High-Grade Pleomorphic Sarcomas Treated with Immune Checkpoint Blockade: The MD Anderson Cancer Center Experience
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statistical Considerations
3. Results
3.1. Patient Characteristics
3.2. Responses to ICB
3.3. Progression-Free Survival with ICB
3.4. Overall Survival with ICB
3.5. Previous Radiation Therapy
3.6. ICB Combination
3.7. Toxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penel, N.; Coindre, J.-M.; Giraud, A.; Terrier, P.; Ranchere-Vince, D.; Collin, F.; Guellec, S.L.E.; Bazille, C.; Lae, M.; de Pinieux, G.; et al. Presentation and outcome of frequent and rare sarcoma histologic subtypes: A study of 10,262 patients with localized visceral/soft tissue sarcoma managed in reference centers. Cancer 2018, 124, 1179–1187. [Google Scholar] [CrossRef]
- Savina, M.; Le Cesne, A.; Blay, J.-Y.; Ray-Coquard, I.; Mir, O.; Toulmonde, M.; Cousin, S.; Terrier, P.; Ranchere-Vince, D.; Meeus, P.; et al. Patterns of care and outcomes of patients with METAstatic soft tissue SARComa in a real-life setting: The METASARC observational study. BMC Med. 2017, 15, 78. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, F.; Viterbo, A. Histologic and Genetic Advances in Refining the Diagnosis of “Undifferentiated Pleomorphic Sarcoma”. Cancers 2013, 5, 218–233. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.D. Pleomorphic malignant fibrous histiocytoma: Fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am. J. Surg. Pathol. 1992, 16, 213–228. [Google Scholar] [CrossRef]
- Fletcher, C.D. The evolving classification of soft tissue tumours—An update based on the new 2013 WHO classification. Histopathology 2014, 64, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, R.S.; Wiernik, P.H.; Bachur, N.R. Adriamycin chemotherapy—Efficacy, safety, and pharmacologic basis of an intermittent single high-dosage schedule. Cancer 1974, 33, 19–27. [Google Scholar] [CrossRef]
- Gronchi, A.; Palmerini, E.; Quagliuolo, V.; Martin Broto, J.; Lopez Pousa, A.; Grignani, G.; Brunello, A.; Blay, J.Y.; Tendero, O.; Diaz Beveridge, R.; et al. Neoadjuvant Chemotherapy in High-Risk Soft Tissue Sarcomas: Final Results of a Randomized Trial From Italian (ISG), Spanish (GEIS), French (FSG), and Polish (PSG) Sarcoma Groups. J. Clin. Oncol. 2020, 38, 2178–2186. [Google Scholar] [CrossRef]
- Seddon, B.; Strauss, S.J.; Whelan, J.; Leahy, M.; Woll, P.J.; Cowie, F.; Rothermundt, C.; Wood, Z.; Benson, C.; Ali, N.; et al. Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft-tissue sarcomas (GeDDiS): A randomised controlled phase 3 trial. Lancet Oncol. 2017, 18, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Tap, W.D.; Jones, R.L.; Van Tine, B.A.; Chmielowski, B.; Elias, A.D.; Adkins, D.; Agulnik, M.; Cooney, M.M.; Livingston, M.B.; Pennock, G.; et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: An open-label phase 1b and randomised phase 2 trial. Lancet 2016, 388, 488–497. [Google Scholar] [CrossRef]
- Tap, W.D.; Papai, Z.; Van Tine, B.A.; Attia, S.; Ganjoo, K.N.; Jones, R.L.; Schuetze, S.; Reed, D.; Chawla, S.P.; Riedel, R.F.; et al. Doxorubicin plus evofosfamide versus doxorubicin alone in locally advanced, unresectable or metastatic soft-tissue sarcoma (TH CR-406/SARC021): An international, multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2017, 18, 1089–1103. [Google Scholar] [CrossRef]
