Cytokine Profile in Lung Cancer Patients: Anti-Tumor and Oncogenic Cytokines
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Lung Cancer
1.2. Tumor Microenvironment and Content: Their Contribution to NSCLC Metastasis
2. Basic Properties of Cytokines
2.1. Classification of Cytokines and Their Receptors
2.1.1. Type I Cytokine Receptors
2.1.2. Type II Cytokine Receptors
2.1.3. Immunoglobulin Superfamily Receptors
3. The Role of Cytokines in Immunotherapy and Cancer
- i.
- IL-1:
- ii.
- IL-2:
- iii.
- IL-3:
- iv.
- IL-4:
- v.
- IL-5:
- vi.
- IL-6:
- vii.
- IL-7:
- viii.
- IL-8:
- ix.
- IL-10:
- x.
- IL-12:
- xi.
- IL-15:
- xii.
- IL-18:
- xiii.
- IL-21:
- xiv.
- IL-23:
- xv.
- GM-CSF:
- xvi.
- IFN-α:
- xvii.
- IFN-γ:
- xviii.
- TGF-β:
4. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bezel, P.; Valaperti, A.; Steiner, U.; Scholtze, D.; Wieser, S.; Vonow-Eisenring, M.; Widmer, A.; Kowalski, B.; Kohler, M.; Franzen, D.P. Evaluation of cytokines in the tumor microenvironment of lung cancer using bronchoalveolar lavage fluid analysis. Cancer Immunol. Immunother. 2021, 70, 1867–1876. [Google Scholar] [CrossRef]
- Lan, T.; Chen, L.; Wei, X. Inflammatory Cytokines in Cancer: Comprehensive Understanding and Clinical Progress in Gene Therapy. Cells 2021, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Kuner, R. Lung Cancer Gene Signatures and Clinical Perspectives. Microarrays 2013, 2, 318–339. [Google Scholar] [CrossRef]
- Haddad, M.; Sharma, S. Physiology, Lung. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK545177/ (accessed on 8 October 2023).
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Khodabakhshi, Z.; Mostafaei, S.; Arabi, H.; Oveisi, M.; Shiri, I.; Zaidi, H. Non-small cell lung carcinoma histopathological subtype phenotyping using high-dimensional multinomial multiclass CT radiomics signature. Comput. Biol. Med. 2021, 136, 104752. [Google Scholar] [CrossRef] [PubMed]
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016, 5, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Lococo, F.; Paci, M.; Rapicetta, C.; Rossi, T.; Sancisi, V.; Braglia, L.; Cavuto, S.; Bisagni, A.; Bongarzone, I.; Noonan, D.; et al. Preliminary Evidence on the Diagnostic and Molecular Role of Circulating Soluble EGFR in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2015, 16, 19612–19630. [Google Scholar] [CrossRef]
- Shi, S.; Wang, H.; Liu, X.; Xiao, J. Prediction of overall survival of non-small cell lung cancer with bone metastasis: An analysis of the Surveillance, Epidemiology and End Results (SEER) database. Transl. Cancer Res. 2021, 10, 5191–5203. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef]
- Belderbos, J.; Sonke, J.J. State-of-the-art lung cancer radiation therapy. Expert Rev. Anticancer Ther. 2009, 9, 1353–1363. [Google Scholar] [CrossRef]
- Sunil Gowda, S.N.; Raviraj, R.; Nagarajan, D.; Zhao, W. Radiation-induced lung injury: Impact on macrophage dysregulation and lipid alteration—A review. Immunopharmacol. Immunotoxicol. 2019, 41, 370–379. [Google Scholar]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget 2017, 8, 38022–38043. [Google Scholar] [CrossRef]
- Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008, 27, 5904–5912. [Google Scholar] [CrossRef]
- Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immunol. 2010, 125, S3–S23. [Google Scholar] [CrossRef]
- Aristizábal, B.; González, Á. Innate Immune System. In Autoimmunity: From Bench to Bedside; El Rosario University Press: Bogotá, Colombia, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459455/ (accessed on 23 September 2023).
- Swain, S.L.; McKinstry, K.K.; Strutt, T.M. Expanding Roles for CD4+ T Cells in Immunity to Viruses. Nat. Rev. Immunol. 2012, 12, 136–148. [Google Scholar] [CrossRef]
- Cano, R.L.E.; Lopera, H.D.E. Introduction to T and B lymphocytes. In Autoimmunity: From Bench to Bedside; El Rosario University Press: Bogotá, Colombia, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459471/ (accessed on 23 September 2023).
