Current Treatment Options for Metastatic Hormone-Sensitive Prostate Cancer
Abstract
:1. Introduction
2. Prognostic and Predictive Factors in mHSPC
2.1. Glass and Gravis Models
2.2. Risk Factors in Phase 3 Trials
2.3. Biomarkers for Treatment Selection
3. Systemic Treatments in mHSPC
3.1. Docetaxel
3.2. Abiraterone Acetate
3.3. Enzalutamide
3.4. Apalutamide
3.5. Other Potential Systemic Treatments for mHSPC
3.5.1. Bone-Targeting Agents
3.5.2. Darolutamide
3.5.3. Other Systemic Treatment Strategies Under Evaluation
4. Treatment of Primary Tumor in mHSPC
4.1. Radiotherapy to Primary Tumor
4.2. Cytoreductive Prostatectomy
5. Oligometastatic Disease
6. Choosing the Right Treatment for the Right Patient
6.1. Comparing Patient’s Populations and Survival Benefit
6.2. Factors that May Influence Treatment Decision
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huggins, C.; Hodges, C.V. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. J. Urol. 2002, 168, 9–12. [Google Scholar] [CrossRef]
- Prostate Cancer Trialists’ Collaborative Group. Maximum Androgen Blockade in Advanced Prostate Cancer: An Overview of the Randomised Trials. Prostate Cancer Trialists’ Collaborative Group; Lancet: London, UK, 2000; Volume 355, pp. 1491–1498. [Google Scholar]
- Klotz, L.; Schellhammer, P.; Carroll, K. A re-assessment of the role of combined androgen blockade for advanced prostate cancer. BJU Int. 2004, 93, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Tangen, C.; Higano, C.; Vogelzang, N.; Thompson, I. Evaluating Intermittent Androgen-Deprivation Therapy Phase III Clinical Trials: The Devil Is in the Details. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 280–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, C.J.; Chen, Y.H.; Carducci, M.; Liu, G.; Jarrard, D.F.; Eisenberger, M.; Wong, Y.N.; Hahn, N.; Kohli, M.; Cooney, M.M.; et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2015, 373, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Sartor, O.; de Bono, J.S. Metastatic Prostate Cancer. N. Engl. J. Med. 2018, 378, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Terada, N.; Akamatsu, S.; Kobayashi, T.; Inoue, T.; Ogawa, O.; Antonarakis, E.S. Prognostic and predictive biomarkers in prostate cancer: Latest evidence and clinical implications. Ther. Adv. Med Oncol. 2017, 9, 565–573. [Google Scholar] [CrossRef]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Glass, T.R.; Tangen, C.M.; Crawford, E.D.; Thompson, I. Metastatic carcinoma of the prostate: Identifying prognostic groups using recursive partitioning. J. Urol. 2003, 169, 164–169. [Google Scholar] [CrossRef]
- Eisenberger, M.A.; Blumenstein, B.A.; Crawford, E.D.; Miller, G.; McLeod, D.G.; Loehrer, P.J.; Wilding, G.; Sears, K.; Culkin, D.J.; Thompson, I.M., Jr.; et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N. Engl. J. Med. 1998, 339, 1036–1042. [Google Scholar] [CrossRef]
- Gravis, G.; Fizazi, K.; Joly, F.; Oudard, S.; Priou, F.; Esterni, B.; Latorzeff, I.; Delva, R.; Krakowski, I.; Laguerre, B.; et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): A randomised, open-label, phase 3 trial. Lancet Oncol. 2013, 14, 149–158. [Google Scholar] [CrossRef]
- Gravis, G.; Boher, J.M.; Fizazi, K.; Joly, F.; Priou, F.; Marino, P.; Latorzeff, I.; Delva, R.; Krakowski, I.; Laguerre, B.; et al. Prognostic Factors for Survival in Noncastrate Metastatic Prostate Cancer: Validation of the Glass Model and Development of a Novel Simplified Prognostic Model. Eur. Urol. 2015, 68, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Psutka, S.P.; Frank, I.; Karnes, R.J. Risk Stratification in Hormone-sensitive Metastatic Prostate Cancer: More Questions than Answers. Eur. Urol. 2015, 68, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulos, C.E.; Chen, Y.H.; Carducci, M.A.; Liu, G.; Jarrard, D.F.; Hahn, N.M.; Shevrin, D.H.; Dreicer, R.; Hussain, M.; Eisenberger, M.; et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1080–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Ozguroglu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2017, 377, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Gravis, G.; Boher, J.M.; Chen, Y.H.; Liu, G.; Fizazi, K.; Carducci, M.A.; Oudard, S.; Joly, F.; Jarrard, D.M.; Soulie, M.; et al. Burden of Metastatic Castrate Naive Prostate Cancer Patients, to Identify Men More Likely to Benefit from Early Docetaxel: Further Analyses of CHAARTED and GETUG-AFU15 Studies. Eur. Urol. 2018, 73, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Francini, E.; Gray, K.P.; Xie, W.; Shaw, G.K.; Valenca, L.; Bernard, B.; Albiges, L.; Harshman, L.C.; Kantoff, P.W.; Taplin, M.E.; et al. Time of metastatic disease presentation and volume of disease are prognostic for metastatic hormone sensitive prostate cancer (mHSPC). Prostate 2018, 78, 889–895. [Google Scholar] [CrossRef]