- Maki, R.G.; Wathen, J.K.; Patel, S.R.; Priebat, D.A.; Okuno, S.H.; Samuels, B.; Fanucchi, M.; Harmon, D.C.; Schuetze, S.M.; Reinke, D.; et al. Randomized Phase II Study of Gemcitabine and Docetaxel Compared With Gemcitabine Alone in Patients With Metastatic Soft Tissue Sarcomas: Results of Sarcoma Alliance for Research Through Collaboration Study 002. J. Clin. Oncol. 2007, 25, 2755–2763. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, H.S.; Heo, S.J.; Kim, S.K.; Han, J.W.; Shin, K.H.; Kim, S.H.; Hur, H.; Kim, K.S.; Choi, Y.D.; et al. Differences in the Efficacies of Pazopanib and Gemcitabine/Docetaxel as Second-Line Treatments for Metastatic Soft Tissue Sarcoma. Oncology 2019, 96, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Burgess, M.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.A.; et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Burgess, M.A.; Bolejack, V.; Schuetze, S.M.; Van Tine, B.A.; Attia, S.; Riedel, R.F.; Hu, J.; Davis, L.E.; Okuno, S.H.; Priebat, D.A.; et al. Clinical activity of pembrolizumab (P) in undifferentiated pleomorphic sarcoma (UPS) and dedifferentiated/pleomorphic liposarcoma (LPS): Final results of SARC028 expansion cohorts. J. Clin. Oncol. 2019, 37, 11015. [Google Scholar] [CrossRef]
- Keung, E.Z.; Burgess, M.; Salazar, R.; Parra, E.R.; Rodrigues-Canales, J.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Attia, S.; Riedel, R.F.; et al. Correlative Analyses of the SARC028 Trial Reveal an Association Between Sarcoma-Associated Immune Infiltrate and Response to Pembrolizumab. Clin. Cancer Res. 2020, 26, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Petitprez, F.; de Reynies, A.; Keung, E.Z.; Chen, T.W.; Sun, C.M.; Calderaro, J.; Jeng, Y.M.; Hsiao, L.P.; Lacroix, L.; Bougouin, A.; et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020, 577, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.M.; Qin, L.X.; Whiting, K.A.; Richards, A.L.; Avutu, V.; Chan, J.E.; Chi, P.; Dickson, M.A.; Gounder, M.M.; Keohan, M.L.; et al. A Phase II Study of Epacadostat and Pembrolizumab in Patients with Advanced Sarcoma. Clin. Cancer Res. 2023, 29, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fan, Z.; Bai, C.; Li, S.; Xue, R.; Gao, T.; Zhang, L.; Tan, Z.; Fang, Z. Real-world experience with pembrolizumab in patients with advanced soft tissue sarcoma. Ann. Transl. Med. 2021, 9, 339. [Google Scholar] [CrossRef]
- Pollack, S.M.; Redman, M.W.; Baker, K.K.; Wagner, M.J.; Schroeder, B.A.; Loggers, E.T.; Trieselmann, K.; Copeland, V.C.; Zhang, S.; Black, G.; et al. Assessment of Doxorubicin and Pembrolizumab in Patients With Advanced Anthracycline-Naive Sarcoma: A Phase 1/2 Nonrandomized Clinical Trial. JAMA Oncol. 2020, 6, 1778–1782. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Melchiori, L.; Merchant, M.S.; Bernstein, D.; Glod, J.; Kaplan, R.; Grupp, S.; Tap, W.D.; Chagin, K.; Binder, G.K.; et al. Antitumor Activity Associated with Prolonged Persistence of Adoptively Transferred NY-ESO-1 (c259)T Cells in Synovial Sarcoma. Cancer Discov. 2018, 8, 944–957. [Google Scholar] [CrossRef]