- Moudgil, K.D.; Choubey, D. Cytokines in Autoimmunity: Role in Induction, Regulation, and Treatment. J. Interferon Cytokine Res. 2011, 31, 695–703. [Google Scholar] [CrossRef]
- Ramachandran, S.; Verma, A.K.; Dev, K.; Goyal, Y.; Bhatt, D.; Alsahli, M.A.; Rahmani, A.H.; Almatroudi, A.; Almatroodi, S.A.; Alrumaihi, F.; et al. Role of Cytokines and Chemokines in NSCLC Immune Navigation and Proliferation. Oxid. Med. Cell. Longev. 2021, 2021, 5563746. [Google Scholar] [CrossRef]
- Weiskopf, K.; Weissman, I.L. Macrophages are critical effectors of antibody therapies for cancer. mAbs 2015, 7, 303–310. [Google Scholar] [CrossRef]
- Metastatic Cancer: When Cancer Spreads. NCI. Available online: https://www.cancer.gov/types/metastatic-cancer (accessed on 23 September 2023).
- Costello, L.C.; Franklin, R.B. The genetic/metabolic transformation concept of carcinogenesis. Cancer Metastasis Rev. 2012, 31, 123–130. [Google Scholar] [CrossRef]
- Larsen, J.E.; Minna, J.D. Molecular Biology of Lung Cancer: Clinical Implications. Clin. Chest Med. 2011, 32, 703–740. [Google Scholar] [CrossRef]
- Paijens, S.T.; Vledder, A.; De Bruyn, M.; Nijman, H.W. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell. Mol. Immunol. 2021, 18, 842–859. [Google Scholar] [CrossRef]
- Lee, S.; Margolin, K. Cytokines in Cancer Immunotherapy. Cancers 2011, 3, 3856–3893. [Google Scholar] [CrossRef]
- Morán, G.A.G.; Parra-Medina, R.; Cardona, A.G.; Quintero-Ronderos, P.; Rodríguez, É.G. Cytokines, chemokines and growth factors. In Autoimmunity: From Bench to Bedside; El Rosario University Press: Bogotá, Colombia, 2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459450/ (accessed on 25 September 2023).
- Arango Duque, G.; Descoteaux, A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef] [PubMed]
- Pro-Inflammatory Cytokines Overview. RU. Available online: https://www.thermofisher.com/ru/ru/home/life-science/cell-analysis/cell-analysis-learning-center/immunology-at-work/proinflammatory-cytokines-overview.html (accessed on 25 September 2023).
- Floss, D.M.; Moll, J.M.; Scheller, J. IL-12 and IL-23—Close Relatives with Structural Homologies but Distinct Immunological Functions. Cells 2020, 9, 2184. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-X.; Leonard, W.J. The Common Cytokine Receptor γ Chain Family of Cytokines. Cold Spring Harb. Perspect. Biol. 2018, 10, a028449. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.; Kershaw, N.J.; Babon, J.J. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018, 27, 1984–2009. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Hou, T.; Tieu, B.; Ray, S.; Recinos Iii, A.; Cui, R.; Tilton, R.; Brasier, A. Roles of IL-6-gp130 Signaling in Vascular Inflammation. Curr. Cardiol. Rev. 2008, 4, 179–192. [Google Scholar] [CrossRef]
- Jones, G.W.; Hill, D.G.; Cardus, A.; Jones, S.A. IL-27: A double agent in the IL-6 family. Clin. Exp. Immunol. 2018, 193, 37–46. [Google Scholar] [CrossRef]
- Nicola, N.A.; Babon, J.J. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 2015, 26, 533–544. [Google Scholar] [CrossRef]