- Gilson, C.; Ingleby, F.; Gilbert, D.C.; Parry, M.; Atako, N.B.; Mason, M.D.; Malik, Z.; Langley, R.E.; Simmons, A.; Loehr, A.; et al. Targeted next-generation sequencing (tNGS) of metastatic castrate-sensitive prostate cancer (M1 CSPC): A pilot molecular analysis in the STAMPEDE multi-center clinical trial. J. Clin. Oncol. 2019, 37, 5019. [Google Scholar] [CrossRef]
- Vandekerkhove, G.; Struss, W.J.; Annala, M.; Kallio, H.M.L.; Khalaf, D.; Warner, E.W.; Herberts, C.; Ritch, E.; Beja, K.; Loktionova, Y.; et al. Circulating Tumor DNA Abundance and Potential Utility in De Novo Metastatic Prostate Cancer. Eur. Urol. 2019, 75, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.H.; Pritchard, C.C.; Boyd, T.; Nelson, P.S.; Montgomery, B. Biallelic Inactivation of BRCA2 in Platinum-sensitive Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2016, 69, 992–995. [Google Scholar] [CrossRef]
- Kumar, A.; Coleman, I.; Morrissey, C.; Zhang, X.; True, L.D.; Gulati, R.; Etzioni, R.; Bolouri, H.; Montgomery, B.; White, T.; et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 2016, 22, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Mateo, J.; Carreira, S.; Sandhu, S.; Miranda, S.; Mossop, H.; Perez-Lopez, R.; Nava Rodrigues, D.; Robinson, D.; Omlin, A.; Tunariu, N.; et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N. Engl. J. Med. 2015, 373, 1697–1708. [Google Scholar] [CrossRef] [PubMed]
- Lynparza Phase III PROfound trial in HRR* Mutation-Selected Metastatic Castration-Resistant Prostate Cancer met Primary Endpoint. Available online: https://www.astrazeneca.com/media-centre/press-releases/2019/lynparza-phase-iii-profound-trial-in-hrr-mutation-selected-metastatic-castration-resistant-prostate-cancer-met-primary-endpoint-07082019.html (accessed on 3 September 2019).
- Castro, E.; Romero-Laorden, N.; Del Pozo, A.; Lozano, R.; Medina, A.; Puente, J.; Piulats, J.M.; Lorente, D.; Saez, M.I.; Morales-Barrera, R.; et al. PROREPAIR-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients with Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Abida, W.; Cheng, M.L.; Armenia, J.; Middha, S.; Autio, K.A.; Vargas, H.A.; Rathkopf, D.; Morris, M.J.; Danila, D.C.; Slovin, S.F.; et al. Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. JAMA Oncol. 2019, 5, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Bono, J.S.D.; Goh, J.C.; Ojamaa, K.; Rodriguez, J.M.P.; Drake, C.G.; Hoimes, C.J.; Wu, H.; Poehlein, C.H.; Antonarakis, E.S. KEYNOTE-199: Pembrolizumab (pembro) for docetaxel-refractory metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2018, 36 (Suppl. 15), 5007. [Google Scholar] [CrossRef]
- Wu, Y.M.; Cieslik, M.; Lonigro, R.J.; Vats, P.; Reimers, M.A.; Cao, X.; Ning, Y.; Wang, L.; Kunju, L.P.; de Sarkar, N.; et al. Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell 2018, 173, 1770–1782.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boysen, G.; Rodrigues, D.N.; Rescigno, P.; Seed, G.; Dolling, D.; Riisnaes, R.; Crespo, M.; Zafeiriou, Z.; Sumanasuriya, S.; Bianchini, D.; et al. SPOP-Mutated/CHD1-Deleted Lethal Prostate Cancer and Abiraterone Sensitivity. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 5585–5593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bono, J.S.; De Giorgi, U.; Rodrigues, D.N.; Massard, C.; Bracarda, S.; Font, A.; Arranz Arija, J.A.; Shih, K.C.; Radavoi, G.D.; Xu, N.; et al. Randomized Phase II Study Evaluating Akt Blockade with Ipatasertib, in Combination with Abiraterone, in Patients with Metastatic Prostate Cancer with and without PTEN Loss. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 928–936. [Google Scholar] [CrossRef]
- Wyatt, A.W.; Azad, A.A.; Volik, S.V.; Annala, M.; Beja, K.; McConeghy, B.; Haegert, A.; Warner, E.W.; Mo, F.; Brahmbhatt, S.; et al. Genomic Alterations in Cell-Free DNA and Enzalutamide Resistance in Castration-Resistant Prostate Cancer. JAMA Oncol. 2016, 2, 1598–1606. [Google Scholar] [CrossRef]
