Anaplastic Thyroid Cancer: Clinical Picture of the Last Two Decades at a Single Oncology Referral Centre and Novel Therapeutic Options
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Precision Medicine in ATC: Target and Immune Modulation Therapies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ragazzi, M.; Ciarrocchi, A.; Sancisi, V.; Bisagni, A.; Piana, S. Update on anaplastic thyroid carcinoma: Morphological, molecular, and genetic features of the most aggressive thyroid cancer. Int. J. Endocrinol. 2014, 2014, 79083. [Google Scholar] [CrossRef] [PubMed]
- Smallridge, R.C.; Marlow, L.A.; Copland, J.A. Anaplastic thyroid cancer: Molecular pathogenesis and emerging therapies. Endocr. Relat. Cancer 2009, 16, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, E.; Romei, C.; Biagini, A.; Sabini, E.; Agate, L.; Mazzeo, S.; Materazzi, G.; Sellari-Franceschini, S.; Ribechini, A.; Torregrossa, L.; et al. Anplastic thyroid carcinoma: From clinicopathology to genetics and advanced therapies. Nat. Rev. Endocrinol. 2017, 13, 644–660. [Google Scholar] [CrossRef] [PubMed]
- Smallridge, R.C.; Ain, K.B.; Asa, S.L.; Bible, K.C.; Brierley, J.D.; Burman, K.D.; Kebebew, E.; Lee, N.Y.; Nikiforov, Y.E.; Shah, M.H.; et al. American Thyryoid Association Anaplastic Thyroid Cancer Guidelines Taskforce. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012, 22, 1104–1139. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.; Welch, H.G. Increasing incidence of thyroid cancer in the United States, 1973–2002. J. Am. Med. Assoc. 2006, 295, 2164–2167. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, B.; Prichard, R.S.; Lee, A.; Kelly, L.M.; Smyth, P.P.; Crotty, T.; McDermott, E.W.; Hill, A.D.; O’Higgins, N. Changing patterns of thyroid carcinoma. Ir. J. Med. Sci. 2007, 176, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Besic, N.; Gazic, B. Sites of Metastases of Anaplastic Thyroid Carcinoma: Autopsy Findings in 45 Cases from a Single Institution. Thyroid 2013, 23, 709–713. [Google Scholar] [CrossRef]
- Ibanez, M.L.; Russell, W.O.; Albores-Saavedra, J.; Lampertico, P.; White, E.C.; Clark, R.L. Thyroid carcinoma—Biologic behavior and mortality. Postmortem findings in 42 cases, including 27 in which the disease was fatal. Cancer 1966, 19, 1039–1052. [Google Scholar] [CrossRef]
- Glaser, S.M.; Mandish, S.F.; Gill, B.S.; Balasubramani, G.K.; Clump, D.A.; Beriwal, S. Anaplastic thyroid cancer: Prognostic factors, patterns of care, and overall survival. Head Neck 2016, 38, E2083–E2090. [Google Scholar] [CrossRef]
- Lennon, P.; Deady, S.; Healy, M.L.; Toner, M.; Kinsella, J.; Timon, C.I.; O’Neill, J.P. Anaplastic thyroid carcinoma: Failure of conventional therapy but hope of targeted therapy. Head Neck 2016, 38, E1122–E1129. [Google Scholar] [CrossRef]