- Movva, S.; Avutu, V.; Chi, P.; Dickson, M.A.; Gounder, M.M.; Kelly, C.M.; Keohan, M.L.; Meyers, P.A.; Cohen, S.M.; Hensley, M.L.; et al. A pilot study of lenvatinib plus pembrolizumab in patients with advanced sarcoma. J. Clin. Oncol. 2023, 41 (Suppl. 16), 11517. [Google Scholar]
- Rosenbaum, E.; Qin, L.-X.; Dickson, M.A.; Keohan, M.L.; Gounder, M.M.; Chi, P.; Movva, S.; Kelly, C.M.; Avutu, V.; Chan, J.E.; et al. Interim results of a phase II trial of first line retifanlimab (R) plus gemcitabine and docetaxel (GD) in patients (pts) with advanced soft tissue sarcoma (STS). J. Clin. Oncol. 2023, 41 (Suppl. 16), 11518. [Google Scholar] [CrossRef]
- Van Tine, B.A.; Eulo, V.; Toeniskoetter, J.; Ruff, T.; Luo, J.; Kemp, L.; Moreno Tellez, C.; Weiss, M.C.; Hirbe, A.C.; Meyer, C.F.; et al. Randomized phase II trial of cabozantinib combined with PD-1 and CTLA-4 inhibition versus cabozantinib in metastatic soft tissue sarcoma. J. Clin. Oncol. 2023, 41 (Suppl. 17), LBA11504. [Google Scholar] [CrossRef]
- Roland, C.L.; Nassif Haddad, E.F.; Keung, E.Z.; Wang, W.L.; Lazar, A.J.; Lin, H.; Chelvanambi, M.; Parra, E.R.; Wani, K.; Guadagnolo, B.A.; et al. A randomized, non-comparative phase 2 study of neoadjuvant immune-checkpoint blockade in retroperitoneal dedifferentiated liposarcoma and extremity/truncal undifferentiated pleomorphic sarcoma. Nat. Cancer 2024, 5, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Keung, E.Z.-Y.; Nassif, E.F.; Lin, H.Y.; Lazar, A.J.; Torres, K.E.; Wang, W.-L.; Guadagnolo, B.A.; Bishop, A.J.; Hunt, K.; Feig, B.W.; et al. Randomized phase II study of neoadjuvant checkpoint blockade for surgically resectable undifferentiated pleomorphic sarcoma (UPS) and dedifferentiated liposarcoma (DDLPS): Survival results after 2 years of follow-up and intratumoral B-cell receptor (BCR) correlates. J. Clin. Oncol. 2022, 40 (Suppl. 17), LBA11501. [Google Scholar]
- Dall’Olio, F.G.; Marabelle, A.; Caramella, C.; Garcia, C.; Aldea, M.; Chaput, N.; Robert, C.; Besse, B. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2022, 19, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Cascone, T.; William, W.N.; Jr Weissferdt, A.; Leung, C.H.; Lin, H.Y.; Pataer, A.; Godoy, M.C.B.; Carter, B.W.; Federico, L.; Reuben, A.; et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: The phase 2 randomized NEOSTAR trial. Nat. Med. 2021, 27, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Amaria, R.N.; Reddy, S.M.; Tawbi, H.A.; Davies, M.A.; Ross, M.I.; Glitza, I.C.; Cormier, J.N.; Lewis, C.; Hwu, W.J.; Hanna, E.; et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 2018, 24, 1649–1654. [Google Scholar] [CrossRef]
- Gross, N.D.; Miller, D.M.; Khushalani, N.I.; Divi, V.; Ruiz, E.S.; Lipson, E.J.; Meier, F.; Su, Y.B.; Swiecicki, P.L.; Atlas, J.; et al. Neoadjuvant Cemiplimab for Stage II to IV Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 387, 1557–1568. [Google Scholar] [CrossRef]
