor enhance ZnPc/BSA nanoparticle induced photodynamic therapy by suppressing PD-L1 expression in osteosarcoma immunotherapy. Biomaterials 2019, 192, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Meier, D.; Botter, S.M.; Campanile, C.; Robl, B.; Gräfe, S.; Pellegrini, G.; Born, W.; Fuchs, B. Foscan and foslip based photodynamic therapy in osteosarcoma in vitro and in intratibial mouse models. Int. J. Cancer 2017, 140, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- de Miguel, G.C.; Abrantes, A.M.; Laranjo, M.; Grizotto, A.Y.K.; Camporeze, B.; Pereira, J.A.; Brites, G.; Serra, A.; Pineiro, M.; Rocha-Gonsalves, A.; et al. A new therapeutic proposal for inoperable osteosarcoma: Photodynamic therapy. Photodiagnosis Photodyn. Ther. 2018, 21, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Kusuzaki, K.; Minami, G.; Takeshita, H.; Murata, H.; Hashiguchi, S.; Nozaki, T.; Ashihara, T.; Hirasawa, Y. Photodynamic inactivation with acridine orange on a multidrug-resistant mouse osteosarcoma cell line. Jpn. J. Cancer Res. 2000, 91, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Martella, E.; Ferroni, C.; Guerrini, A.; Ballestri, M.; Columbaro, M.; Santi, S.; Sotgiu, G.; Serra, M.; Donati, D.M.; Lucarelli, E.; et al. Functionalized Keratin as Nanotechnology-Based Drug Delivery System for the Pharmacological Treatment of Osteosarcoma. Int. J. Mol. Sci. 2018, 19, 3670. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-W.; Yang, F.; Ke, Q.-F.; Xie, X.-T.; Guo, Y.-P. Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors. Nanomedicine 2018, 14, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Lu, J.; Ke, Q.; Peng, X.; Guo, Y.; Xie, X. Magnetic Mesoporous Calcium Sillicate/Chitosan Porous Scaffolds for Enhanced Bone Regeneration and Photothermal-Chemotherapy of Osteosarcoma. Sci. Rep. 2018, 8, 7345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusuzaki, K.; Murata, H.; Matsubara, T.; Miyazaki, S.; Okamura, A.; Seto, M.; Matsumine, A.; Hosoi, H.; Sugimoto, T.; Uchida, A. Clinical trial of photodynamic therapy using acridine orange with/without low dose radiation as new limb salvage modality in musculoskeletal sarcomas. Anticancer Res. 2005, 25, 1225–1235. [Google Scholar] [PubMed]
- Briccoli, A.; Rocca, M.; Salone, M.; Guzzardella, G.A.; Balladelli, A.; Bacci, G. High grade osteosarcoma of the extremities metastatic to the lung: Long-term results in 323 patients treated combining surgery and chemotherapy, 1985–2005. Surg. Oncol. 2010, 19, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, T.; Flege, S.; Kevric, M.; Lindner, N.; Maas, R.; Delling, G.; Schwarz, R.; von Hochstetter, A.R.; Salzer-Kuntschik, M.; Berdel, W.E.; et al. Osteosarcoma of the pelvis: Experience of the Cooperative Osteosarcoma Study Group. J. Clin. Oncol. 2003, 21, 334–341. [Google Scholar] [CrossRef] [PubMed]
Study | Cell/Animal Models Patients | Treatment | Mechanisms/Results | Reference |
---|---|---|---|---|
In vitro | HOS85, MG-63 Saos2 | HT 42 °C | Cell viability reduction HSP70-dependent alkaline phosphatase activity-dependent | Trieb et al., 2007 [36] |
HuO9 | HT 41 °C | Cell viability reduction Hsp27-dependent, AMF-dependent | Nakajima et al., 2012 [107] | |
U-2 OS | HT 43 °C | ROS; apoptosis ER stress mitochondria, caspase mediated | Hou et al., 2014 [32] | |
MG-63 | HT 42 °C HT 47 °C | Cell death at both temperatures. Triggering of cell differentiation commitment even at 42 °C | Moise et al., 2018 [108] | |
MG-63, KHOS, U-2 OS Saos2 | HT 43 °C HT 43 °C + Cisplatin HT 43 °C + Etoposide | Cytotoxicity | Debes et al., 2005 [105] | |
