Serum Interleukins 8, 17, and 33 as Potential Biomarkers of Colon Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Collection of Blood Samples
2.3. Biochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Correlations between Interleukins for Healthy and Cancer Subjects
3.3. Interleukin Correlation in Cancer Patients
3.4. Correlations between Interleukins in Different Cancer Stages
4. Discussion
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ning, Y.; Lenz, H.-J. Targeting IL-8 in Colorectal Cancer. Expert Opin. Ther. Targets 2012, 16, 491–497. [Google Scholar] [CrossRef]
- Gefen, R.; Emile, S.H.; Horesh, N.; Garoufalia, Z.; Wexner, S.D. Age-Related Variations in Colon and Rectal Cancer: An Analysis of the National Cancer Database. Surgery 2023, 174, 1315–1322. [Google Scholar] [CrossRef]
- Wong, M.C.S.; Huang, J.; Lok, V.; Wang, J.; Fung, F.; Ding, H.; Zheng, Z.-J. Differences in Incidence and Mortality Trends of Colorectal Cancer Worldwide Based on Sex, Age, and Anatomic Location. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2021, 19, 955–966.e61. [Google Scholar] [CrossRef]
- Su, Y.; Tian, X.; Gao, R.; Guo, W.; Chen, C.; Chen, C.; Jia, D.; Li, H.; Lv, X. Colon Cancer Diagnosis and Staging Classification Based on Machine Learning and Bioinformatics Analysis. Comput. Biol. Med. 2022, 145, 105409. [Google Scholar] [CrossRef] [PubMed]
- Pilleron, S.; Withrow, D.R.; Nicholson, B.D.; Morris, E.J.A. Age-Related Differences in Colon and Rectal Cancer Survival by Stage, Histology, and Tumour Site: An Analysis of United States SEER-18 Data. Cancer Epidemiol. 2023, 84, 102363. [Google Scholar] [CrossRef]
- Lin, L.; Xu, W.; Zhang, G.; Ren, P.; Zhao, J.; Yan, Q. Association of Interleukin-22 Polymorphisms with the Colon Cancer: A Case-Control Study. Immunol. Lett. 2017, 188, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Rebeneck, L.; Horton, S.; Zauber, A.G.; Eerle, C. Colorectal Cancer. Available online: https://pubmed.ncbi.nlm.nih.gov/26913342/ (accessed on 20 October 2023).
- Sharma, B.R.; Kanneganti, T.-D. Inflammasome Signaling in Colorectal Cancer. Transl. Res. J. Lab. Clin. Med. 2023, 252, 45–52. [Google Scholar] [CrossRef]
- Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and Colon Cancer. Gastroenterology 2010, 138, 2101–2114.e5. [Google Scholar] [CrossRef]
- Moossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 Inflammasome in Cancer. Mol. Cancer 2018, 17, 158. [Google Scholar] [CrossRef]
- Hamarsheh, S.; Zeiser, R. NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword. Front. Immunol. 2020, 11, 1444. [Google Scholar] [CrossRef] [PubMed]
- Quagliariello, V.; Passariello, M.; Di Mauro, A.; Cipullo, C.; Paccone, A.; Barbieri, A.; Palma, G.; Luciano, A.; Buccolo, S.; Bisceglia, I. Immune Checkpoint Inhibitor Therapy Increases Systemic SDF-1, Cardiac DAMPs Fibronectin-EDA, S100/Calgranulin, Galectine-3, and NLRP3-MyD88-Chemokine Pathways. Front. Cardiovasc. Med. 2022, 9, 930797. [Google Scholar] [CrossRef]
- Li, J.; Huang, L.; Zhao, H.; Yan, Y.; Lu, J. The Role of Interleukins in Colorectal Cancer. Int. J. Biol. Sci. 2020, 16, 2323–2339. [Google Scholar] [CrossRef]
- Joshi, S.; Pandey, R.; Kumar, A.; Gupta, V.; Arya, N. Targeted Blockade of Interleukin-8 Negates Metastasis and Chemoresistance via Akt/Erk-NFκB Axis in Oral Cancer. Cytokine 2023, 166, 156155. [Google Scholar] [CrossRef]