- Blanchard, F.; Duplomb, L.; Wang, Y.; Robledo, O.; Kinzie, E.; Pitard, V.; Godard, A.; Jacques, Y.; Baumannt, H. Stimulation of Leukemia Inhibitory Factor Receptor Degradation by Extracellular Signal-regulated Kinase. J. Biol. Chem. 2000, 275, 28793–28801. [Google Scholar] [CrossRef]
- Mousa, A.; Bakhiet, M. Role of Cytokine Signaling during Nervous System Development. Int. J. Mol. Sci. 2013, 14, 13931–13957. [Google Scholar] [CrossRef]
- Dougan, M.; Dranoff, G.; Dougan, S.K. GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of Inflammation. Immunity 2019, 50, 796–811. [Google Scholar] [CrossRef]
- Hercus, T.R.; Kan, W.L.T.; Broughton, S.E.; Tvorogov, D.; Ramshaw, H.S.; Sandow, J.J.; Nero, T.L.; Dhagat, U.; Thompson, E.J.; Shing, K.S.C.T.; et al. Role of the β Common (βc) Family of Cytokines in Health and Disease. Cold Spring Harb. Perspect. Biol. 2018, 10, a028514. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, K.; Saharinen, P.; Pesu, M.; Holt, V.E.; Silvennoinen, O.; O’Shea, J.J. The Janus kinases (Jaks). Genome Biol. 2004, 5, 253. [Google Scholar] [CrossRef] [PubMed]
- Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodríguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 2019, 120, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Parida, P. Interferon Therapy in Lung Cancer: Current Perspectives. Curr. Cancer Ther. Rev. 2017, 12, 237–245. [Google Scholar] [CrossRef]
- Loreto, C.; Caltabiano, R.; Graziano, A.C.E.; Castorina, S.; Lombardo, C.; Filetti, V.; Vitale, E.; Rapisarda, G.; Cardile, V.; Ledda, C.; et al. Defense and protection mechanisms in lung exposed to asbestiform fiber: The role of macrophage migration inhibitory factor and heme oxygenase-1. Eur. J. Histochem. 2020, 64, 3073. [Google Scholar] [CrossRef]
- Boersma, B.; Jiskoot, W.; Lowe, P.; Bourquin, C. The interleukin-1 cytokine family members: Role in cancer pathogenesis and potential therapeutic applications in cancer immunotherapy. Cytokine Growth Factor Rev. 2021, 62, 1–14. [Google Scholar] [CrossRef]
- Mantovani, A.; Dinarello, C.A.; Molgora, M.; Garlanda, C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity 2019, 50, 778–795. [Google Scholar] [CrossRef]
- Garon, E.B.; Chih-Hsin Yang, J.; Dubinett, S.M. The Role of Interleukin 1β in the Pathogenesis of Lung Cancer. JTO Clin. Res. Rep. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Interleukin-2 (IL2) for Metastatic Melanoma. Melanoma Research Alliance. Available online: https://www.curemelanoma.org/patient-eng/melanoma-treatment/immunotherapy/interleukin-2-il-2-proleukin/ (accessed on 27 September 2023).
- Han, L.; Jiang, Q.; Yao, W.; Fu, T.; Zeng, Q. Thoracic injection of low-dose interleukin-2 as an adjuvant therapy improves the control of the malignant pleural effusions: A systematic review and meta-analysis base on Chinese patients. BMC Cancer 2018, 18, 725. [Google Scholar] [CrossRef] [PubMed]
- Interleukin 3—An Overview. ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/neuroscience/interleukin-3 (accessed on 27 September 2023).
- Mangi, M.H.; Newland, A.C. Interleukin-3: Promises and Perspectives. Hematology 1998, 3, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Interleukin 3. Wikipedia. 2023. Available online: https://en.wikipedia.org/w/index.php?title=Interleukin_3&oldid=1172236065 (accessed on 27 September 2023).