- Abida, W.; Cyrta, J.; Heller, G.; Prandi, D.; Armenia, J.; Coleman, I.; Cieslik, M.; Benelli, M.; Robinson, D.; Van Allen, E.M.; et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 11428–11436. [Google Scholar] [CrossRef] [Green Version]
- Merson, S.; Yang, Z.H.; Brewer, D.; Olmos, D.; Eichholz, A.; McCarthy, F.; Fisher, G.; Kovacs, G.; Berney, D.M.; Foster, C.S.; et al. Focal amplification of the androgen receptor gene in hormone-naive human prostate cancer. Br. J. Cancer 2014, 110, 1655–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, A.J.; Halabi, S.; Luo, J.; Nanus, D.M.; Giannakakou, P.; Szmulewitz, R.Z.; Danila, D.C.; Healy, P.; Anand, M.; Rothwell, C.J.; et al. Prospective Multicenter Validation of Androgen Receptor Splice Variant 7 and Hormone Therapy Resistance in High-Risk Castration-Resistant Prostate Cancer: The PROPHECY Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, E.S.; Lu, C.; Luber, B.; Wang, H.; Chen, Y.; Zhu, Y.; Silberstein, J.L.; Taylor, M.N.; Maughan, B.L.; Denmeade, S.R.; et al. Clinical Significance of Androgen Receptor Splice Variant-7 mRNA Detection in Circulating Tumor Cells of Men with Metastatic Castration-Resistant Prostate Cancer Treated with First- and Second-Line Abiraterone and Enzalutamide. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Saad, F.; Chowdhury, S.; Oudard, S.; Hadaschik, B.A.; Graff, J.N.; Olmos, D.; Mainwaring, P.N.; Lee, J.Y.; Uemura, H.; et al. Apalutamide Treatment and Metastasis-free Survival in Prostate Cancer. N. Engl. J. Med. 2018, 378, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration (FDA). Drugs Approved for Prostate Cancer. Available online: https://www.cancer.gov/about-cancer/treatment/drugs/prostate (accessed on 3 September 2019).
- Tannock, I.F.; de Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Theodore, C.; James, N.D.; Turesson, I.; et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 2004, 351, 1502–1512. [Google Scholar] [CrossRef] [PubMed]
- Gravis, G.; Boher, J.M.; Joly, F.; Soulie, M.; Albiges, L.; Priou, F.; Latorzeff, I.; Delva, R.; Krakowski, I.; Laguerre, B.; et al. Androgen Deprivation Therapy (ADT) Plus Docetaxel Versus ADT Alone in Metastatic Non castrate Prostate Cancer: Impact of Metastatic Burden and Long-term Survival Analysis of the Randomized Phase 3 GETUG-AFU15 Trial. Eur. Urol. 2016, 70, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Systemic Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Efficacy. Available online: https://ClinicalTrials.gov/show/NCT00268476 (accessed on 3 September 2019).
- James, N.D.; Sydes, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Spears, M.R.; Ritchie, A.W.; Parker, C.C.; Russell, J.M.; Attard, G.; et al. Addition of Docetaxel, Zoledronic Acid, or Both to First-Line Long-Term Hormone Therapy in Prostate Cancer (STAMPEDE): Survival Results from an Adaptive, Multiarm, Multistage, Platform Randomised Controlled Trial; Lancet: London, UK, 2016; Volume 387, pp. 1163–1177. [Google Scholar]
- Vale, C.L.; Burdett, S.; Rydzewska, L.H.M.; Albiges, L.; Clarke, N.W.; Fisher, D.; Fizazi, K.; Gravis, G.; James, N.D.; Mason, M.D.; et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: A systematic review and meta-analyses of aggregate data. Lancet Oncol. 2016, 17, 243–256. [Google Scholar] [CrossRef]
- De Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr.; Saad, F.; et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 2011, 364, 1995–2005. [Google Scholar] [CrossRef]
- James, N.D.; de Bono, J.S.; Spears, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Ritchie, A.W.S.; Amos, C.L.; Gilson, C.; Jones, R.J.; et al. Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. N. Engl. J. Med. 2017, 377, 338–351. [Google Scholar] [CrossRef]
- Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Ozguroglu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): Final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol. 2019, 20, 686–700. [Google Scholar] [CrossRef]