RD- ES (primary Ewing’s sarcoma) | HT 42 °C + Melphalan | Apoptosis Caspase 3 dependent | Krause et al., 2008 [113] | |
HOS | HT 42 °C + β-lapachone | Cytotoxicity NQO1-dependent | Hori et al., 2011 [112] | |
OS732 | HT 43 °C + Paclitaxel+ Etoposide | Apoptosis Fas-dependent | Huang et al., 2012 [110] | |
OS732, MG-63 | HT 43 °C + Paclitaxel+ Cisplatin | Apoptosis Fas-dependent | Huang et al., 2013 [111] | |
LM8 subcutaneous in syngeneic host mouse | HT 45 °C (Alternating Magnetic Field) + MCLs | Cytotoxicity Hsp70 | Shido et al., 2010 [119] | |
Saos2 | HT 41–43 °C (Alternating Magnetic Field) + glass–glass ceramic thermoseeds | Apoptosis | Alcaide et al., 2012 [120] | |
HOS | HT 45 °C (Magnetic field) + magnesium–calcium ferrites nanoparticles | Cytotoxicity | Saldívar-Ramírez et al., 2014 [123] | |
Saos2 | HT 45 °C (Magnetic Field) + ferrite magnetic nanoparticles | Cytotoxicity | Makridis et al., 2016 [122] | |
Saos2 | HT (Magnetic Field) + ferrimagnetic glass–ceramics nanocomposites | Cytotoxicity | Gamal-Eldeen et al., 2017 [121] | |
MG-63 | HT 45 °C (Magnetic field) + Hydroxyapatite Coated Iron Oxide Nanoparticles | Cytotoxicity | Mondal et al., 2017 [124] | |
Saos2 | HT 42 °C (Microwave) + gold nanoparticles and doxorubicin | Cytotoxicity | Ghahremani et al., 2011 [54] | |
U-2 OS (2D and 3D cultures) | HT (laser beam) Folate-targeted gold nanorods | Cytotoxicity | Li Volsi et al., 2017 [125] | |
MG-63 | HT (laser beam) PAA- coated nanorods | Cytotoxicity and apoptosis | Pan et al., 2018 [126] | |
Clinical | Patients Case report Irradiation-induced recurrent OS | Surgical resection followed by radiation therapy combined with HT | Results: Five months after the surgery, the clinical and instrumental control showed an effective consolidation of the chest wall and good trophism of the flap without recurrence. | Tancredi et al., 2011 [115] |
Patients Retrospective study 79 patients with distal tibia OS without metastasis | HT 52 patients were treated with microwave-induced hyperthermia, 27 patients were treated with amputation | Results: Local recurrence and survival comparable with amputation treatment. Function improvement compared with transtibial amputation. Complication: 6/52 patients hyperthermia treated experienced same complications: 2 delayed union; 1 fracture; 2 superficial infections; 1 deep infection. 3/27 patients undergoing amputation experienced complication: 2 wound dehiscence; 1 superficial infection. | Han et al., 2017 [109] | |
Patients Clinical trial Randomized phase 3 340 patients with soft tumor sarcoma | HT + etoposide, ifosfamide, and doxorubicin | Results: Compared with neoadjuvant chemotherapy alone, adding regional hyperthermia improved local progression-free survival and 5-year survival rate of 62.7% vs. 51.3% and 10-year survival of 52.6% vs. 42.7% | Issels et al., 2010, 2018 [45,114] |
Clinical Study | Treatment | Mechanisms/Results | Reference |
---|---|---|---|
Patients: 7 | HIFU | Results: Complete response in three patients Partial response in three patients Pulmonary metastasis after 5 months in one patient five-year survival rate was 71.4% Severe pain disappeared Complications: No severe complications were observed | Li et al., 2009 [130] |
Patients: 25 patients with malignant bone tumors; 12 with OS | HIFU + chemotherapy | Results: Tumor ablation The response rate based on MRI or PET/CT for patients with primary bone tumors was 84.6%; for patients with metastatic bone tumors, response rate was 75.0%. Pain was significantly alleviated Complications: 12 patients had first-degree burns Two patients had second-degree burns. | Li et al., 2010 [129] |
