Gynecological Cancer and Venous Thromboembolism: A Narrative Review to Increase Awareness and Improve Risk Assessment and Prevention
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Venous Thromboembolism and Gynecological Cancer: Risk Factors
3.1. Surgery
3.2. Anticancer Therapies
4. Thromboembolic Risk Assessment in Cancer Patients
4.1. Risk Assessment Models for the Assessment of Venous Thromboembolism in Cancer Patients
Scale Name | Risk Factors | Risk Groups | Ref. |
---|---|---|---|
Hospitalized Patients | |||
Padua prediction score | Cancer (3 points)
| <4 points: Low risk ≥4 points: High risk | [71] |
IMPROVE VTE RAM | Cancer
| ≥3 points: High risk [74] ≥4 points: High risk [75] | [74] |
Prospective Comparison of Methods for thromboembolic risk assessment with clinical Perceptions and AwareneSS in real-life patients-Cancer-Associated Thrombosis (COMPASS-CAT) score |
| 0–6 points: Low/intermediate risk ≥7 points: High risk | [77] |
Vienna Cancer and Thrombosis Study (Vienna-CATS) |
| ≥7 points: High risk | [78] |
Surgical Patients | |||
Caprini risk score | Approximately 40 risk factors including:
| 1 point: Low risk 2 points: Moderate risk 3–4 points: High risk 5 points: Very high risk | [80] |
Ambulatory Patients | |||
ONKOTEV Risk Prediction Model |
| 0 points: Low risk >2 points: Very high risk | [81] |
ClinicalRAM for cancer-associated VTE |
| Six risk categories: 0–2 points: Low risk 3–5 points: High risk | [82] |
ONCOTHROMB score |
| Weighting of variables from the multivariate analyses and information on how to calculate the ONCOTHROMB score are lacking up to date | [22] |
Khorana RAM score |
| 0 points: Low risk 1–2 points: Moderate risk 3 points: High risk | [83] |
Gynecological Cancer Patients | |||
Nomogram model to predict the VTE risk aftersurgery in patients with gynecological tumors |
| See Figure 1 | [42] |
Nomogram model to predict the probability of VTE in patients with epithelial ovarian cancer |
| See Figure 2 | [84] |
Thrombogyn score for patients undergoing surgery and chemotherapy |
| 0 points: Low risk 1 point: Moderate risk 2–3 points: High risk | [85] |
4.2. Venous Thromboembolism Risk Assessment in Gynecological Cancer Patients
5. Venous Thromboembolism Pharmacological Prophylaxis in Cancer Patients
6. Venous Thromboembolism Prophylaxis in Hospitalized Cancer Patients
7. Venous Thromboembolism Prophylaxis in Surgical Cancer Patients
8. Venous Thromboembolism Prophylaxis in Ambulatory Cancer Outpatients on Systemic Therapy or Carrying Central Venous Catheter
9. Expert Opinion
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trousseau, A. Phlegmasia alba dolens. In Clinique Medicale de l’Hotel-Dieu de Paris 3; Balliere, J.B., Ed.; Nabu Press: Paris, France, 1865; pp. 654–671. [Google Scholar]
- Zacharski, L.R. Anticoagulants in cancer treatment: Malignancy as a solid phase coagulopathy. Cancer Lett. 2002, 186, 1–9. [Google Scholar] [CrossRef]
- Agnelli, G. Venous thromboembolism and cancer: A two-way clinical association. Thromb. Haemost. 1997, 78, 117–120. [Google Scholar] [PubMed]
- Nierodzik, M.L.; Plotkin, A.; Kajumo, F.; Karpatkin, S. Thrombin stimulates tumor–platelet adhesion in vitro and metastasis in vivo. J. Clin. Investig. 1991, 87, 229–236. [Google Scholar] [CrossRef]