- Hoyle, A.P.; Ali, A.; James, N.D.; Cook, A.; Parker, C.C.; de Bono, J.S.; Attard, G.; Chowdhury, S.; Cross, W.R.; Dearnaley, D.P.; et al. Abiraterone in “High-” and “Low-risk” Metastatic Hormone-sensitive Prostate Cancer. Eur. Urol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Fizazi, K.; Saad, F.; Rathenborg, P.; Shore, N.; Ferreira, U.; Ivashchenko, P.; Demirhan, E.; Modelska, K.; Phung, D.; et al. Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2018, 378, 2465–2474. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.J.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Azad, A.; Alcaraz, A.; Alekseev, B.; Iguchi, T.; Shore, N.D.; et al. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy with Enzalutamide or Placebo in Men with Metastatic Hormone-Sensitive Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Davis, I.D.; Martin, A.J.; Stockler, M.R.; Begbie, S.; Chi, K.N.; Chowdhury, S.; Coskinas, X.; Frydenberg, M.; Hague, W.E.; Horvath, L.G.; et al. Enzalutamide with Standard First-Line Therapy in Metastatic Prostate Cancer. N. Engl. J. Med. 2019, 381, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Agarwal, N.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Juarez Soto, A.; Merseburger, A.S.; Ozguroglu, M.; Uemura, H.; et al. Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2019, 381, 13–24. [Google Scholar] [CrossRef]
- Saad, F.; Gleason, D.M.; Murray, R.; Tchekmedyian, S.; Venner, P.; Lacombe, L.; Chin, J.L.; Vinholes, J.J.; Goas, J.A.; Zheng, M. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J. Natl. Cancer Inst. 2004, 96, 879–882. [Google Scholar] [CrossRef]
- Fizazi, K.; Carducci, M.; Smith, M.; Damiao, R.; Brown, J.; Karsh, L.; Milecki, P.; Shore, N.; Rader, M.; Wang, H.; et al. Denosumab Versus Zoledronic Acid for Treatment of Bone Metastases in Men with Castration-Resistant Prostate Cancer: A Randomised, Double-Blind Study; Lancet: London, UK, 2011; Volume 377, pp. 813–822. [Google Scholar]
- Parker, C.C.; James, N.D.; Brawley, C.D.; Clarke, N.W.; Hoyle, A.P.; Ali, A.; Ritchie, A.W.S.; Attard, G.; Chowdhury, S.; Cross, W.; et al. Systemic Therapy for Advanced or Metastatic Prostate cancer: Evaluation of Drug Efficacy, i., Radiotherapy to the Primary Tumor for Newly Diagnosed, Metastatic Prostate Cancer (STAMPEDE): A Randomised Controlled Phase 3 Trial; Lancet: London, UK, 2018; Volume 392, pp. 2353–2366. [Google Scholar]
- Smith, M.R.; Halabi, S.; Ryan, C.J.; Hussain, A.; Vogelzang, N.; Stadler, W.; Hauke, R.J.; Monk, J.P.; Saylor, P.; Bhoopalam, N.; et al. Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: Results of CALGB 90202 (alliance). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 1143–1150. [Google Scholar] [CrossRef]
- Dearnaley, D.P.; Sydes, M.R.; Mason, M.D.; Stott, M.; Powell, C.S.; Robinson, A.C.; Thompson, P.M.; Moffat, L.E.; Naylor, S.L.; Parmar, M.K. A double-blind, placebo-controlled, randomized trial of oral sodium clodronate for metastatic prostate cancer (MRC PR05 Trial). J. Natl. Cancer Inst. 2003, 95, 1300–1311. [Google Scholar] [CrossRef]
- Dearnaley, D.P.; Mason, M.D.; Parmar, M.K.; Sanders, K.; Sydes, M.R. Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: Long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol. 2009, 10, 872–876. [Google Scholar] [CrossRef]
- Fizazi, K.; Shore, N.; Tammela, T.L.; Ulys, A.; Vjaters, E.; Polyakov, S.; Jievaltas, M.; Luz, M.; Alekseev, B.; Kuss, I.; et al. Darolutamide in Nonmetastatic, Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2019, 380, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- ODM-201 in Addition to Standard ADT and Docetaxel in Metastatic Castration Sensitive Prostate Cancer. Available online: https://ClinicalTrials.gov/show/NCT02799602 (accessed on 3 September 2019).
- Attard, G.; Sydes, M.R.; Mason, M.D.; Clarke, N.W.; Aebersold, D.; de Bono, J.S.; Dearnaley, D.P.; Parker, C.C.; Ritchie, A.W.; Russell, J.M.; et al. Combining enzalutamide with abiraterone, prednisone, and androgen deprivation therapy in the STAMPEDE trial. Eur. Urol. 2014, 66, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Gillessen, S.; Gilson, C.; James, N.; Adler, A.; Sydes, M.R.; Clarke, N. Repurposing Metformin as Therapy for Prostate Cancer within the STAMPEDE Trial Platform. Eur. Urol. 2016, 70, 906–908. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.C.; Duong, T.; Sydes, M.; Bara, A.; Clarke, N.; Abel, P.; James, N.; Langley, R.; Parmar, M. Transdermal oestradiol as a method of androgen suppression for prostate cancer within the STAMPEDE trial platform. BJU Int. 2018, 121, 680–683. [Google Scholar] [CrossRef] [PubMed]
- A Phase III Study for Patients with Metastatic Hormone-naïve Prostate Cancer. Available online: https://ClinicalTrials.gov/show/NCT01957436 (accessed on 3 September 2019).