Patients: Retrospective study on 80 patients with a primary bone malignancy and 60 with OS | US-HIFU + chemotherapy in 62 patients with OS, 1 with periosteal osteosarcoma, and 3 with Ewing sarcoma. US-HIFU alone in 14 patients with chondrosarcoma, giant cell bone cancer, periosteal sarcoma, or an unknown malignancy | Results: Tumor ablation in 69 patients malignant bone tumors resulted completely ablated and the remaining 11 patients showed greater than 50% tumor ablation For all patients the overall survival rates at 1, 2, 3, 4 and 5 years that were 89.8%, 72.3%, 60.5%, 50.5% and 50.5%, respectively Complications: Mild local pain and local edema after treatment; skin toxicity 17 of the 80 study patients Bone fracture was observed in six patients, ligamentous laxity occurred in three, and epiphysiolysis or secondary infection occurred in two. | Chen et al., 2010 [65] |
Patients: 22 patients with solid tumors, 1 with OS | US-HIFU | Results: Tumor ablation, pain reduction Complications: No complications detected in the patient with OS | Orgera et al., 2011 [131] |
Patients: Retrospective study on 27 patients with local unresectable recurrence of OS previously subjected to multi-agent chemotherapy | HIFU | Results: Tumor ablation; Pain reduction Follow up: For all patients, the 1-, 2- and 3-year local disease control rates were 59.2%, 40.7% and 33.1%, respectively Complications: Low grade fever in six patients. | Yu et al., 2015 [132] |
Study | Cell/Animal Models Patients | Treatment | Mechanisms/Results | Reference |
---|---|---|---|---|
In vitro/in vivo | In vitro (MG-63 cells) | LIPUS + HMME | Apoptosis Caspase dependent | Liu et al., 2015 [134] |
In vitro (UMR-106 cells) | LIPUS alone LIPUS + HMME | Cytotoxicity ROS and Ca2+ dependent | Tian et al., 2010 [83] | |
In vitro (LM8 cells) | LIPUS | Apoptosis and necrosis | Matsuo et al., 2017 [133] | |
In vitro (UMR-106 cells) | LIPUS + 5-ALA | Apoptosis mitochondrial pathway dependent | Li et al., 2015 [135] | |
In vitro (UMR-106 cells) In vivo (mouse) | LIPUS + 5-ALA | Apoptosis ROS mitochondrial pathway dependent | Li et al., 2015 [5] | |
In vivo (mouse) | LIPUS alone LIPUS + HMME | Apoptosis | Tian et al., 2009 [82] |
Study | Cell/Animal Models Patients | Treatment | Mechanisms/Results | Reference |
---|---|---|---|---|
In vitro | In vitro MOS/ADR1 | AO-PDT | Cytotoxic effect on OS MDR cells | Kusuzaki et al., 2000 [157] |
In vitro HOSM-1, HOSM-2 | Aminolevulinic acid hexyl ester-PDT (hALA-PDT) hALA-PDT + HT (43.5 °C) | hALA-PDT + HT treatment enhances the reduction of cell viability in cells insensitive to hALA-PDT alone | Yanase et al., 2009 [150] | |
In vitro 143B | mTHPC-PDT | Apoptosis caspases- dependent in metastatic cell line | Reidy et al., 2012 [143] | |
In vitro UMR106 | Methylene blue-PDT | Apoptosis mitochondrial pathway induced | Guan et al., 2014 [137] | |
In vitro Hu09 | na-pheophorbide-PDT | Apoptosis mitochondrial and caspase pathways dependent | Nagai et al., 2014 [142] | |
In vitro MG-63 | NPe6-PDT + LLLT | Cytotoxicity ROS and apoptosis dependent | Tsai et al., 2015 [149] | |
In vitro MG-63 | ALA-PDT | Cytotoxicity | Li et al., 2016 [140] | |
In vitro MG-63 | Pyropheophorbide-α methyl ester-PDT | Apoptosis mitochondrial pathway induced Autophagy ROS-Jnk dependent | Huang et al., 2016 [138] | |
In vitro MG-63 | Aloe-emodin-PDT | Autophagy, apoptosis ROS-JNK induced | Tu et al., 2016 [146] | |