- Kwaśniak, K.; Czarnik-Kwaśniak, J.; Maziarz, A.; Aebisher, D.; Zielińska, K.; Karczmarek-Borowska, B.; Tabarkiewicz, J. Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor on cancer cells. Cent. Eur. J. Immunol. 2019, 44, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Mirlekar, B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med. 2022, 10, 205031212110690. [Google Scholar] [CrossRef]
- Setrerrahmane, S.; Xu, H. Tumor-related interleukins: Old validated targets for new anti-cancer drug development. Mol. Cancer 2017, 16, 153. [Google Scholar] [CrossRef]
- Zhao, Q.; Bi, Y.; Sun, H.; Xiao, M. Serum IL-5 and IFN-γ Are Novel Predictive Biomarkers for Anti-PD-1 Treatment in NSCLC and GC Patients. Dis. Markers 2021, 2021, 5526885. [Google Scholar] [CrossRef]
- Ikutani, M.; Yanagibashi, T.; Ogasawara, M.; Tsuneyama, K.; Yamamoto, S.; Hattori, Y.; Kouro, T.; Itakura, A.; Nagai, Y.; Takaki, S.; et al. Identification of Innate IL-5–Producing Cells and Their Role in Lung Eosinophil Regulation and Antitumor Immunity. J. Immunol. 2012, 188, 703–713. [Google Scholar] [CrossRef]
- Rašková, M.; Lacina, L.; Kejík, Z.; Venhauerová, A.; Skaličková, M.; Kolář, M.; Jakubek, M.; Rosel, D.; Smetana, K.; Brábek, J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis—Overview and Therapeutic Opportunities. Cells 2022, 11, 3698. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Interleukin (IL-6) Immunotherapy. Cold Spring Harb. Perspect. Biol. 2018, 10, a028456. [Google Scholar] [CrossRef]
- Wang, C.; Kong, L.; Kim, S.; Lee, S.; Oh, S.; Jo, S.; Jang, I.; Kim, T.-D. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int. J. Mol. Sci. 2022, 23, 10412. [Google Scholar] [CrossRef]
- Lin, J.; Zhu, Z.; Xiao, H.; Wakefield, M.R.; Ding, V.A.; Bai, Q.; Fang, Y. The role of IL-7 in Immunity and Cancer. Anticancer Res. 2017, 37, 963–967. [Google Scholar] [PubMed]
- David, J.; Dominguez, C.; Hamilton, D.; Palena, C. The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance. Vaccines 2016, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Gales, D.; Clark, C.; Manne, U.; Samuel, T. The Chemokine CXCL8 in Carcinogenesis and Drug Response. ISRN Oncol. 2013, 2013, 859154. [Google Scholar] [CrossRef] [PubMed]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The multifaceted nature of IL-10: Regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar] [CrossRef] [PubMed]
- Salkeni, M.A.; Naing, A. Interleukin-10 in cancer immunotherapy: From bench to bedside. Trends Cancer 2023, 9, 716–725. [Google Scholar] [CrossRef]
- Nguyen, K.G.; Vrabel, M.R.; Mantooth, S.M.; Hopkins, J.J.; Wagner, E.S.; Gabaldon, T.A.; Zaharoff, D.A. Localized Interleukin-12 for Cancer Immunotherapy. Front. Immunol. 2020, 11, 575597. [Google Scholar] [CrossRef]
- Cheng, E.M.; Tsarovsky, N.W.; Sondel, P.M.; Rakhmilevich, A.L. Interleukin-12 as an in situ cancer vaccine component: A review. Cancer Immunol. Immunother. 2022, 71, 2057–2065. [Google Scholar] [CrossRef]
- Mirlekar, B.; Pylayeva-Gupta, Y. IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers 2021, 13, 167. [Google Scholar] [CrossRef]
- Cai, M.; Huang, X.; Huang, X.; Ju, D.; Zhu, Y.Z.; Ye, L. Research progress of interleukin-15 in cancer immunotherapy. Front. Pharmacol. 2023, 14, 1184703. [Google Scholar] [CrossRef]
- Zhou, Y.; Husman, T.; Cen, X.; Tsao, T.; Brown, J.; Bajpai, A.; Li, M.; Zhou, K.; Yang, L. Interleukin 15 in Cell-Based Cancer Immunotherapy. Int. J. Mol. Sci. 2022, 23, 7311. [Google Scholar] [CrossRef]
- Srivastava, S.; Salim, N.; Robertson, M. Interleukin-18: Biology and Role in the Immunotherapy of Cancer. Curr. Med. Chem. 2010, 17, 3353–3357. [Google Scholar] [CrossRef] [PubMed]
- Stolfi, C.; Pallone, F.; MacDonald, T.T.; Monteleone, G. Interleukin-21 in cancer immunotherapy: Friend or foe? OncoImmunology 2012, 1, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, H.; Skak, K. IL-21: Roles in immunopathology and cancer therapy. Tissue Antigens 2009, 74, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Interleukin 23—An Overview. ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/immunology-and-microbiology/interleukin-23 (accessed on 29 September 2023).
- Role of Cytokines in Cancer. Sino Biological. Available online: https://www.sinobiological.com/resource/cytokines/role-of-cytokines-in-cancer (accessed on 29 September 2023).
- Kumar, A.; Taghi Khani, A.; Sanchez Ortiz, A.; Swaminathan, S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front. Immunol. 2022, 13, 901277. [Google Scholar] [CrossRef]
- Kim, I.-K.; Koh, C.-H.; Jeon, I.; Shin, K.-S.; Kang, T.-S.; Bae, E.-A.; Seo, H.; Ko, H.-J.; Kim, B.-S.; Chung, Y.; et al. GM-CSF Promotes Antitumor Immunity by Inducing Th9 Cell Responses. Cancer Immunol. Res. 2019, 7, 498–509. [Google Scholar] [CrossRef]
- Interferon Alfa—An overview. ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/interferon-alfa (accessed on 29 September 2023).