- Bazzichetto, C.; Milella, M.; Zampiva, I.; Simionato, F.; Amoreo, C.A.; Buglioni, S.; Pacelli, C.; Le Pera, L.; Colombo, T.; Bria, E.; et al. Interleukin-8 in Colorectal Cancer: A Systematic Review and Meta-Analysis of Its Potential Role as a Prognostic Biomarker. Biomedicines 2022, 10, 2631. [Google Scholar] [CrossRef] [PubMed]
- Cacev, T.; Radosević, S.; Krizanac, S.; Kapitanović, S. Influence of Interleukin-8 and Interleukin-10 on Sporadic Colon Cancer Development and Progression. Carcinogenesis 2008, 29, 1572–1580. [Google Scholar] [CrossRef] [PubMed]
- Iwakura, Y.; Ishigame, H.; Saijo, S.; Nakae, S. Functional Specialization of Interleukin-17 Family Members. Immunity 2011, 34, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wu, P.; Huang, Q.; Liu, Y.; Ye, J.; Huang, J. Interleukin-17: A Promoter in Colorectal Cancer Progression. Clin. Dev. Immunol. 2013, 2013, 436307. [Google Scholar] [CrossRef] [PubMed]
- Razi, S.; Baradaran Noveiry, B.; Keshavarz-Fathi, M.; Rezaei, N. IL-17 and Colorectal Cancer: From Carcinogenesis to Treatment. Cytokine 2019, 116, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Bedoui, S.A.; Barbirou, M.; Stayoussef, M.; Dallel, M.; Mokrani, A.; Makni, L.; Mezlini, A.; Bouhaouala, B.; Yacoubi-Loueslati, B.; Almawi, W.Y. Association of Interleukin-17A Polymorphisms with the Risk of Colorectal Cancer: A Case-Control Study. Cytokine 2018, 110, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Cayrol, C.; Girard, J.-P. Interleukin-33 (IL-33): A Nuclear Cytokine from the IL-1 Family. Immunol. Rev. 2018, 281, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Turnquist, H.R.; Hoffman, R.; Billiar, T.R. Role of the IL-33-ST2 Axis in Sepsis. Mil. Med. Res. 2017, 4, 3. [Google Scholar] [CrossRef]
- Quagliariello, V.; Paccone, A.; Iovine, M.; Cavalcanti, E.; Berretta, M.; Maurea, C.; Canale, M.; Maurea, N. Interleukin-1 Blocking Agents as Promising Strategy for Prevention of Anticancer Drug-Induced Cardiotoxicities: Possible Implications in Cancer Patients with COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 6797–6812. [Google Scholar] [PubMed]
- Zhang, Y.; Davis, C.; Shah, S.; Hughes, D.; Ryan, J.C.; Altomare, D.; Peña, M.M.O. IL-33 Promotes Growth and Liver Metastasis of Colorectal Cancer in Mice by Remodeling the Tumor Microenvironment and Inducing Angiogenesis. Mol. Carcinog. 2017, 56, 272–287. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lu, K.; Timko, N.J.; Weir, D.M.; Zhu, Z.; Qin, C.; Mann, J.D.; Bai, Q.; Xiao, H.; Nicholl, M.B.; et al. IL-33 Notably Inhibits the Growth of Colon Cancer Cells. Oncol. Lett. 2018, 16, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Jou, E.; Rodriguez-Rodriguez, N.; McKenzie, A.N.J. Emerging Roles for IL-25 and IL-33 in Colorectal Cancer Tumorigenesis. Front. Immunol. 2022, 13, 981479. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, X.; Herjan, T.; Li, X. The Role of Interleukin-17 in Tumor Development and Progression. J. Exp. Med. 2019, 217, e20190297. [Google Scholar] [CrossRef] [PubMed]
- Colorectal Cancer Stages. Rectal Cancer Staging. Colon Cancer Staging. Available online: https://www.cancer.org/cancer/types/colon-rectal-cancer/detection-diagnosis-staging/staged.html (accessed on 27 January 2024).