- Falanga, A.; Benedetta Donati, M. Pathogenesis of thrombosis in patients with malignancy. Int. J. Hematol. 2001, 73, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Toma, S.; Marchetti, M.; Palumbo, R.; Raffo, P.; Consonni, R.; Marziali, S.; Dastoli, G.; Barbui, T. Effect of all-trans-retinoic acid on the hypercoagulable state of patients with breast cancer. Am. J. Hematol. 2002, 70, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Mackman, N.; Falanga, A.; Pabinger, I.; Noble, S.; Ageno, W.; Moik, F.; Lee, A.Y.Y. Cancer-associated venous thromboembolism. Nat. Rev. Dis. Primers 2022, 8, 11. [Google Scholar] [CrossRef]
- Falanga, A.; Marchetti, M. Cancer-associated thrombosis: Enhanced awareness and pathophysiologic complexity. J. Thromb. Haemost. 2023, 21, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Mulder, F.I.; Horváth-Puhó, E.; van Es, N.; van Laarhoven, H.W.M.; Pedersen, L.; Moik, F.; Ay, C.; Büller, H.R.; Sørensen, H.T. Venous thromboembolism in cancer patients: A population-based cohort study. Blood 2021, 137, 1959–1969. [Google Scholar] [CrossRef]
- Khorana, A.A.; McCrae, K.; Milentijevic, D.; McCormick, N.; Laliberté, F.; Crivera, C.; Lefebvre, P.; Lejeune, D.; Rozjabek, H.; Schein, J.; et al. VTE recurrence and safety of anticoagulants among patients with cancer treated for venous thromboembolism. Blood 2017, 130, 4631. [Google Scholar]
- Kuderer, N.M.; Francis, C.W.; Culakova, E.; Khorana, A.A.; Ortel, T.; Falanga, A.; Lyman, G.H. Venous thromboembolism and all-cause mortality in cancer patients receiving chemotherapy. J. Clin. Oncol. 2008, 26, 9521. [Google Scholar] [CrossRef]
- Potere, N.; Barco, S.; Mahé, I.; Cesarman-Maus, G.; Angchaisuksiri, P.; Leader, A.; Okoye, H.C.; Olayemi, E.; Ay, C.; Carrier, M.; et al. Awareness of venous thromboembolism among patients with cancer: Preliminary findings from a global initiative for World Thrombosis Day. J. Thromb. Haemost. 2022, 20, 2964–2971. [Google Scholar] [CrossRef] [PubMed]
- Kraaijpoel, N.; Di Nisio, M.; Mulder, F.I.; van Es, N.; Beyer-Westendorf, J.; Carrier, M.; Garcia, D.; Grosso, M.; Kakkar, A.K.; Mercuri, M.F.; et al. Clinical impact of bleeding in cancer-associated venous thromboembolism: Results from the Hokusai VTE Cancer Study. Thromb. Haemost. 2018, 118, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef] [PubMed]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Francis, C.W.; et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J. Clin. Oncol. 2020, 38, 496–520. [Google Scholar] [CrossRef] [PubMed]
- Farge, D.; Frere, C.; Connors, J.M.; Khorana, A.A.; Kakkar, A.; Ay, C.; Muñoz, A.; Brenner, B.; Prata, P.H.; Brilhante, D.; et al. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer.; including patients with COVID-19. Lancet Oncol 2022, 23, e334–e347. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Ay, C.; Di Nisio, M.; Gerotziafas, G.; Jara-Palomares, L.; Langer, F.; Lecumberri, R.; Mandala, M.; Maraveyas, A.; Pabinger, I.; et al. Venous thromboembolism in cancer patients: ESMO Clinical Practice Guideline. Ann. Oncol. 2023, 34, 452–467. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Cushman, M.; Burnett, A.E.; Kahn, S.R.; Beyer-Westendorf, J.; Spencer, F.A.; Rezende, S.M.; Zakai, N.A.; Bauer, K.A.; Dentali, F.; et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: Prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018, 2, 3198–3225. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P.; Lensing, A.W.A.; Piccioli, A.; Bernardi, E.; Simioni, P.; Girolami, B.; Marchiori, A.; Sabbion, P.; Prins, M.H.; Noventa, F.; et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 2002, 100, 3484–3488. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, K.M.; Moik, F.; Candeloro, M.; Ay, C.; Di Nisio, M.; Lee, A.Y.Y. Unanswered questions in cancer-associated thrombosis. Br. J. Haematol. 2022, 198, 812–825. [Google Scholar] [CrossRef]