- Atallah-Yunes, S.A.; Robertson, M.J. Cytokine Based Immunotherapy for Cancer and Lymphoma: Biology, Challenges and Future Perspectives. Front. Immunol. 2022, 13, 872010. [Google Scholar] [CrossRef]
- Jorgovanovic, D.; Song, M.; Wang, L.; Zhang, Y. Roles of IFN-γ in tumor progression and regression: A review. Biomark. Res. 2020, 8, 49. [Google Scholar] [CrossRef]
- MaruYama, T.; Chen, W.; Shibata, H. TGF-β and Cancer Immunotherapy. Biol. Pharm. Bull. 2022, 45, 155–161. [Google Scholar] [CrossRef]
- Saito, A.; Horie, M.; Nagase, T. TGF-β Signaling in Lung Health and Disease. Int. J. Mol. Sci. 2018, 19, 2460. [Google Scholar] [CrossRef]
Cytokine | Primary Cell Source | Primary Target Cell | Biological Activity |
---|---|---|---|
IL-1 | Monocytes Macrophages Fibroblasts Epithelial cells Endothelial cells Astrocytes | T cells B cells Endothelial cells Hypothalamus Liver | Co-stimulation Cell activation Inflammation Fever Acute phase reactant |
IL-2 | T cells NK cells | T cells NK cells B cells Monocytes | Cell growth Cell activation |
IL-3 | T cells | Bone marrow progenitor cells | Cell growth and cell differentiation |
IL-4 | T cells | T cells B cells | Th2 differentiation Cell growth Cell activation IgE isotype switching |
IL-5 | T cells | B cells Eosinophils | Cell growth Cell activation |
IL-6 | T cells Macrophages Fibroblasts | T cells B cells Liver | Co-stimulation Cell growth Cell activation Acute phase reactant |
IL-7 | Fibroblasts Bone marrow stromal cells | Immature lymphoid progenitors | T cell survival, proliferation, homeostasis B cell development |
IL-8 | Macrophages Epithelial cells Platelets | Neutrophils | Activation Chemotaxis |
IL-10 | Th2 T cells | Macrophages T cells | Inhibits antigen-presenting cells Inhibits cytokine production |
IL-12 | Macrophages NK cells | T cells | Th1 differentiation |
IL-15 | Monocytes | T cells NK cells | Cell growth Cell activation NK cell development Blocks apoptosis |
IL-18 | Macrophages | T cells NK cells B cells | Cell growth Cell activation Inflammation |
IL-21 | CD4+ T cells NKT cells | NK cells T cells B cells | Cell growth/ activation Control of allergic responses and viral infections |
IL-23 | Antigen-presenting cells | T cells NK cells DC | Chronic inflammation Promotes Th17 cells |
GM-CSF | Fibroblasts Mast cells T cells Macrophages Endothelial cells | DC Macrophages NKT cells Bone marrow progenitor cells | T-cell homeostasis Promotes antigen presentation Hematopoietic cell growth factor |
IFN-α | Plasmacytoid DC NK cells T cells B cells Macrophages Fibroblasts Endothelial cells Osteoblasts | Macrophages NK cells | Anti-viral Enhances MHC expression |
IFN-γ | T cells NK cells NKT cells | Monocytes Macrophages Endothelial cells Tissue cells | Cell growth/activation Enhances MHC expression |
TGF-β | T cells Macrophages | T cells | Inhibits cell growth/activation |
TNF-α | Macrophages T cells | T cells B cells Endothelial cells Hypothalamus Liver | Co-stimulation Cell activation Inflammation Fever Acute phase reactant |
IL-17 | NKT cells | Epithelial cells | Control of infections |
ILC | Endothelial cells | Initiate a potent inflammatory response | |
Fibroblasts | |||
Osteoblasts | |||
IL-27 | Monocytes | T cells | Enhance the proliferation of naïve CD8+ T cells |
DC | NK cells | Stimulate human monocyte to express TLR4 | |
IL-35 | T cells | Tregs | Suppresses T-cell proliferation |
Produces iTr35 | |||
IL-37 | Monocytes | Macrophages | -tv regulate excessive inflammatory response |
Dendritic cells | DCs | ||
B cells |
Cell Type | Function in TME |
---|---|