- Karamchandani, D.M.; Chetty, R.; King, T.S.; Liu, X.; Westerhoff, M.; Yang, Z.; Yantiss, R.K.; Driman, D.K. Challenges with Colorectal Cancer Staging: Results of an International Study. Mod. Pathol. 2020, 33, 153–163. [Google Scholar] [CrossRef]
- Cui, G.; Liu, H.; Laugsand, J.-B. Endothelial Cells-Directed Angiogenesis in Colorectal Cancer: Interleukin as the Mediator and Pharmacological Target. Int. Immunopharmacol. 2023, 114, 109525. [Google Scholar] [CrossRef]
- Knüpfer, H.; Preiss, R. Serum Interleukin-6 Levels in Colorectal Cancer Patients—A Summary of Published Results. Int. J. Colorectal Dis. 2010, 25, 135–140. [Google Scholar] [CrossRef]
- Baidoun, F.; Elshiwy, K.; Elkeraie, Y.; Merjaneh, Z.; Khoudari, G.; Sarmini, M.T.; Gad, M.; Al-Husseini, M.; Saad, A. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr. Drug Targets 2021, 22, 998–1009. [Google Scholar] [CrossRef]
- Patel, S.G.; Karlitz, J.J.; Yen, T.; Lieu, C.H.; Boland, C.R. The Rising Tide of Early-Onset Colorectal Cancer: A Comprehensive Review of Epidemiology, Clinical Features, Biology, Risk Factors, Prevention, and Early Detection. Lancet Gastroenterol. Hepatol. 2022, 7, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Haraldsdottir, S.; Einarsdottir, H.M.; Smaradottir, A.; Gunnlaugsson, A.; Halfdanarson, T.R. Colorectal cancer—Review. Laeknabladid 2014, 100, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Zheng, Y.; Yang, P.; Chu, H.; Hou, X. Change in Onset Age of First Primary Colorectal Cancer in the USA. Int. J. Colorectal Dis. 2023, 38, 45. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, D. At What Age Should We Stop Colorectal Cancer Screening? When Is Enough, Enough? Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2023, 32, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-E.; Paik, H.Y.; Yoon, H.; Lee, J.E.; Kim, N.; Sung, M.-K. Sex- and Gender-Specific Disparities in Colorectal Cancer Risk. World J. Gastroenterol. 2015, 21, 5167–5175. [Google Scholar] [CrossRef] [PubMed]
- Hultcrantz, R. Aspects of Colorectal Cancer Screening, Methods, Age and Gender. J. Intern. Med. 2021, 289, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Hendifar, A.; Yang, D.; Lenz, F.; Lurje, G.; Pohl, A.; Lenz, C.; Ning, Y.; Zhang, W.; Lenz, H.-J. Gender Disparities in Metastatic Colorectal Cancer Survival. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 6391–6397. [Google Scholar] [CrossRef]
- Van Erning, F.N.; Greidanus, N.E.M.; Verhoeven, R.H.A.; Buijsen, J.; de Wilt, H.W.; Wagner, D.; Creemers, G.-J. Gender Differences in Tumor Characteristics, Treatment and Survival of Colorectal Cancer: A Population-Based Study. Cancer Epidemiol. 2023, 86, 102441. [Google Scholar] [CrossRef]
- Ribbing Wilén, H.; Saraste, D.; Blom, J. Gender-Specific Cut-off Levels in Colorectal Cancer Screening with Fecal Immunochemical Test: A Population-Based Study of Colonoscopy Findings and Costs. J. Med. Screen. 2021, 28, 439–447. [Google Scholar] [CrossRef]