In vitro MG-63 | ALA-PDT | Cytotoxicity | White et al., 2016 [147] | |
In vitro MG-63 | TiO2 @xGd NBs-PDT | Cytotoxicity ROS induced | Imani et al., 2017 [139] | |
In vitro MG-63, U2OS, Saos2, Saos2/DX580 | PTX-Ce6@Ker-PDT | Increase of cell death both 2D and 3D cell model systems, and in MDR Saos2 cell line | Martella et al., 2018 [158] | |
In vitro and In vivo | In vitro LM-8 In vivo (mouse) | Methylene blue-PDT | Apoptosis Necrosis | Matsubara et al., 2008 [141] |
In vitro LM8 In vivo (mouse) | AO-PDT | Cell invasion and pulmonary metastases inhibition | Satonaka et al., 2011 [152] | |
In vitro LM8 In vivo (mouse) | BCDP-17-PDT | Apoptosis Local recurrence reduction | Gong et al., 2013 [136] | |
In vitro LM8, MG-63, Saos2, TC-71 In vivo (mouse) | HMME-PDT | Apoptosis caspase-dependent | Zeng et al., 2013 [148] | |
In vitro DLM-8, Saos2, HOS, 143B, U-2 OS In vivo (mouse) | Hiporfin-PDT | Inhibition of proliferation by G2M arrest, ROS increase, Apoptosis and necrosis | Sun et al., 2015 [144] | |
In vitro TC-71 In vivo (mouse) | BCDP-18-PDT | Inhibition of proliferation by G2M arrest; apoptosis | Sun et al., 2016 [145] | |
In vitro 143B, K7M2L2 In vivo (mouse) | Foscan or Foslip-PDT | Apoptosis Pulmonary metastasis inhibition | Meier et al., 2017 [155] | |
In vitro MNNG, MG63 In vivo(mouse) | Magnetic calcium silicate/chitosan porous -PDT | Cytotoxicity Reduction of tumor size | Lu et al. 2018 [159], Yang et al., 2018 [160] | |
In vitro MNNG/HOS, U-2OS, MG63, Saos2 In vivo(mouse) | PPZ-PDT | Ros increase, Apoptosis, reduction of cell invasion capacity. Tumor size reduction | Yu et al., 2018 [153] | |
In vitro MNNG/HOS, MG63, K7M2 In vivo(mouse) | ZnPc/BSA-PDT | Ros increase, Autophagy, Apoptosis, reduction of cell invasion capacity. Inhibition of tumor growth after surgery | Yu et al., 2019 [154] | |
In vivo | In vivo (dog) | verteporfin-PDT | Necrosis | Burch et al., 2009 [151] |
In vivo (mouse) | 5,15-bis(2-bromo-5-hydroxyphenyl) porphyrin-PDT | Tumor size reduction. Increase of tumor necrosis areas and osteoid matrix volumes | De Miguel et al., 2018 [156] | |
Clinical trial | 10 patients with primary musculoskeletal sarcomas: six with primary malignant soft tissue sarcoma and four with primary malignant bone tumor (two OS) | AO-PDT AO-PDT + irradiation | Results: AO-PDT + irradiation: no recurrence development AO-PDT alone: 1/5 case of recurrence after 21 months Complications: None of the patients clinically showed local or systemic complications caused by AO administration. | Kusuzaki et al., 2005 [161] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carina, V.; Costa, V.; Sartori, M.; Bellavia, D.; De Luca, A.; Raimondi, L.; Fini, M.; Giavaresi, G. Adjuvant Biophysical Therapies in Osteosarcoma. Cancers 2019, 11, 348. https://doi.org/10.3390/cancers11030348
Carina V, Costa V, Sartori M, Bellavia D, De Luca A, Raimondi L, Fini M, Giavaresi G. Adjuvant Biophysical Therapies in Osteosarcoma. Cancers. 2019; 11(3):348. https://doi.org/10.3390/cancers11030348
Chicago/Turabian StyleCarina, Valeria, Viviana Costa, Maria Sartori, Daniele Bellavia, Angela De Luca, Lavinia Raimondi, Milena Fini, and Gianluca Giavaresi. 2019. "Adjuvant Biophysical Therapies in Osteosarcoma" Cancers 11, no. 3: 348. https://doi.org/10.3390/cancers11030348
APA StyleCarina, V., Costa, V., Sartori, M., Bellavia, D., De Luca, A., Raimondi, L., Fini, M., & Giavaresi, G. (2019). Adjuvant Biophysical Therapies in Osteosarcoma. Cancers, 11(3), 348. https://doi.org/10.3390/cancers11030348