Tumour-associated macrophages (TAMs) | TAMs exhibit the M2 macrophage phenotype, which includes protumorigenic characteristics, anti-inflammatory properties, and Th2 cytokine secretion. These help cancer cells invade secondary areas and promote angiogenesis. |
Cancer-associated fibroblasts (CAFs) | Stromal cell populations that are active support the desmoplastic tumor microenvironment. By releasing cytokines, they can encourage angiogenesis and control tumor-promoting inflammation. |
CD4+ Th cells | Th1 and Th2 lineages have been divided. Th1 secretes cytokines that are both pro-inflammatory and anti-tumorigenic, whereas Th2 secretes cytokines that are both pro-inflammatory and tumorigenic. |
CD8+ Tc cells | Adaptive immune system effector cells that recognize and kill tumor cells by perforin-granzyme-mediated apoptosis. |
Mast cells (MCs) | Innate and adaptive immune responses to be produced and maintained. Release substances that encourage endothelial cell development to aid tumor cell angiogenesis. |
B cells | Modulators of humoral immunity and secrete cytokines. Alter the Th1:Th2 ratio. |
Natural killer (NK) cells | Without antigen presentation, cytotoxic lymphocytes obliterate stressed cells. Through “missing self” activation and “stress-induced” activation, they detect and destroy tumor cells. |
Dendritic cells (DCs) | Antigen-presenting cells (APCs) that control the immune system’s adaptive response. They increase vascularization in the TME to encourage angiogenesis. |
Neutrophils | N1-type cells are pro-inflammatory, anti-tumorigenic, and release Th1 cytokines. |
Receptor Family | Ligands | Structure and Function |
---|---|---|
Type I cytokine receptors | IL-2 IL-3 Il-4 IL-5 IL-6 IL-7 IL-9 IL-11 IL-12 IL-13 IL-15 IL-21 IL-23 IL-27 Erythropoietin GM-CSF G-CSF Growth hormone Prolactin Oncostatin M Leukemia inhibitory factor | Composed of multimeric chains. Signals through the JAK-STAT pathway using a common signaling chain. Contains cytokine binding chains. |
Type II cytokine receptors | IFN-α/β IFN-γ IL-10 IL-20 IL-22 IL-28 | Immunoglobulin-like domains. Uses heterodimer and multimeric chains. Signals through JAK-STAT. |
Immunoglobulin superfamily receptors | IL-1 CSF1 c-kit IL-18 | Shares homology with immunoglobulin structures. |
IL-17 receptor | IL-17 IL-17B IL-17C IL-17D IL-17E IL-17F | |
G protein-coupled receptors (GPCRs) | IL-8 CC chemokines CXC chemokine | Function to mediate cell activation and migration. |
TGF-β receptors ½ | TGF-β | |
Tumor necrosis factor receptors (TNFRs) | CD27 CD30 CD40 CD120 Lymphotoxin-β | Function as co-stimulatory and co-inhibitory receptors. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essogmo, F.E.; Zhilenkova, A.V.; Tchawe, Y.S.N.; Owoicho, A.M.; Rusanov, A.S.; Boroda, A.; Pirogova, Y.N.; Sangadzhieva, Z.D.; Sanikovich, V.D.; Bagmet, N.N.; et al. Cytokine Profile in Lung Cancer Patients: Anti-Tumor and Oncogenic Cytokines. Cancers 2023, 15, 5383. https://doi.org/10.3390/cancers15225383
Essogmo FE, Zhilenkova AV, Tchawe YSN, Owoicho AM, Rusanov AS, Boroda A, Pirogova YN, Sangadzhieva ZD, Sanikovich VD, Bagmet NN, et al. Cytokine Profile in Lung Cancer Patients: Anti-Tumor and Oncogenic Cytokines. Cancers. 2023; 15(22):5383. https://doi.org/10.3390/cancers15225383
Chicago/Turabian StyleEssogmo, Freddy Elad, Angelina V. Zhilenkova, Yvan Sinclair Ngaha Tchawe, Abah Moses Owoicho, Alexander S. Rusanov, Alexander Boroda, Yuliya N. Pirogova, Zaiana D. Sangadzhieva, Varvara D. Sanikovich, Nikolay N. Bagmet, and et al. 2023. "Cytokine Profile in Lung Cancer Patients: Anti-Tumor and Oncogenic Cytokines" Cancers 15, no. 22: 5383. https://doi.org/10.3390/cancers15225383