- Khalil, J.; Bensaid, B.; Elkacemi, H.; Afif, M.; Bensaid, Y.; Kebdani, T.; Benjaafar, N. Venous thromboembolism in cancer patients: An underestimated major health problem. World J. Surg. Oncol. 2015, 13, 204. [Google Scholar] [CrossRef]
- Muñoz, A.; Ay, C.; Grilz, E.; Font, C.; Pachón, V.; Castellón, V.; Martínez-Marín, V.; Salgado, M.; Martínez, E.; Calzas, J.; et al. A clinical-genetic risk score for predicting cancer-associated venous thromboembolism: A development and validation study involving two independent prospective cohorts. J. Clin. Oncol. 2023, 41, 2911–2925. [Google Scholar] [CrossRef] [PubMed]
- Schorling, R.M.; Pfrepper, C.; Golombek, T.; Cella, C.A.; Muñoz-Unceta, N.; Siegemund, R.; Engel, C.; Petros, S.; Lordick, F.; Knödler, M. Evaluation of biomarkers for the prediction of venous thromboembolism in ambulatory cancer patients. Oncol. Res. Treat. 2020, 43, 414–427. [Google Scholar] [CrossRef] [PubMed]
- Anijs, R.J.S.; Nguyen, Y.N.; Cannegieter, S.C.; Versteeg, H.H.; Buijs, J.T. MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism. J. Thromb. Haemost. 2023, 21, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, A.; Bolton, K.L.; Devlin, S.M.; Sanchez-Vega, F.; Gao, J.; Mones, J.V.; Wills, J.; Kelly, D.; Farina, M.; Cordner, K.B.; et al. Genomic profiling identifies somatic mutations predicting thromboembolic risk in patients with solid tumors. Blood 2021, 137, 2103–2113. [Google Scholar] [CrossRef] [PubMed]
- Nazari, P.M.S.; Riedl, J.; Preusser, M.; Posch, F.; Thaler, J.; Marosi, C.; Birner, P.; Ricken, G.; Hainfellner, J.A.; Pabinger, I.; et al. Combination of isocitrate dehydrogenase 1 (IDH1) mutation and podoplanin expression in brain tumors identifies patients at high or low risk of venous thromboembolism. J. Thromb. Haemost. 2018, 16, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Unruh, D.; Schwarze, S.R.; Khoury, L.; Thomas, C.; Wu, M.; Chen, L.; Chen, R.; Liu, Y.; Schwartz, M.A.; Amidei, C.; et al. Mutant IDH1 and thrombosis in gliomas. Acta Neuropathol. 2016, 132, 917–930. [Google Scholar] [CrossRef] [PubMed]
- Zhu, V.W.; Zhao, J.J.; Gao, Y.; Syn, N.L.; Zhang, S.S.; Ou, S.I.; Bauer, K.A.; Nagasaka, M. Thromboembolism in ALK+ and ROS1+ NSCLC patients: A systematic review and meta-analysis. Lung Cancer 2021, 157, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Ades, S.; Kumar, S.; Alam, M.; Goodwin, A.; Weckstein, D.; Dugan, M.; Ashikaga, T.; Evans, M.; Verschraegen, C.; Holmes, C.E. Tumor oncogene (KRAS) status and risk of venous thrombosis in patients with metastatic colorectal cancer. J. Thromb. Haemost. 2015, 13, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Corrales-Rodriguez, L.; Soulières, D.; Weng, X.; Tehfe, M.; Florescu, M.; Blais, N. Mutations in NSCLC and their link with lung cancer-associated thrombosis: A case-control study. Thromb. Res. 2014, 133, 48–51. [Google Scholar] [CrossRef]
- Li, Q.; Xue, Y.; Peng, Y.; Li, L. Analysis of risk factors for deep venous thrombosis in patients with gynecological malignant tumor: A clinical study. Pak. J. Med. Sci. 2019, 35, 195–199. [Google Scholar] [CrossRef]