- Gao, R.-N.; Neutel, C.I.; Wai, E. Gender Differences in Colorectal Cancer Incidence, Mortality, Hospitalizations and Surgical Procedures in Canada. J. Public Health Oxf. Engl. 2008, 30, 194–201. [Google Scholar] [CrossRef]
- Zhylkaidarova, A.; Kaidarova, D.; Batyrbekov, K.; Shatkovskaya, O.; Begimbetova, D. Trends of Colorectal Cancer Prevalence in Kazakhstan Related to Screening. Clin. Endosc. 2021, 54, 32–37. [Google Scholar] [CrossRef]
- Ullah, M.F.; Fleming, C.A.; Mealy, K. Changing Trends in Age and Stage of Colorectal Cancer Presentation in Ireland—From the Nineties to Noughties and Beyond. Surg. J. R. Coll. Surg. Edinb. Irel. 2018, 16, 350–354. [Google Scholar] [CrossRef]
- Ito, H.; Miki, C. Profile of Circulating Levels of Interleukin-1 Receptor Antagonist and Interleukin-6 in Colorectal Cancer Patients. Scand. J. Gastroenterol. 1999, 34, 1139–1143. [Google Scholar] [CrossRef]
- Heesen, M.; Bloemeke, B.; Heussen, N.; Kunz, D. Can the Interleukin-6 Response to Endotoxin Be Predicted? Studies of the Influence of a Promoter Polymorphism of the Interleukin-6 Gene, Gender, the Density of the Endotoxin Receptor CD14, and Inflammatory Cytokines. Crit. Care Med. 2002, 30, 664–669. [Google Scholar] [CrossRef]
- Kim, S.; Keku, T.O.; Martin, C.; Galanko, J.; Woosley, J.T.; Schroeder, J.C.; Satia, J.A.; Halabi, S.; Sandler, R.S. Circulating Levels of Inflammatory Cytokines and Risk of Colorectal Adenomas. Cancer Res. 2008, 68, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, J.W.; Hwang, I.G.; Jang, J.S.; Hong, S.; Kim, T.-Y.; Baek, J.Y.; Shin, S.H.; Sun, D.S.; Hong, D.-S.; et al. Serum Biomarkers for Predicting Overall Survival and Early Mortality in Older Patients with Metastatic Solid Tumors. J. Geriatr. Oncol. 2019, 10, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Zarogoulidis, P.; Katsikogianni, F.; Tsiouda, T.; Sakkas, A.; Katsikogiannis, N.; Zarogoulidis, K. Interleukin-8 and Interleukin-17 for Cancer. Cancer Investig. 2014, 32, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Chen, W.-Y.; Ma, J.; He, X.-L.; Wang, J.-W. Paradoxical Role of Interleukin-33/Suppressor of Tumorigenicity 2 in Colorectal Carcinogenesis: Progress and Therapeutic Potential. World J. Clin. Cases 2022, 10, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, M.; Takenaga, K. Role of the IL-33/ST2L Axis in Colorectal Cancer Progression. Cell. Immunol. 2019, 343, 103740. [Google Scholar] [CrossRef] [PubMed]
- Borkowf, C.B.; Johnson, L.L.; Albert, P.S. Power and Sample Size Calculations. In Principles and Practice of Clinical Research; Elsevier: Amsterdam, The Netherlands, 2018; pp. 359–372. [Google Scholar]
- Wei, X.; Zhang, Y.; Yang, Z.; Sha, Y.; Pan, Y.; Chen, Y.; Cai, L. Analysis of the Role of the Interleukins in Colon Cancer. Biol. Res. 2020, 53, 20. [Google Scholar] [CrossRef] [PubMed]
- ELISAs for Quantifying Cytokine Release. Available online: https://www.rndsystems.com/products/cytokine-elisa-kits (accessed on 27 January 2024).
- Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in Cancer: From Biology to Therapy. Nat. Rev. Cancer 2021, 21, 481–499. [Google Scholar] [CrossRef] [PubMed]
Variable | Age Group | N | N * | Mean | SE Mean | StDev | Minimum | Q1 | Median | Q3 | Maximum |
---|---|---|---|---|---|---|---|---|---|---|---|
IL8 Concentration (pg/mL) | 40–49 | 3 | 0 | 15.85 | 1.26 | 2.19 | 13.78 | 13.78 | 15.62 | 18.14 | 18.14 |
50–59 | 6 | 0 | 18.87 | 2.09 | 5.11 | 13.78 | 15.16 | 16.65 | 24.82 | 26.18 | |
60–69 | 14 | 0 | 36.19 | 6.62 | 24.75 | 15.62 | 21.01 | 24.70 | 44.34 | 95.34 | |
70–79 | 11 | 0 | 37.9 | 13.6 | 45.2 | 13.8 | 16.3 | 19.1 | 46.4 | 168.6 | |
80–89 | 8 | 0 | 17.51 | 1.15 | 3.25 | 14.93 | 15.04 | 16.30 | 20.50 | 23.42 | |
IL17A Concentration (pg/mL) | 40–49 | 3 | 0 | 6.073 | 0.189 | 0.327 | 5.801 | 5.801 | 5.982 | 6.436 | 6.436 |
50–59 | 6 | 0 | 15.69 | 9.29 | 22.76 | 5.80 | 5.94 | 6.57 | 20.84 | 62.14 | |
60–69 | 14 | 0 | 43.5 | 11.1 | 41.6 | 6.3 | 7.2 | 32.0 | 75.5 | 126.0 | |
70–79 | 11 | 0 | 28.9 | 11.7 | 38.8 | 6.3 | 6.4 | 6.5 | 73.6 | 104.8 | |
80–89 | 8 | 0 | 6.957 | 0.461 | 1.304 | 6.254 | 6.277 | 6.436 | 7.138 | 10.062 | |
IL33 Concentration (pg/mL) | 40–49 | 3 | 0 | 21.98 | 7.17 | 12.42 | 10.17 | 10.17 | 20.84 | 34.93 | 34.93 |
50–59 | 6 | 0 | 32.0 | 12.8 | 31.4 | 8.1 | 8.8 | 24.6 | 48.8 | 91.2 | |
60–69 | 14 | 0 | 60.5 | 14.0 | 52.4 | 10.9 | 25.5 | 34.5 | 80.3 | 186.5 | |
70–79 | 11 | 0 | 39.8 | 14.0 | 46.6 | 6.1 | 10.0 | 23.0 | 44.0 | 171.9 | |
80–89 | 8 | 0 | 30.16 | 4.07 | 11.52 | 8.22 | 22.39 | 32.09 | 38.14 | 45.25 |
Variable | Gender | N | N * | Mean | SE Mean | StDev | Minimum | Q1 | Median | Q3 | Maximum |
---|---|---|---|---|---|---|---|---|---|---|---|
IL8 Concentration (pg/mL) | F | 23 | 0 | 21.07 | 1.68 | 8.07 | 13.78 | 16.08 | 17.22 | 24.37 | 46.40 |
M | 19 | 0 | 38.94 | 8.99 | 39.20 | 13.78 | 15.62 | 21.59 | 49.10 | 168.56 | |
IL17A Concentration (pg/mL) | F | 23 | 0 | 20.06 | 6.51 | 31.22 | 5.80 | 6.34 | 6.44 | 7.34 | 104.79 |
M | 19 | 0 | 33.31 | 8.71 | 37.98 | 5.98 | 6.53 | 8.25 | 59.05 | 126.00 | |
IL33 Concentration (pg/mL) | F | 23 | 0 | 34.90 | 8.17 | 39.17 | 6.13 | 10.17 | 23.01 | 34.68 | 186.48 |
M | 19 | 0 | 51.6 | 10.1 | 43.8 | 9.0 | 27.7 | 34.9 | 64.4 | 171.9 |
Variable | Age Group | N | N * | Mean | SE Mean | StDev | Minimum | Q1 | Median | Q3 | Maximum |
---|---|---|---|---|---|---|---|---|---|---|---|
IL8 Concentration (pg/mL) | 40–49 | 3 | 0 | 15.85 | 1.26 | 2.19 | 13.78 | 13.78 | 15.62 | 18.14 | 18.14 |
50–59 | 6 | 0 | 18.87 | 2.09 | 5.11 | 13.78 | 15.16 | 16.65 | 24.82 | 26.18 | |
60–69 | 14 | 0 | 36.19 | 6.62 | 24.75 | 15.62 | 21.01 | 24.70 | 44.34 | 95.34 | |
70–79 | 11 | 0 | 37.9 | 13.6 | 45.2 | 13.8 | 16.3 | 19.1 | 46.4 | 168.6 | |
80–89 | 8 | 0 | 17.51 | 1.15 | 3.25 | 14.93 | 15.04 | 16.30 | 20.50 | 23.42 | |
IL17A Concentration (pg/mL) | 40–49 | 3 | 0 | 6.073 | 0.189 | 0.327 | 5.801 | 5.801 | 5.982 | 6.436 | 6.436 |