- Cattrini, C.; Zanardi, E.; Vallome, G.; Cavo, A.; Cerbone, L.; Di Meglio, A.; Fabbroni, C.; Latocca, M.M.; Rizzo, F.; Messina, C.; et al. Targeting androgen-independent pathways: New chances for patients with prostate cancer? Crit. Rev. Oncol./Hematol. 2017, 118, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Wester, H.J.; Schottelius, M. PSMA-Targeted Radiopharmaceuticals for Imaging and Therapy. Semin. Nucl. Med. 2019, 49, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Bhindi, B.; Abel, E.J.; Albiges, L.; Bensalah, K.; Boorjian, S.A.; Daneshmand, S.; Karam, J.A.; Mason, R.J.; Powles, T.; Bex, A. Systematic Review of the Role of Cytoreductive Nephrectomy in the Targeted Therapy Era and Beyond: An Individualized Approach to Metastatic Renal Cell Carcinoma. Eur. Urol. 2019, 75, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Boeve, L.M.S.; Hulshof, M.; Vis, A.N.; Zwinderman, A.H.; Twisk, J.W.R.; Witjes, W.P.J.; Delaere, K.P.J.; Moorselaar, R.; Verhagen, P.; van Andel, G. Effect on Survival of Androgen Deprivation Therapy Alone Compared to Androgen Deprivation Therapy Combined with Concurrent Radiation Therapy to the Prostate in Patients with Primary Bone Metastatic Prostate Cancer in a Prospective Randomised Clinical Trial: Data from the HORRAD Trial. Eur. Urol. 2019, 75, 410–418. [Google Scholar]
- Satkunasivam, R.; Kim, A.E.; Desai, M.; Nguyen, M.M.; Quinn, D.I.; Ballas, L.; Lewinger, J.P.; Stern, M.C.; Hamilton, A.S.; Aron, M.; et al. Radical Prostatectomy or External Beam Radiation Therapy vs No Local Therapy for Survival Benefit in Metastatic Prostate Cancer: A SEER-Medicare Analysis. J. Urol. 2015, 194, 378–385. [Google Scholar] [CrossRef] [Green Version]
- Loppenberg, B.; Dalela, D.; Karabon, P.; Sood, A.; Sammon, J.D.; Meyer, C.P.; Sun, M.; Noldus, J.; Peabody, J.O.; Trinh, Q.D.; et al. The Impact of Local Treatment on Overall Survival in Patients with Metastatic Prostate Cancer on Diagnosis: A National Cancer Data Base Analysis. Eur. Urol. 2017, 72, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Leyh-Bannurah, S.R.; Gazdovich, S.; Budaus, L.; Zaffuto, E.; Briganti, A.; Abdollah, F.; Montorsi, F.; Schiffmann, J.; Menon, M.; Shariat, S.F.; et al. Local Therapy Improves Survival in Metastatic Prostate Cancer. Eur. Urol. 2017, 72, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Steuber, T.; Berg, K.D.; Roder, M.A.; Brasso, K.; Iversen, P.; Huland, H.; Tiebel, A.; Schlomm, T.; Haese, A.; Salomon, G.; et al. Does Cytoreductive Prostatectomy Really Have an Impact on Prognosis in Prostate Cancer Patients with Low-volume Bone Metastasis? Results from a Prospective Case-Control Study. Eur. Urol. Focus 2017, 3, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Poelaert, F.; Verbaeys, C.; Rappe, B.; Kimpe, B.; Billiet, I.; Plancke, H.; Decaestecker, K.; Fonteyne, V.; Buelens, S.; Lumen, N. Cytoreductive Prostatectomy for Metastatic Prostate Cancer: First Lessons Learned from the Multicentric Prospective Local Treatment of Metastatic Prostate Cancer (LoMP) Trial. Urology 2017, 106, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Fraser, M.; Koontz, B.; Emmenegger, U.; De Meerleer, G.; Khoo, V.; Feng, F.; Corcoran, N.M.; Hovens, C.M.; Tran, P.T.; Ost, P.; et al. What Is Oligometastatic Prostate Cancer? Eur. Urol. Focus 2019, 5, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.C.; Weichselbaum, R.R.; Pitroda, S.P. Oligometastatic prostate cancer: Reality or figment of imagination? Cancer 2019, 125, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Ost, P.; Reynders, D.; Decaestecker, K.; Fonteyne, V.; Lumen, N.; De Bruycker, A.; Lambert, B.; Delrue, L.; Bultijnck, R.; Claeys, T.; et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 446–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattrini, C.; Zanardi, E.; Boccardo, F. Androgen-Deprivation Therapy Is More Than Palliation in Oligometastatic Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2350. [Google Scholar] [CrossRef]