- He, S.; Zhang, X. The rs1024611 in the CCL2 gene and risk of gynecological cancer in Asians: A meta-analysis. World J. Surg. Oncol. 2018, 16, 34. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, J.; Bingbing, Z.; Li, S.; Li, L. Risk factors, risk assessment, and prognosis in patients with gynecological cancer and thromboembolism. J. Int. Med. Res. 2020, 48, 030006051989317. [Google Scholar] [CrossRef] [PubMed]
- Tasaka, N.; Minaguchi, T.; Hosokawa, Y.; Takao, W.; Itagaki, H.; Nishida, K.; Akiyama, A.; Shikama, A.; Ochi, H.; Satoh, T. Prevalence of venous thromboembolism at pretreatment screening and associated risk factors in 2086 patients with gynecological cancer. J. Obstet. Gynaecol. Res. 2020, 46, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Nansubuga, F.; Yang, J.; Ding, W.; Li, K.; Weng, D.; Wu, P.; Chen, G.; Ma, D.; Wei, J. Efficiency and safety evaluation of prophylaxes for venous thrombosis after gynecological surgery. Medicine 2020, 99, e20928. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Lim, C.S.; Davies, A.H. Venous thromboembolism in gynecological malignancy. Int. J. Gynecol. Cancer 2017, 27, 1970–1978. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.; Norris, L.A.; Abu Saadeh, F. Update on extended prophylaxis for venous thromboembolism following surgery for gynaecological cancers. Thromb. Update 2021, 2, 100038. [Google Scholar] [CrossRef]
- Syeda, S.K.; Chen, L.; Hou, J.Y.; Tergas, A.I.; Khoury-Collado, F.; Melamed, A.; St Clair, C.M.; Accordino, M.K.; Neuget, A.I.; Hershman, D.L.; et al. Trends in venous thromboembolism prophylaxis in gynecologic surgery for benign and malignant indications. Arch. Gynecol. Obstet. 2020, 302, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Prescott, L.S.; Kidin, L.M.; Downs, R.L.; Cleveland, D.J.; Wilson, G.L.; Munsell, M.F.; DeJesus, A.Y.; Cain, K.E.; Ramirez, P.T.; Kroll, M.H.; et al. Improved compliance with venous thromboembolism pharmacologic prophylaxis for patients with gynecologic malignancies hospitalized for nonsurgical indications did not reduce venous thromboembolism incidence. Int. J. Gynecol. Cancer 2015, 25, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Insin, P.; Vitoopinyoparb, K.; Thadanipon, K.; Charakorn, C.; Attia, J.; McKay, G.J.; Thakkinstian, A. Prevention of venous thromboembolism in gynecological cancer patients undergoing major abdominopelvic surgery: A systematic review and network meta-analysis. Gynecol. Oncol. 2021, 161, 304–313. [Google Scholar] [CrossRef]
- Satoh, T.; Matsumoto, K.; Tanaka, Y.O.; Akiyama, A.; Nakao, S.; Sakurai, M.; Ochi, H.; Onuki, M.; Minaguchi, T.; Sakurai, H.; et al. Incidence of venous thromboembolism before treatment in cervical cancer and the impact of management on venous thromboembolism after commencement of treatment. Thromb. Res. 2013, 131, e127–e132. [Google Scholar] [CrossRef]
- Wang, L.; Wei, S.; Zhou, B.; Wu, S. A nomogram model to predict the venous thromboembolism risk after surgery in patients with gynecological tumors. Thromb. Res. 2021, 202, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Overvad, T.F.; Ording, A.G.; Nielsen, P.B.; Skjøth, F.; Albertsen, I.E.; Noble, S.; Vistisen, A.K.; Gade, I.L.; Severinsen, M.T.; Piazza, G.; et al. Validation of the Khorana score for predicting venous thromboembolism in 40,218 patients with cancer initiating chemotherapy. Blood Adv. 2022, 6, 2967–2976. [Google Scholar] [CrossRef] [PubMed]