- Klemen, N.D.; Hwang, S.; Bradic, M.; Rosenbaum, E.; Dickson, M.A.; Gounder, M.M.; Kelly, C.M.; Keohan, M.L.; Movva, S.; Thornton, K.A.; et al. Long-term Follow-up and Patterns of Response, Progression, and Hyperprogression in Patients after PD-1 Blockade in Advanced Sarcoma. Clin. Cancer Res. 2021, 28, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Ramaiya, N.H.; Hatabu, H.; Hodi, F.S. Monitoring immune-checkpoint blockade: Response evaluation and biomarker development. Nat. Rev. Clin. Oncol. 2017, 14, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Somaiah, N.; Conley, A.P.; Parra, E.R.; Lin, H.; Amini, B.; Solis Soto, L.; Salazar, R.; Barreto, C.; Chen, H.; Gite, S.; et al. Durvalumab plus tremelimumab in advanced or metastatic soft tissue and bone sarcomas: A single-centre phase 2 trial. Lancet Oncol. 2022, 23, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.P.; Mahoney, M.R.; Van Tine, B.A.; Atkins, J.; Milhem, M.M.; Jahagirdar, B.N.; Antonescu, C.R.; Horvath, E.; Tap, W.D.; Schwartz, G.K.; et al. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): Two open-label, non-comparative, randomised, phase 2 trials. Lancet Oncol. 2018, 19, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Champiat, S.; Ferrara, R.; Massard, C.; Besse, B.; Marabelle, A.; Soria, J.C.; Ferte, C. Hyperprogressive disease: Recognizing a novel pattern to improve patient management. Nat. Rev. Clin. Oncol. 2018, 15, 748–762. [Google Scholar] [CrossRef]
- Morad, G.; Helmink, B.A.; Sharma, P.; Wargo, J.A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 2021, 184, 5309–5337. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Rodriguez-Ruiz, M.E.; Vitale, I.; Harrington, K.J.; Melero, I.; Galluzzi, L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat. Immunol. 2020, 21, 120–134. [Google Scholar] [CrossRef]
Characteristic | Category | N (%)/Median [Range] | ||
---|---|---|---|---|
Whole Cohort N = 36 | UPS N = 26 | Other N = 10 | ||
Age at first ICB (years) | 52 [22–79] | 52 [22–79] | 53 [30–79] | |
Sex | Male Female | 24 (66) 12 (33) | 18 (69) | 6 (60) |
Race | Caucasian African American | 31 (86) 5 (14) | 22 (85) | 9 (90) |
ECOG performance status | 0 1 2 | 11 (30) 23 (64) 2 (6) | 10 (38) | 1 (10) |
BMI | 30.3 [20–52] | 31 [21–50] | 26 [20–52] | |
Histology | UPS Other unclassified pleomorphic | 26 (72) 10 (28) | 26 (100) 0 | 0 10 (100%) |
Biggest tumor diameter at start of ICB (cm) | 6 [1.3–25] | 5.3 [1.3–22] | 6.7 [1.5–25] | |
Lung metastasis | 26 (72) | 18 (69) | 8 (80) | |
Liver metastasis | 4 (11) | 2 (8) | 2 (20) | |
Site of primary tumor | Extremities Trunk Other * | 15 (42) 15 (42) 6 (16) | 12 (46) 10 (38) 4 (16) | 3 (30) 5 (50) 2 (20) |
Previous RT prior to ICB | Yes | 22 (61) | 17 (65) | 5 (50) |
Number of surgical resections prior to ICB | 1 [0–8] | 1 [0–6] | 2 [1–8] | |
Number of lines of systemic therapy prior to ICB | 2 [0–10] | 2 [0–5] | 4 [1–10] | |
Type of ICB ** treatment | Standalone ICB Combination of ICB + ICB Combination of ICB + RT Combination of ICB + chemo or antiangiogenic | 15 (42) 16 (44) 3 (8) 2 (6) | 11 (42) 10 (38) 3 (12) 2 (8) | 4 (40) 6 (60) 0 0 |
Received ICB as part of a clinical trial | 25 (69) | 18 (69) | 7 (70) | |
Best response to ICB | Partial/complete response Stable disease Progressive disease Unknown | 3 (8) 9 (25) 21 (58) 3 (9) | 3 (12) 6 (23) 15 (58) 2 (7) | 0 3 (30) 6 (60) 1 (10) |
Variable N (%) | Number of Patients * | Objective Response Rate (ORR) | ORR p-Value | Clinical Benefit Rate (CBR) | CBR p-Value |