- Tran, P.; Radwan, N.; Phillips, R.; Ross, A.; Rowe, S.; Gorin, M.; Antonarakis, E.; DeVille, C.; Greco, S.; Denmeade, S.; et al. OC-0505: Interim results of a randomized trial of observation versus SABR for oligometastatic prostate cancer. Radiother. Oncol. 2018, 127, S261. [Google Scholar] [CrossRef]
- Vale, C.L.; Fisher, D.J.; White, I.R.; Carpenter, J.R.; Burdett, S.; Clarke, N.W.; Fizazi, K.; Gravis, G.; James, N.D.; Mason, M.D.; et al. What is the optimal systemic treatment of men with metastatic, hormone-naive prostate cancer? A STOPCAP systematic review and network meta-analysis. Ann. Oncol. Off. J. Eur. Soc. Med Oncol. 2018, 29, 1249–1257. [Google Scholar] [CrossRef]
- Sydes, M.R.; Spears, M.R.; Mason, M.D.; Clarke, N.W.; Dearnaley, D.P.; de Bono, J.S.; Attard, G.; Chowdhury, S.; Cross, W.; Gillessen, S.; et al. Adding abiraterone or docetaxel to long-term hormone therapy for prostate cancer: Directly randomised data from the STAMPEDE multi-arm, multi-stage platform protocol. Ann. Oncol. Off. J. Eur. Soc. Med Oncol. 2018, 29, 1235–1248. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, A.P.; Ali, S.A.; James, N.D.; Parker, C.C.; Cook, A.D.; Attard, G.; Chowdhury, S.; Cross, W.; Dearnaley, D.P.; de Bono, J.S.; et al. Role of Abiraterone Acetate + Prednisolone + ADT in High and Low Risk Metastatic Hormone Naïve Prostate Cancer. Ann. Oncol. 2018, 29 (Suppl. 8). [Google Scholar] [CrossRef]
- Feyerabend, S.; Saad, F.; Li, T.; Ito, T.; Diels, J.; Van Sanden, S.; De Porre, P.; Roiz, J.; Abogunrin, S.; Koufopoulou, M.; et al. Survival benefit, disease progression and quality-of-life outcomes of abiraterone acetate plus prednisone versus docetaxel in metastatic hormone-sensitive prostate cancer: A network meta-analysis. Eur. J. Cancer 2018, 103, 78–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slovin, S.; Clark, W.; Carles, J.; Krivoshik, A.; Park, J.W.; Wang, F.; George, D. Seizure Rates in Enzalutamide-Treated Men with Metastatic Castration-Resistant Prostate Cancer and Risk of Seizure: The UPWARD Study. JAMA Oncol. 2018, 4, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Morgans, A.K.; Chen, Y.H.; Sweeney, C.J.; Jarrard, D.F.; Plimack, E.R.; Gartrell, B.A.; Carducci, M.A.; Hussain, M.; Garcia, J.A.; Cella, D.; et al. Quality of Life During Treatment with Chemohormonal Therapy: Analysis of E3805 Chemohormonal Androgen Ablation Randomized Trial in Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Protheroe, A.; Rodriguez-Antolin, A.; Facchini, G.; Suttman, H.; Matsubara, N.; Ye, Z.; Keam, B.; Damiao, R.; Li, T.; et al. Patient-reported outcomes following abiraterone acetate plus prednisone added to androgen deprivation therapy in patients with newly diagnosed metastatic castration-naive prostate cancer (LATITUDE): An international, randomised phase 3 trial. Lancet Oncol. 2018, 19, 194–206. [Google Scholar] [CrossRef]
- Sathianathen, N.J.; Alarid-Escudero, F.; Kuntz, K.M.; Lawrentschuk, N.; Bolton, D.M.; Murphy, D.G.; Kim, S.P.; Konety, B.R. A Cost-effectiveness Analysis of Systemic Therapy for Metastatic Hormone-sensitive Prostate Cancer. Eur. Urol. Oncol 2019. [Google Scholar] [CrossRef] [PubMed]
- Szmulewitz, R.Z.; Peer, C.J.; Ibraheem, A.; Martinez, E.; Kozloff, M.F.; Carthon, B.; Harvey, R.D.; Fishkin, P.; Yong, W.P.; Chiong, E.; et al. Prospective International Randomized Phase II Study of Low-Dose Abiraterone with Food Versus Standard Dose Abiraterone in Castration-Resistant Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