- Machens, A.; Hinze, R.; Lautenschläger, C.; Thomusch, O.; Dunst, J.; Dralle, H. Extended surgery and early postoperative radiotherapy for undifferentiated thyroid carcinoma. Thyroid 2001, 11, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Sugitani, I.; Miyauchi, A.; Sugino, K.; Okamoto, T.; Yoshida, A.; Suzuki, S. Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC Research Consortium of Japan cohort study of 677 patients. World J. Surg. 2012, 36, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Wendler, J.; Kroiss, M.; Gast, K.; Kreissl, M.C.; Allelein, S.; Lichtenauer, U.; Blaser, R.; Spitzweg, C.; Fassnacht, M.; Schott, M.; et al. Clinical presentation, treatment and outcome of anaplastic thyroid carcinoma: Results of a multicentre study in Germany. Eur. J. Endocrinol. 2016, 175, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Akaishi, J.; Sugino, K.; Kitagawa, W.; Nagahama, M.; Kameyama, K.; Shimizu, K.; Ito, K. Prognostic factors and treatment outcomes of 100 cases of anaplastic thyroid carcinoma. Thyroid 2011, 21, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Haymart, M.R.; Banerjee, M.; Yin, H.; Worden, F.; Griggs, J.J. Marginal treatment benefit in anaplastic thyroid cancer. Cancer 2013, 119, 3133–3139. [Google Scholar] [CrossRef] [Green Version]
- Mohebati, A.; Dilorenzo, M.; Palmer, F.; Patel, S.G.; Pfister, D.; Lee, N.; Tuttle, R.M.; Shaha, A.R.; Shah, J.P.; Ganly, I. Anaplastic thyroid carcinoma: A 25-year single-institution experience. Ann. Surg. Oncol. 2014, 21, 1665–1670. [Google Scholar] [CrossRef] [PubMed]
- Pezzi, T.A.; Mohamed, A.S.R.; Sheu, T.; Blanchard, P.; Sandulache, V.C.; Lai, S.Y.; Cabanillas, M.E.; Williams, M.D.; Pezzi, C.M.; Lu, C.; et al. Radiation therapy dose is associated with improved survival for unresected anaplastic thyroid carcinoma: Outcomes from the National CancerData Base. Cancer 2017, 123, 1653–1661. [Google Scholar] [CrossRef]
- Sun, C.; Li, Q.; Hu, Z.; He, J.; Li, C.; Li, G.; Tao, X.; Yang, A. Treatment and prognosis of anaplastic thyroid carcinoma: Experience from a single institution in China. PLoS ONE 2013, 8, e80011. [Google Scholar] [CrossRef]
- Dumke, A.K.; Pelz, T.; Vordermark, D. Long-term results of radiotherapy in anaplastic thyroid cancer. Radiat. Oncol. 2014, 9, 90. [Google Scholar] [CrossRef]
- Iyer, P.C.; Dadu, R.; Ferrarotto, R.; Busaidy, N.L.; Habra, M.A.; Zafereo, M.; Gross, N.; Hess, K.R.; Gule-Monroe, M.; Williams, M.D.; et al. Real-World Experience with Targeted Therapy for the Treatment of Anaplastic Thyroid Carcinoma. Thyroid 2018, 28, 79–87. [Google Scholar] [CrossRef]
- Ain, K.B.; Egorin, M.J.; DeSimone, P.A. Treatment of anaplastic thyroid carcinoma with Paclitaxel: Phase 2 trial using ninety-six-hour infusion. Thyroid 2000, 10, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; Zafereo, M.; Gunn, G.B.; Ferrarotto, R. Anaplastic Thyroid Carcinoma: Treatment in the Age of Molecular Targeted Therapy. J. Oncol. Pract. 2016, 12, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Higashiyama, T.; Ito, Y.; Hirokawa, M.; Fukushima, M.; Uruno, T.; Miya, A.; Matsuzuka, F.; Miyauchi, A. Induction chemotherapy with weekly paclitaxel administration for anaplastic thyroid carcinoma. Thyroid 2010, 20, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Ezzat, S.; Asa, S.L. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat. Rev. Cancer 2006, 6, 292–306. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, Y.E.; Nikiforova, M.N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 2011, 7, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Pita, J.M.; Banito, A.; Cavaco, B.M.; Leite, V. Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. Br. J. Cancer 2009, 101, 1782–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunstman, J.W.; Juhlin, C.C.; Goh, G.; Brown, T.C.; Stenman, A.; Healy, J.M.; Rubinstein, J.C.; Choi, M.; Kiss, N.; Nelson-Williams, C.; et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum. Mol. Genet. 2015, 24, 2318–2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landa, I.; Ibrahimpasic, T.; Boucai, L.; Sinha, R.; Knauf, J.A.; Shah, R.H.; Dogan, S.; Ricarte-Filho, J.C.; Krishnamoorthy, G.P.; Xu, B.; et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Investig. 2016, 126, 1052–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donato, S.; Santos, R.; Simões, H.; Leite, V. Novel therapies against aggressive differentiated thyroid carcinomas. Int. J. Endocr. Oncol. 2018, 5. [Google Scholar] [CrossRef]
- Tahara, M.; Kiyota, N.; Yamazaki, T.; Chayahara, N.; Nakano, K.; Inagaki, L.; Toda, K.; Enokida, T.; Minami, H.; Imamura, Y.; et al. Lenvatinib for Anaplastic Thyroid Cancer. Front. Oncol. 2017, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients with Locally Advanced or Metastatic BRAF V600–Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2017, 36, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Lito, P.; Pratilas, C.A.; Joseph, E.W.; Tadj, M.; Halilovic, E.; Zubrowski, M.; Huang, A.; Wong, W.L.; Callahan, M.K.; Merghoub, T.; et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 2012, 22, 668–682. [Google Scholar] [CrossRef] [PubMed]
- Ryder, M.; Ghossein, R.A.; Ricarte-Filho, J.C.; Knauf, J.A.; Fagin, J.A. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr. Relat. Cancer 2008, 15, 1069–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chintakuntlawar, A.V.; Rumilla, K.M.; Smith, C.Y.; Jenkins, S.M.; Foote, R.L.; Kasperbauer, J.L.; Morris, J.C.; Ryder, M.; Alsidawi, S.; Hilger, C.; et al. Expression of PD-1 and PD-L1 in Anaplastic Thyroid Cancer Patients Treated with Multimodal Therapy: Results from a Retrospective Study. J. Clin. Endocrinol. Metab. 2017, 102, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Iyer, P.C.; Dadu, R.; Gule-Monroe, M.; Busaidy, N.L.; Ferrarotto, R.; Habra, M.A.; Zafereo, M.; Williams, M.D.; Gunn, G.B.; Grosu, H.; et al. Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma. J. Immunother. Cancer 2018, 11, 68. [Google Scholar] [CrossRef]
- Kollipara, R.; Schneider, B.; Radovich, M.; Babu, S.; Kiel, P.J. Exceptional Response with Immunotherapy in a Patient with Anaplastic Thyroid Cancer. Oncologist 2017, 22, 1149–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, E.J.; Tsai, C.J.; Zhi, W.I.; Fetten, J.V.; Wu, V.; Ho, A.L.; Riaz, N.; Pfister, D.G.; Lee, N.Y. Pilot study combining PD-L1 antibody durvalumab (D) with CTLA-4 antibody tremelimumab (T) and stereotactic body radiotherapy (SBRT) to treat metastatic anaplastic thyroid cancer (ATC). J. Clin. Oncol. 2019, 37 (Suppl. S15). [Google Scholar] [CrossRef]