- Abu Saadeh, F.; Norris, L.; O’Toole, S.; Gleeson, N. Venous thromboembolism in ovarian cancer: Incidence, risk factors and impact on survival. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Pin, S.; Mateshaytis, J.; Ghosh, S.; Batuyong, E.; Easaw, J.C. Risk factors for venous thromboembolism in endometrial cancer. Curr. Oncol. 2020, 27, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Chokshi, S.K.; Gaughan, J.P.; Krill, L. Incidence and patient characteristics of venous thromboembolism during neoadjuvant chemotherapy for ovarian cancer. J. Thromb. Thrombolysis 2022, 53, 202–207. [Google Scholar] [CrossRef]
- Zhao, H.; Peng, Y.; Lv, M.; Shi, Y.; Zhang, S. Incidence and risk factors of perioperative venous thromboembolism in patients with cervical cancer. Mol. Clin. Oncol. 2022, 16, 108. [Google Scholar] [CrossRef] [PubMed]
- Graul, A.; Latif, N.; Zhang, X.; Dean, L.T.; Morgan, M.; Giuntoli, R.; Burger, R.; Kim, S.; Ko, E. Incidence of venous thromboembolism by type of gynecologic malignancy and surgical modality in the national surgical quality improvement program. Int. J. Gynecol. Cancer 2017, 27, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Oxley, S.G.; Achampong, Y.A.; Sambandan, N.; Hughes, D.J.; Thomas, M.; Lockley, M.; Olaitan, A. Venous thromboembolism in women with ovarian cancer undergoing neoadjuvant chemotherapy prior to cytoreductive surgery: A retrospective study. Acta Obstet. Gynecol. Scand. 2021, 100, 2091–2096. [Google Scholar] [CrossRef] [PubMed]
- Strøm Kahr, H.; Christiansen, O.B.; Juul Riddersholm, S.; Gade, I.L.; Torp-Pedersen, C.; Knudsen, A.; Thorlacius-Ussing, O. The timing of venous thromboembolism in ovarian cancer patients: A nationwide Danish cohort study. J. Thromb. Haemost. 2021, 19, 992–1000. [Google Scholar] [CrossRef]
- Duska, L.R.; Garrett, L.; Henretta, M.; Ferriss, J.S.; Lee, L.; Horowitz, N. When ‘never-events’ occur despite adherence to clinical guidelines: The case of venous thromboembolism in clear cell cancer of the ovary compared with other epithelial histologic subtypes. Gynecol. Oncol. 2010, 116, 374–377. [Google Scholar] [CrossRef]
- Matsuura, Y.; Robertson, G.; Marsden, D.E.; Kim, S.N.; Gebski, V.; Hacker, N.F. Thromboembolic complications in patients with clear cell carcinoma of the ovary. Gynecol. Oncol. 2007, 104, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Inzani, F.; Angelico, G.; Arciuolo, D.; Bragantini, E.; Travaglino, A.; Valente, M.; D’Alessandris, N.; Scaglione, G.; Sfregola, S.; et al. Recent advances in cervical cancer management: A review on novel prognostic factors in primary and recurrent tumors. Cancers 2023, 15, 1137. [Google Scholar] [CrossRef] [PubMed]
- Rauh-Hain, J.A.; Hariton, E.; Clemmer, J.; Clark, R.M.; Hall, T.; Boruta, D.M.; Schorge, J.O.; Del Carmen, M.G. Incidence and effects on mortality of venous thromboembolism in elderly women with endometrial cancer. Obstet. Gynecol. 2015, 125, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Mantha, S.; Rak, J. Cancer genetic alterations and risk of venous thromboembolism. Thromb. Res. 2022, 213, S29–S34. [Google Scholar] [CrossRef] [PubMed]
- Abu Saadeh, F.; Norris, L.; O’Toole, S.; Mohamed, B.M.; Langhe, R.; O’Leary, J.; Gleeson, N. Tumour expresion of tissue factor and tissue factor pathway inhibitor in ovarian cancer—relationship with venous thrombosis risk. Thromb. Res. 2013, 132, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, M.; Matsumoto, K.; Gosho, M.; Sakata, A.; Hosokawa, Y.; Tenjimbayashi, Y.; Katoh, T.; Shikama, A.; Komiya, H.; Michikami, H.; et al. Expression of tissue factor in epithelial ovarian carcinoma is involved in the development of venous thromboembolism. Int. J. Gynecol. Cancer 2017, 27, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Gi, T.; Yamashita, A.; Aman, M.; Kuwahara, A.; Asada, Y.; Kawagoe, Y.; Onishi, J.; Sameshima, H.; Sato, Y. Tissue factor expression and tumor-infiltrating T lymphocytes in ovarian carcinomas and their association with venous thromboembolism. Pathol. Int. 2021, 71, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Uno, K.; Homma, S.; Satoh, T.; Nakanishi, K.; Abe, D.; Matsumoto, K.; Oki, A.; Tsunoda, H.; Yamaguchi, I.; Nagasawa, T.; et al. Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer. Br. J. Cancer 2007, 96, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Canonico, M.E.; Santoro, C.; Avvedimento, M.; Giugliano, G.; Mandoli, G.E.; Prastaro, M.; Franzone, A.; Piccolo, R.; Ilardi, F.; Cameli, M.; et al. Venous thromboembolism and cancer: A comprehensive review from pathophysiology to novel treatment. Biomolecules 2022, 12, 259. [Google Scholar] [CrossRef]
- Barber, E.L.; Clarke-Pearson, D.L. Prevention of venous thromboembolism in gynecologic oncology surgery. Gynecol. Oncol. 2017, 144, 420–427. [Google Scholar] [CrossRef]
- Swift, B.E. Low incidence of venous thromboembolism after gynecologic oncology surgery: Who is at greatest risk? Gynecol. Oncol. 2022, 164, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, E.M.; Li, A.; Modest, A.M.; Leung, K.; Moore Simas, T.A.; Hur, H.C. Incidence of venous thromboembolism after different modes of gynecologic surgery. Obstet. Gynecol. 2018, 132, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.P.; Hisada, Y.M.; Kasthuri, R.S.; Reeves, B.N.; Mackman, N. Cancer therapy-associated thrombosis. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1291–1305. [Google Scholar] [CrossRef]
- Elice, F.; Rodeghiero, F. Bleeding complications of antiangiogenic therapy: Pathogenetic mechanisms and clinical impact. Thromb. Res. 2010, 125, S55–S57. [Google Scholar] [CrossRef]
- Elice, F.; Rodeghiero, F.; Falanga, A.; Rickles, F.R. Thrombosis associated with angiogenesis inhibitors. Best. Pract. Res. Clin. Haematol. 2009, 22, 115–128. [Google Scholar] [CrossRef]
- Carrier, M.; Khorana, A.A.; Zwicker, J.I.; Lyman, G.H.; Le Gal, G.; Lee, A.Y.; on behalf of the Subcommittee on Haemostasis and Malignancy for the SSC of the ISTH. Venous thromboembolism in cancer clinical trials: Recommendation for standardized reporting and analysis. J. Thromb. Haemost. 2012, 10, 2599–2601. [Google Scholar] [CrossRef]
- Huitfeldt, A. Is caviar a risk factor for being a millionaire? BMJ 2016, 355, i6536. [Google Scholar] [CrossRef] [PubMed]
- Stroud, W.; Whitworth, J.M.; Miklic, M.; Schneider, K.E.; Finan, M.A.; Scalici, J.; Reed, E.; Bazzett-Matabele, L.; Straughn, J.M., Jr.; Rocconi, R.P. Validation of a venous thromboembolism risk assessment model in gynecologic oncology. Gynecol. Oncol. 2014, 134, 160–163. [Google Scholar] [CrossRef]
- Horner, D.; Goodacre, S.; Davis, S.; Burton, N.; Hunt, B.J. Which is the best model to assess risk for venous thromboembolism in hospitalised patients? BMJ 2021, 373, n1106. [Google Scholar] [CrossRef]
- Barbar, S.; Noventa, F.; Rossetto, V.; Ferrari, A.; Brandolin, B.; Perlati, M.; De Bon, E.; Tormene, D.; Pagnan, A.; Prandoni, P. A risk assessment model for the identification of hospitalised medical patients at risk for venous thromboembolism: The Padua Prediction Score. J. Thromb. Haemost. 2010, 8, 2450–2457. [Google Scholar] [CrossRef]