CHAARTED criteria [6] | Visceral Metastases AND/OR ≥4 Bone Lesions (with ≥1 beyond the Vertebral Bodies and Pelvis) |
LATITUDE criteria [16] | ≥2 high-risk features ≥3 bone metastases visceral metastases Gleason ≥ 8 |
Drug | Mechanism of Action | Administration |
---|---|---|
Agents with approval for the treatment of mHSPC | ||
LH-RH agonists and antagonists | Inhibition of LH and FSH release | IM/SC every 30, 90 or 180 days |
alone or in combination with: | ||
1st generation antiandrogens
| 1st generation nonsteroidal antiandrogens | Continuous oral
|
Docetaxel | Microtubule assembly inhibitor | 75 mg/m2 IV 3-weekly for six cycles |
Abiraterone acetate | Androgen biosynthesis inhibitor | Continuous oral 1000 mg daily with prednisone 10 mg daily |
Enzalutamide | 2nd generation antiandrogen | Continuous oral 160 mg daily |
Apalutamide | 2nd generation antiandrogen | Continuous oral 240 mg daily |
Agents with approval for other prostate cancer settings | ||
Cabazitaxel | Microtubule assembly inhibitor | IV 3-weekly up to 10 cycles 20/25 mg/m2 |
Darolutamide | 2nd generation antiandrogen | Continuous oral 1200 mg daily |
Radium 223 dichloride | α-emitting radionuclide | IV 4-weekly for six doses 55 kBq/Kg |
Sipuleucel-T | Cancer vaccine | IV 2-weekly for three infusions |
Bone-targeting agents
|
|
|
Mitoxantrone | Topoisomerase II inhibitor | IV 3-weekly 12 mg/m2 |
Estramustine phosphate | Alkylating and estrogenic activity | Continuous oral 14 mg/kg |
STUDY CHARACTERISTICS | GETUG-AFU 15 | CHAARTED | STAMPEDE | LATITUDE | STAMPEDE | ARCHES | ENZAMET | TITAN | HORRAD | STAMPEDE | |
---|---|---|---|---|---|---|---|---|---|---|---|
Docetaxel | Docetaxel | Docetaxel | Abiraterone | Abiraterone | Enzalutamide | Enzalutamide | Apalutamide | Radiotherapy | Radiotherapy | ||
STUDY DESIGN | Inclusion criteria | mHSPC | mHSPC | High-risk, locally-advanced or mHSPC | Newly diagnosed high-risk mHSPC | High-risk, locally-advanced or mHSPC | mHSPC | mHSPC | mHSPC | Untreated bone mHSPC | Newly diagnosed mHSPC |
Stratification factors | Treatment for primary tumor, systemic therapy for PSA relapse, Glass risk groups | Age, PS, planned use of CAB or bone-agents, duration of prior ADT, HV/LV | Hospital, age, M1, N1, PS, planned ADT or RT, use of aspirin or NSAIDs | Measurable visceral disease, PS | Hospital, age, M1, N1, PS, planned ADT or RT, use of aspirin or NSAIDs | HV/LV, prior docetaxel | HV/LV, planned docetaxel, planned bone-agents, comorbidity score, site | Gleason score, geographic region, prior docetaxel use | None | Hospital, age N1, PS, planned ADT, use of aspirin or NSAIDs, planned docetaxel | |
Primary endpoint | OS | OS | OS | OS | OS | rPFS | OS | OS and rPFS | OS | OS | |
POPULATION | Patients (n = exper/placebo) | 192/193 | 397/393 | 592/1184 | 597/602 | 960/957 | 574/576 | 563/562 | 525/527 | 216/216 | 1032/1029 |
Age (years) | 63/64 | 64/63 | 65/65 | 68/67 | 67/67 | 70/70 | 69/69 | 69/68 | 67/67 | 68/68 | |
Gleason > 7 (%) | 55/59 | 61/62 | 74/68 | 98/97 | 74/75 | 67/65 | 60/57 | 67/68 | 65/66 | 82/83 | |
Prior radical treatment (%) | 33/24 | 27/27 | 3/3 in M1 | 0/0 | 4/3 in M1 | 25/28 | 42/42 | 18/15 | 0/0 | 0/0 | |
M1 (%) | 100/100 | 100/100 | 62/61 | 100/100 | 52/53 | 93/92 | 100/100 | 100/100 | 100/100 | 100/100 | |
High volume (%) | 48/47 | 66/64 | NR | 82/78 | 55.4% in M1 | 62/65 | 52/53 | 62/64 | NR | 57/58 | |
Median PSA (ng/mL) | 27/26 | 51/52 | 70/67 | NR | 51/56 | 5/5 | NR | 6/4 | 125/149 | 97/98 | |
Median FU (mo) | 84 † | 54 † | 43 | 52 † | 40 | 14 | 34 | 23 | 47 | 37 | |