- Harris, E.J.; Hanna, G.J.; Chau, N.; Rabinowits, G.; Haddad, R.; Margalit, D.N.; Schoenfeld, J.; Tishler, R.B.; Barletta, J.A.; Nehs, M.; et al. Everolimus in Anaplastic Thyroid Cancer: A Case Series. Front. Oncol. 2019, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Wirth, L.J.E.E.; Capdevila, J.; Paz-Ares, L.G.; Lin, C.; Taylor, M.H.; Ramlau, R.; Butler, M.; Delord, J.P.; Horvath, Z.; Gelderblom, H.; et al. Phase I/II study of spartalizumab (PDR001), an anti-PD1 mAb, in patients with anaplastic thyroid cancer. J. Clin. Oncol. 2018, 36 (Suppl. S15). [Google Scholar] [CrossRef]
- Ito, Y.; Onoda, N.; Ito, K.; Sugitani, I.; Takahashi, S.; Yamaguchi, I.; Kabu, K.; Tsukada, K. Sorafenib in Japanese patients with locally advanced or metastatic medullary thyroid carcinoma and anaplastic thyroid carcinoma. Thyroid 2017, 27, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Ravaud, A.; De la Fouchardière, C.; Caron, P.; Doussau, A.; Do Cao, C.; Asselineau, J.; Rodien, P.; Pouessel, D.; Nicolli-Sire, P.; Klein, M.; et al. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: Mature data from the THYSU study. Eur. J. Cancer 2017, 76, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Iniguez-Ariza, N.M.; Ryder, M.M.; Hilger, C.R.; Bible, K.C. Salvage Lenvatinib therapy in metastatic anaplastic thyroid Cancer. Thyroid 2017, 27, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Hyman, D.M.; Puzanov, I.; Subbiah, V.; Faris, J.E.; Chau, I.; Blay, J.Y.; Wolf, J.; Raje, N.S.; Diamond, E.L.; Hollebecque, A.; et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 2015, 373, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Godbert, Y.; Henriques de Figueiredo, B.; Bonichon, F.; Chibon, F.; Hostein, I.; Perot, G.; Dupin, C.; Daubech, A.; Belleannee, G.; Gros, A.; et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J. Clin. Oncol. 2015, 33, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Marten, K.A.; Gudena, V.K. Use of vemurafenib in anaplastic thyroid carcinoma: A case report. Cancer Biol. Ther. 2015, 16, 1430–1433. [Google Scholar] [CrossRef] [PubMed]
- Wagle, N.; Grabiner, B.C.; Van Allen, E.M.; Amin-Mansour, A.; Taylor-Weiner, A.; Rosenberg, M.; Gray, N.; Barletta, J.A.; Guo, Y.; Swanson, S.J.; et al. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N. Engl. J. Med. 2014, 371, 1426–1433. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.M.; Chang, H.; Yoon, M.J.; Hong, Y.K.; Kim, H.; Chung, W.Y.; Park, C.S.; Nam, K.H.; Kang, S.W.; Kim, M.K.; et al. A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann. Oncol. 2013, 24, 3089–3094. [Google Scholar] [CrossRef] [PubMed]
- Savvides, P.; Nagaiah, G.; Lavertu, P.; Fu, P.; Wright, J.J.; Chapman, R.; Wasman, J.; Dowlati, A.; Remick, S.C. Phase II trial of sorafenib in patients with advanced anaplastic carcinoma of the thyroid. Thyroid 2013, 23, 600–604. [Google Scholar] [CrossRef]
- Rosove, M.H.; Peddi, P.F.; Glaspy, J.A. BRAF V600E inhibition in anaplastic thyroid cancer. N. Engl. J. Med. 2013, 368, 684–685. [Google Scholar] [CrossRef]