50–59 | 6 | 0 | 15.69 | 9.29 | 22.76 | 5.80 | 5.94 | 6.57 | 20.84 | 62.14 | |
60–69 | 14 | 0 | 43.5 | 11.1 | 41.6 | 6.3 | 7.2 | 32.0 | 75.5 | 126.0 | |
70–79 | 11 | 0 | 28.9 | 11.7 | 38.8 | 6.3 | 6.4 | 6.5 | 73.6 | 104.8 | |
80–89 | 8 | 0 | 6.957 | 0.461 | 1.304 | 6.254 | 6.277 | 6.436 | 7.138 | 10.062 | |
IL33 Concentration (pg/mL) | 40–49 | 3 | 0 | 21.98 | 7.17 | 12.42 | 10.17 | 10.17 | 20.84 | 34.93 | 34.93 |
50–59 | 6 | 0 | 32.0 | 12.8 | 31.4 | 8.1 | 8.8 | 24.6 | 48.8 | 91.2 | |
60–69 | 14 | 0 | 60.5 | 14.0 | 52.4 | 10.9 | 25.5 | 34.5 | 80.3 | 186.5 | |
70–79 | 11 | 0 | 39.8 | 14.0 | 46.6 | 6.1 | 10.0 | 23.0 | 44.0 | 171.9 | |
80–89 | 8 | 0 | 30.16 | 4.07 | 11.52 | 8.22 | 22.39 | 32.09 | 38.14 | 45.25 |
Variable | Age Group | N | N * | Mean | SE Mean | StDev | Minimum | Q1 | Median | Q3 | Maximum |
---|---|---|---|---|---|---|---|---|---|---|---|
IL8 Concentration (pg/mL) | 40–49 | 2 | 0 | 22.73 | 2.53 | 3.57 | 20.21 | * | 22.73 | * | 25.26 |
50–59 | 14 | 0 | 18.70 | 1.07 | 4.00 | 14.24 | 15.39 | 17.45 | 20.67 | 27.56 | |
60–69 | 8 | 0 | 19.606 | 0.989 | 2.796 | 15.616 | 17.166 | 19.520 | 22.448 | 23.194 | |
70–79 | 9 | 0 | 19.93 | 1.31 | 3.94 | 15.62 | 17.22 | 18.60 | 22.39 | 28.48 | |
80–89 | 7 | 0 | 17.551 | 0.549 | 1.452 | 15.386 | 16.305 | 17.912 | 19.060 | 19.290 | |
IL17A Concentration (pg/mL) | 40–49 | 2 | 0 | 7.750 | 0.408 | 0.577 | 7.342 | * | 7.750 | * | 8.158 |
50–59 | 14 | 0 | 7.232 | 0.275 | 1.030 | 6.073 | 6.640 | 6.844 | 8.068 | 9.337 | |
60–69 | 8 | 0 | 7.127 | 0.255 | 0.720 | 6.073 | 6.730 | 6.934 | 7.864 | 8.249 | |
70–79 | 9 | 0 | 6.859 | 0.113 | 0.339 | 6.436 | 6.617 | 6.798 | 6.980 | 7.614 | |
80–89 | 7 | 0 | 6.902 | 0.200 | 0.530 | 5.982 | 6.526 | 6.889 | 7.433 | 7.524 | |
IL33 Concentration (pg/mL) | 40–49 | 2 | 0 | 17.848 | 0.755 | 1.068 | 17.093 | * | 17.848 | * | 18.603 |
50–59 | 14 | 0 | 149.6 | 86.9 | 325.2 | 6.0 | 7.7 | 24.6 | 104.4 | 1217.1 | |
60–69 | 8 | 0 | 144 | 116 | 327 | 7 | 12 | 23 | 71 | 951 | |
70–79 | 9 | 0 | 52.6 | 27.2 | 81.7 | 6.7 | 10.5 | 20.7 | 56.6 | 262.8 | |
80–89 | 7 | 0 | 158 | 144 | 380 | 7 | 7 | 9 | 35 | 1019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tâlvan, C.-D.; Budișan, L.; Tâlvan, E.-T.; Grecu, V.; Zănoagă, O.; Mihalache, C.; Cristea, V.; Berindan-Neagoe, I.; Mohor, C.I. Serum Interleukins 8, 17, and 33 as Potential Biomarkers of Colon Cancer. Cancers 2024, 16, 745. https://doi.org/10.3390/cancers16040745
Tâlvan C-D, Budișan L, Tâlvan E-T, Grecu V, Zănoagă O, Mihalache C, Cristea V, Berindan-Neagoe I, Mohor CI. Serum Interleukins 8, 17, and 33 as Potential Biomarkers of Colon Cancer. Cancers. 2024; 16(4):745. https://doi.org/10.3390/cancers16040745
Chicago/Turabian StyleTâlvan, Constantin-Dan, Liviuța Budișan, Elena-Teodora Tâlvan, Valentin Grecu, Oana Zănoagă, Cosmin Mihalache, Victor Cristea, Ioana Berindan-Neagoe, and Călin Ilie Mohor. 2024. "Serum Interleukins 8, 17, and 33 as Potential Biomarkers of Colon Cancer" Cancers 16, no. 4: 745. https://doi.org/10.3390/cancers16040745