EFFICACY | OS | 62.1/48.6 mo HR: 0.88 (0.68–1.14) | 57.6/47.2 mo HR: 0.72 (0.59–0.89) | HR: 0.78 (0.66–0.93) M1: HR: 0.76 (0.62–0.92) | 53.3/36.5 mo HR: 0.66 (0.56–0.78) | HR: 0.63 (0.52-0.76) M1: HR: 0.61 (0.49–0.51) | NE/NE HR: 0.81 (0.53–1.25) * | NE/NE HR: 0.67 (0.52–0.86) | NE/NE HR: 0.67 (0.51–0.89) | 45/43 mo HR: 0.90 (0.70–1.14) | 42.5/41.6 mo HR: 0.92 (0.80–1.06) |
OS HV♦ | 39.8/35.1 mo HR: 0.78 (0.56–1.09) | 51.2/34.4 mo HR: 0.63 (0.50–0.79) | NR | 49.7/33.3 mo HR: 0.62 (0.52–0.74) | HR: 0.60 (0.46–0.78) | NR | HR: 0.80 (0.59–1.07) | NE/NE HR: 0.68 (0.50–0.92) | ≥5 bone M1 HR: 1.06 (0.80–1.39) | 37.6/38.8 mo HR: 1.07 (0.90–1.28) | |
OS LV♦ | NE/83.4 mo HR: 1.02 (0.67–1.55) | 63.5/NE HR: 1.04 (0.70–1.55) | NR | NE/NE HR: 0.72 (0.47–1.10) | HR: 0.64 (0.42-0.97) | NR | HR: 0.43 (0.26–0.72) | NE/NE HR: 0.67 (0.34–1.32) | <5 bone M1 HR: 0.68 (0.42–1.10) | 49.1/45.4 mo HR: 0.68 (0.52–0.90) | |
SAFETY | Most frequent ≥3 AEs in experimental arm | Neutropenia (32%), febrile neutropenia (7%), fatigue (7%) | Neutropenia (12%), febrile neutropenia (6%), fatigue (4%) | Neutropenia (12%), febrile neutropenia (15%), general (7%) and GI disorder (8%) | Hypertension (21%), hypokalemia (12%), ALT (5%) AST (4%) increase | Hypertension (5%), CV disorder (10%), hepatic disorder (7%) | Hypertension (3%) | Hypertension (8%), neutropenia (6%), fatigue (6%), syncope (4%) | Rash (6%), asthenia (2%) | NR | Overall 5% |
Ref | [12,39] | [6,15] | [41] | [16,45] | [44] | [50] | [51] | [52] | [68] | [55] |
Benefit in trial endpoints | Overall Survival and Cancer-Specific Survival |
Time to Castration-Resistance, PSA Progression-Free Survival (PSA-PFS), Radiographic Progression-Free Survival (rPFS) and Progression-Free Survival (PFS) | |
Quality of Life (QoL) | |
Disease characteristics | Disease volume and risk |
Gleason score | |
Presence of visceral metastasis | |
Localization of bone metastasis (appendicular or axial skeleton) | |
Timing of metastatic disease (de novo or recurrence) | |
Oligometastatic disease | |
Patient characteristics | Age |
Performance status | |
Concurrent comorbidities | |
Preference for oral or IV agent | |
Pain score | |
Specific alterations | Alterations in DNA repair pathway (BRCA1/2, PALB2, ATM loss, CDK12 loss) |
RB1 loss | |
AR aberrations (AR gain, AR-V7 expression) | |
PTEN loss | |
SPOP mutations | |
Mismatch repair defects (MMR) | |
Laboratory values | Phosphatase alkaline (ALP) |
Lactate dehydrogenase (LDH) | |
CTC count | |
PSA kinetics | |
Drug characteristics | Specific side effects |
Duration of treatment | |
Mechanism of action | |
Costs | |
Route of administration |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattrini, C.; Castro, E.; Lozano, R.; Zanardi, E.; Rubagotti, A.; Boccardo, F.; Olmos, D. Current Treatment Options for Metastatic Hormone-Sensitive Prostate Cancer. Cancers 2019, 11, 1355. https://doi.org/10.3390/cancers11091355
Cattrini C, Castro E, Lozano R, Zanardi E, Rubagotti A, Boccardo F, Olmos D. Current Treatment Options for Metastatic Hormone-Sensitive Prostate Cancer. Cancers. 2019; 11(9):1355. https://doi.org/10.3390/cancers11091355
Chicago/Turabian StyleCattrini, Carlo, Elena Castro, Rebeca Lozano, Elisa Zanardi, Alessandra Rubagotti, Francesco Boccardo, and David Olmos. 2019. "Current Treatment Options for Metastatic Hormone-Sensitive Prostate Cancer" Cancers 11, no. 9: 1355. https://doi.org/10.3390/cancers11091355
APA StyleCattrini, C., Castro, E., Lozano, R., Zanardi, E., Rubagotti, A., Boccardo, F., & Olmos, D. (2019). Current Treatment Options for Metastatic Hormone-Sensitive Prostate Cancer. Cancers, 11(9), 1355. https://doi.org/10.3390/cancers11091355