- Bible, K.C.; Suman, V.J.; Menefee, M.E.; Smallridge, R.C.; Molina, J.R.; Maples, W.J.; Karlin, N.J.; Travnor, A.M.; Kumar, P.; Goh, B.C.; et al. Mayo Phase 2 Consortium; Mayo Clinic Endocrine Malignances Disease Oriented Group. A multiinstitutional phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 2012, 97, 3179–3184. [Google Scholar] [CrossRef]
- Ha, H.T.; Lee, J.S.; Urba, S.; Koenig, R.J.; Sisson, J.; Giordano, T.; Worden, F.P. A phase II study of imatinib in patients with advanced anaplastic thyroid cancer. Thyroid 2010, 20, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Pennell, N.A.; Daniels, G.H.; Haddad, R.I.; Ross, D.S.; Evans, T.; Wirth, L.J.; Fidias, P.H.; Temel, J.S.; Gurubhagavatula, S.; Heist, R.S.; et al. A phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid 2008, 18, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; Williams, M.D.; Gunn, G.B.; Weitzman, S.P.; Burke, L.; Busaidy, N.L.; Ying, A.K.; Yiin, Y.H.; William, W.N.; Lu, C.; et al. Facilitating anaplastic thyroid cancer specialized treatment: A model for improving access to multidisciplinary care for patients with anaplastic thyroid cancer. Head Neck 2017, 39, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
Characteristics | No. (%) | Median Survival, mo | p-Value, Log-Rank Test |
---|---|---|---|
Age | |||
≤70 years | 36 (45.6%) | 2.0 | 0.514 |
>70 years | 43 (54.4%) | 2.0 | |
Sex | |||
Female | 53 (67.1%) | 2.0 | 0.484 |
Male | 26 (32.9%) | 3.0 | |
Tumour dimensions | |||
≤60 mm | 32 (40.5%) | 2.0 | 0.511 |
>60 mm | 34 (43%) | 2.0 | |
NA | 13 (16.5%) | ||
Stage at diagnosis | |||
IVA | 5 (6.3%) | 9.0 | |
IVB | 24 (30.4%) | 2.0 | 0.031 |
IVC | 48 (60.8%) | 2.0 | |
NA | 2 (2.5%) | ||
Leukocytosis | |||
<10,000/mm3 | 12 (15.2%) | 1.0 | |
10,000–20,000/mm3 | 44 (55.7%) | 2.5 | 0.003 |
20,000–30,000/mm3 | 12 (15.2%) | 1.0 | |
>30,000/mm3 | 4 (5.1%) | 1.0 | |
NA | 7 (8.9%) | ||
Diagnosis | |||
Cytology | 36 (45.6%) | 1.0 | 0.001 |
Histology | 43 (54.4%) | 2.0 | |
Compressive symptoms | |||
Yes | 68 (86.1%) | 1.0 | 0.451 |
No | 9 (11.4%) | 2.0 | |
NA | 9 (11.4%) | ||
Previous or coexistent WDTC | |||
Yes | 9 (11.4%) | 5.0 | 0.004 |
No | 63 (79.7%) | 2.0 | |
NA | 7 (8.9%) | ||
Therapeutic approach | |||
Only symptomatic | 31 (39.2%) | <1.0 | |
Only surgery | 11 (13.9%) | 2.0 | |
Only RT | 11 (13.9%) | 2.5 | |
Only CT | 2 (2.5%) | 0.5 | <0.001 |
Only TKI | 3 (3.8%) | 3.0 | |
S + RT + CT | 6 (7.6%) | 38.5 | |
S + RT | 9 (11.4%) | 5.0 | |
S + CT | 4 (5.0%) | 6.0 | |
S + RT + CT + TKI | 2 (2.5%) | 8.0 | |
S + TKI | 1 (1.3%) | 9.0 |
Variables | Exp(B) | 95% CI | p-Value |
---|---|---|---|
Age | 1.005 | 0.974–1.036 | 0.765 |
Stage IVB 1 | 3.098 | 0.865–10.838 | 0.077 |
Stage IVC 1 | 3.327 | 1.001–11.055 | 0.050 |
Leukocytosis 2 | 0.686 | 0.325–1.449 | 0.324 |
Histological diagnosis 3 | 1.265 | 0.746–3.561 | 0.221 |
Previous or concomitant WDTC 4 | 0.719 | 0.351–4.556 | 0.719 |
Only surgery 5 | 0.289 | 0.101–0.828 | 0.021 |
Only chemo/TKI and/or RT 5 | 0.423 | 0.199–0.900 | 0.026 |
Surgery + RT 5 | 0.108 | 0.034–0.341 | <0.001 |
Surgery + CT/TKI 5 | 0.152 | 0.041–0.568 | 0.005 |
Surgery + RT + CT/TKI 5 | 0.031 | 0.005–0.210 | <0.001 |
TKI or ICI | Targeted Alteration |
---|---|