---|---|---|---|---|---|
All cohort | 33 | 3 (9.1) | - | 10 (30.3) | - |
Histology UPS Other | 24 9 | - 3 (12.5) 0 (0) | 0.54 | - 7 (29.2) 3 (33.3) | 1 |
Previous Radiotherapy Yes No | 20 13 | - 2 (10) 1 (7.7) | 0.54 | - 4 (20) 6 (46) | 0.14 |
Previous Radiotherapy Intent Peri-op Palliative | 12 8 | 1 (8) 1 (12.5) | 1 | 2 (17) 2 (25) | 1 |
Number of Previous Systemic Therapies ≤2 >2 | 18 15 | - 3 (16.7) 0 (0) | 0.233 | - 7 (38.9) 3 (20) | 0.28 |
Lung Metastasis Yes No | 24 9 | - 3 (12.5) 0 (0) | 0.54 | - 9 (37.5) 1 (11.1) | 0.22 |
Liver Metastasis Yes No | 3 30 | - 0 (0) 3 (10) | 1 | - 0 (0) 9 (30) | 0.54 |
ICB Combination Type Standalone Combination | 13 20 | - 2 (15.4) 1 (5) | 0.55 | - 5 (38.5) 5 (25) | 0.46 |
Sex Male Female | 21 12 | - 2 (9.5) 1 (9.1) | 1 | - 6 (28.6) 3 (27.3) | 1 |
BMI <25 >25 | 8 25 | - 0 (0) 3 (12) | 0.56 | - 1 (12.5) 9 (36) | 0.38 |
Variable | Number of Patients | Median PFS (Months, IQR) | Univariate HR (95%CI) | p-Value | Cox Multivariate (a) HR (95%CI) | p-Value |
---|---|---|---|---|---|---|
Sex Male Female | - 24 12 | - 2.7 (1.6–9) 3.1 (2–5.3) | 1.33 (0.60–2.92) - - | 0.48 - - | ||
Race Caucasian African American | - 31 5 | - 3.3 1.6 | 0.6 (1.9–2.2) - - | 0.4 - - | ||
Age 0–65 >65 years | - 25 11 | - 3 (1.5–8.8) 2.5 (1.6–6.6) | 1.2 (0.5–2.6) - - | 0.68 - - | ||
Performance Status 0, 1 2+ | - | |||||
Histology UPS Other unclassified pleomorphic | - 26 10 | - 2.9 (1.68–7.64) 3.8 (1.64–6.21) | 0.97 (0.44–2.09) - - | 0.92 | ||
Previous Radiotherapy Yes No | - 22 14 | - 2.2 (1.3–3.5) 5.4 (3–13.1) | 0.49 (0.24–1.01) - - | 0.054 - - | 0.39 (0.18–0.86) | 0.019 |
ICB Combination Type Standalone Combination | - 15 21 | - 9.2 (2.1–11.2) 2.3 (1.4–3.32) | 0.42 (0.23–0.92) - - | 0.0207 - - | 0.4 (0.17–0.94) | 0.036 |
Number of Previous Systemic Therapies ≤2 >2 | - 19 17 | - 3.68 (1.9–9.2) 2.4 (1.3–5.3) | 2.06 (0.93–4.29) - - | 0.053 - - | 0.65 (0.29–1.45) | 0.29 |
Lung Metastasis Yes No | - 26 10 | - 3 (1.4–5.6) 2.8 (1.9–8.5) | 0.95 (0.45–2.0) - | 0.94 - - | ||
Liver Metastasis Yes No | - 4 32 | - 2.5 (2–7.6) 3 (1.5–7.2) | 1.012 (0.34–3.0) - | 0.98 - - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasr, L.F.; Zoghbi, M.; Lazcano, R.; Nakazawa, M.; Bishop, A.J.; Farooqi, A.; Mitra, D.; Guadagnolo, B.A.; Benjamin, R.; Patel, S.; et al. High-Grade Pleomorphic Sarcomas Treated with Immune Checkpoint Blockade: The MD Anderson Cancer Center Experience. Cancers 2024, 16, 1763. https://doi.org/10.3390/cancers16091763
Nasr LF, Zoghbi M, Lazcano R, Nakazawa M, Bishop AJ, Farooqi A, Mitra D, Guadagnolo BA, Benjamin R, Patel S, et al. High-Grade Pleomorphic Sarcomas Treated with Immune Checkpoint Blockade: The MD Anderson Cancer Center Experience. Cancers. 2024; 16(9):1763. https://doi.org/10.3390/cancers16091763
Chicago/Turabian StyleNasr, Lewis F., Marianne Zoghbi, Rossana Lazcano, Michael Nakazawa, Andrew J. Bishop, Ahsan Farooqi, Devarati Mitra, Beverly Ashleigh Guadagnolo, Robert Benjamin, Shreyaskumar Patel, and et al. 2024. "High-Grade Pleomorphic Sarcomas Treated with Immune Checkpoint Blockade: The MD Anderson Cancer Center Experience" Cancers 16, no. 9: 1763. https://doi.org/10.3390/cancers16091763