Recently approved drugs in ATC | |
Dabrafenib + trametinib (150 mg twice daily + 2 mg once daily) | BRAF + MEK |
Lenvatinib [24 mg daily] | VEGFR, FGFR, PDGFR-α, RET, c-kit, KIF5B-RET, CCDC6-RET, NcoA4-RET rearrangement |
Drugs studied in ATC | |
Pembrolizumab | PD-1 |
Nivolumab | PD-1 |
Spartalizumab | PD-1 |
Durvalumab | PD-L1 |
Tremelimumab | CTLA-4 |
Sorafenib | VEGFR, PDGFR-β, c-kit, RAF, RET, FLT3 |
Sunitinib | VEGFR, PDGFR, RET, c-kit, FLT3 |
Vemurafenib | BRAF |
Crizotinib | ALK, MET, ROS1 |
Everolimus | mTOR, PI3K |
Pazopanib | VEGFR, FGFR, PDGFR, c-kit |
Imatinib | Bcr-Abl, PDGFR, c-kit |
Gefitinib | EGFR |
Authors | Year | TKI or ICI | No. of ATC Patients | Response | Median OS and PFS since TKI/IMT |
---|---|---|---|---|---|
Sherman et al. [37] | 2019 | Durvalumab + tremelimumab (+SBRT) | 12 | ORR: 0 (0%) SD: 1 (8%) | OS: 14.5 weeks |
Harris et al. [38] | 2019 | Everolimus | 5 | PR: 1 (20%), SD: 2 (40%); PD: 1 (20%) | OS: 7.4 mo |
Iyer et al. [20] | 2018 | Dabrafenib + trametinib Lenvatinib | 6 10 | PR: 3 (50%); SD: 2(33%) PR: 3 (30%); SD: 4 (40%) | OS: 9.3 mo; PFS: 5.2 mo OS: 3.9 mo; PFS: 2.6 mo |
Iyer et al. [35] | 2018 | Pembrolizumab (added to TKI) | 12 | PR: 5 (42%); SD: 4 (33%); PD: 3 (25%) | OS: 6.94 mo PFS: 2.96 mo |
Wirth et al. [39] | 2018 | Spartalizumab | 30 | ORR: 5–6 (17–20%), depending on the criteria | |
Subbiah et al. [31] | 2017 | Dabrafenib † trametinib | 16 | ORR: 69% | |
Tahara et al. [30] | 2017 | Lenvatinib | 17 | PR: 4 (24%); SD: 12 (71%); PD: 1 (6%) | OS: 20.6 mo PFS: 7.4 mo |
Ito et al. [40] | 2017 | Sorafenib | 10 | CR: 0 (0%); PR: 0 (0%); SD: 4 (40%) | OS: 5 mo PFS: 2.8 mo |
Ravaud et al. [41] | 2017 | Sunitinib | 4 | OS: 5.7 mo PFS: 9.8 mo (2 pts) | |
Iniguez-Ariza [42] | 2017 | Lenvatinib | 3 | PR: 0 (0%); SD: 1 (33%) | OS: 2–7 mo |
Kollipara et al. [36] | 2017 | Vemurafenib † nivolumab | 1 | CR | |
Hyman et al. [43] | 2016 | Vemurafenib | 7 | CR: 1 (14%); PR: 1 (14%); SD: 0 (0%); PD: 4 (57%) | |
Godbert et al. [44] | 2015 | Crizotinib | 1 | Response >90% | |
Marten et al. [45] | 2015 | Vemurafenib | 1 | PD after 2 mo | |
Wagle et al. [46] | 2014 | Everolimus | 1 | 18 mo | |
Lim et al. [47] | 2013 | Everolimus | 6 | PR: 1 (17%) | |
Savvides et al. [48] | 2013 | Sorafenib | 20 | PR: 2 (10%); SD: 5 (25%) | OS: 3.9 mo PFS: 1.9 mo |
Rosove et al. [49] | 2013 | Vemurafenib | 1 | PR | |
Bible et al. [50] | 2012 | Pazopanib | 16 | PD: 16 (100%) | OS: 111 days PFS: 62 days |
Ha et al. [51] | 2010 | Imatinib | 4 | PR: 2 (25%); SD: 4 (50%) | 6 mo-OS: 46% 6 mo-PFS: 27% |
Pennell et al. [52] | 2008 | Gefitinib | 5 | PR: 0 (0%) |
Currently Recruiting | ||||
---|---|---|---|---|
Study title | Phase | Drug(s) | Year of start | Estimated year of completion |
Trametinib in combination with paclitaxel in the treatment of ATC NCT03085056 | I | Trametinib Paclitaxel | 2017 | 2020 |
A phase II study of MLN0128 in metastatic ATC NCT02244463 | II | MLN0128 | 2014 | 2022 |
Nexavar for neoadjuvant treatment of ATC NCT03565536 | II | Sorafenib | 2018 | 2019 |
Pembrolizumab in anaplastic/undifferentiated thyroid cancer NCT02688608 | II | Pembrolizumab | 2016 | 2020 |
Ceritinib in mutation and oncogene directed therapy in thyroid cancer NCT02289144 | II | Ceritinib | 2014 | 2021 |
Nivolumab plus ipilimumab in thyroid cancer NCT03246958 | II | Nivolumab Ipilimumab | 2017 | 2025 |
Atezolizumab with chemotherapy in treating patients with anaplastic or poorly differentiated thyroid cancer NCT03181100 | II | Atezolizumab Bevacizumab Cobimetinib Nab-paclitaxel Paclitaxel Vemurafenib | 2017 | 2023 |
Ongoing | ||||
Phase II study assessing the efficacy and safety of lenvatinib for ATC NCT02726503 | II | Lenvatinib | 2016 | 2020 |
Immunotherapy and stereotactic body radiotherapy (SBRT) for metastatic ATC NCT03122496 | I | Durvalumab Tremelimumab SBRT | 2017 | 2020 |
Pembrolizumab, chemotherapy and radiation therapy with or without surgery in treating patients with ATC NCT03211117 | II | Docetaxel Doxorrubicin hydrochloride IMRT Pembrolizumab | 2017 | 2019 |
Phase I/II study of PDR001 in patients with advanced malignancies NCT02404441 | I II | PDR001 | 2015 | 2020 |
Intensity-modulated radiation therapy and paclitaxel with or without pazopanib hydrochloride in treating patients with anaplastic thyroid cancer NCT01236547 | II | IMRT Paclitaxel Pazopanib hydrochloride | 2010 | 2019 |
Pazopanib hydrochloride in treating patients with advanced thyroid cancer NCT00625846 | II | Pazopanib hydrochloride | 2008 | |
Treatment with recombinant human Interleukin 1 receptor antagonist (Anakinra) in patients with anaplastic thyroid cancer: a proof of concept study EudraCT: 2017-003028-59 | IV | Interleukin 1 receptor antagonist | 2018 | |
A phase II study to investigate the efficacy of RAD001 (Afinitor ®, everolimus) in patients with irresectable recurrent or metastatic differentiated, undifferentiated (anaplastic) and medullary thyroid carcinoma EudraCT: 2009-016669-27 | II | Everolimus | 2010 | |
An open-label phase 2 multi-cohort trial of nivolumab in advanced or metastatic malignancies EudraCT: 2016-000461-23 | II | nivolumab | 2017 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões-Pereira, J.; Capitão, R.; Limbert, E.; Leite, V. Anaplastic Thyroid Cancer: Clinical Picture of the Last Two Decades at a Single Oncology Referral Centre and Novel Therapeutic Options. Cancers 2019, 11, 1188. https://doi.org/10.3390/cancers11081188
Simões-Pereira J, Capitão R, Limbert E, Leite V. Anaplastic Thyroid Cancer: Clinical Picture of the Last Two Decades at a Single Oncology Referral Centre and Novel Therapeutic Options. Cancers. 2019; 11(8):1188. https://doi.org/10.3390/cancers11081188
Chicago/Turabian StyleSimões-Pereira, Joana, Ricardo Capitão, Edward Limbert, and Valeriano Leite. 2019. "Anaplastic Thyroid Cancer: Clinical Picture of the Last Two Decades at a Single Oncology Referral Centre and Novel Therapeutic Options" Cancers 11, no. 8: 1188. https://doi.org/10.3390/cancers11081188
APA StyleSimões-Pereira, J., Capitão, R., Limbert, E., & Leite, V. (2019). Anaplastic Thyroid Cancer: Clinical Picture of the Last Two Decades at a Single Oncology Referral Centre and Novel Therapeutic Options. Cancers, 11(8), 1188. https://doi.org/10.3390/cancers11081188