- Kucher, N.; Koo, S.; Quiroz, R.; Cooper, J.M.; Paterno, M.D.; Soukonnikov, B.; Goldhaber, S.Z. Electronic alerts to prevent venous thromboembolism among hospitalised patients. N. Engl. J. Med. 2005, 352, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Vardi, M.; Ghanem-Zoubi, N.O.; Zidan, R.; Yurin, V.; Bitterman, H. Venous thromboembolism and the utility of the Padua Prediction Score in patients with sepsis admitted to internal medicine departments. J. Thromb. Haemost. 2013, 11, 467–473. [Google Scholar] [CrossRef]
- Spyropoulos, A.C.; Anderson, F.A.; Fitzgerald, G.; Decousus, H.; Pini, M.; Chong, B.H.; Zotz, R.B.; Bergmann, J.F.; Tapson, V.; Froehlich, J.B.; et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest 2011, 140, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, D.; Eichorn, A.; Alarcon, M.; McCullagh, L.; McGinn, T.; Spyropoulos, A.C. External validation of the risk assessment model of the International Medical Prevention Registry on Venous Thromboembolism (IMPROVE) for medical patients in a tertiary health system. J. Am. Heart Assoc. 2014, 3, e001152. [Google Scholar] [CrossRef] [PubMed]
- Mahan, C.E.; Liu, Y.; Turpie, A.G.; Vu, J.T.; Heddle, N.; Cook, R.J.; Dairkee, U.; Spyropoulos, A.C. External validation of a risk assessment model for venous thromboembolism in the hospitalised acutely-ill medical patient (VTE-VALOURR). Thromb. Haemost. 2014, 112, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Gerotziafas, G.T.; Taher, A.; Abdel-Razeq, H.; AboElnazar, E.; Spyropoulos, A.C.; El Shemmari, S.; Larsen, A.K.; Elalamy, I.; COMPASS–CAT Working Group. A predictive score for thrombosis associated with breast, colorectal, lung, or ovarian cancer. The prospective COMPASS-Cancer Associated Thrombosis study. Oncologist 2017, 22, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Pabinger, I.; van Es, N.; Heinze, G.; Posch, F.; Riedl, J.; Reitter, E.M.; Di Nisio, M.; Cesarman-Maus, G.; Kraaijpoel, N.; Zielinski, C.C.; et al. A clinical prediction model for cancer associated venous thromboembolism: A development and validation study in two independent prospective cohorts. Lancet Haematol. 2018, 5, e289–e298. [Google Scholar] [CrossRef]
- Verzeroli, C.; Giaccherini, C.; Russo, L.; Bolognini, S.; Gamba, S.; Tartari, C.J.; Schieppati, F.; Ticozzi, C.; Vignoli, A.; Masci, G.; et al. Utility of the Khorana and the new-Vienna CATS prediction scores in cancer patients of the HYPERCAN cohort. J. Thromb. Haemost. 2023, 21, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Caprini, J.A. Thrombosis risk assessment as a guide to quality patient care. Disease-a-Month 2005, 51, 70–78. [Google Scholar] [CrossRef]
- Cella, C.A.; Di Minno, G.; Carlomagno, C.; Arcopinto, M.; Cerbone, A.M.; Matano, E.; Tufano, A.; Lordick, F.; De Simone, B.; Muehlberg, K.S.; et al. Preventing venous thromboembolism in ambulatory cancer patients: The ONKOTEV study. Oncologist 2017, 22, 601–608. [Google Scholar] [CrossRef]
- Li, A.; De Las Pozas, G.; Andersen, C.R.; Nze, C.C.; Toale, K.M.; Milner, E.M.; Fillmore, N.R.; Chiao, E.Y.; Rojas Hernandez, C.; Kroll, M.H.; et al. External validation of a novel electronic risk score for cancer-associated thrombosis in a comprehensive cancer center. Am. J. Hematol. 2023, 98, 1052–1057. [Google Scholar] [CrossRef]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef] [PubMed]
- Norris, L.A.; Ward, M.P.; O’Toole, S.A.; Marchocki, Z.; Ibrahim, N.; Khashan, A.S.; Abu Saadeh, F.; Gleeson, N. A risk score for prediction of venous thromboembolism in gynecologic cancer: The Thrombogyn score. Res. Pract. Thromb. Haemost. 2020, 4, 848–859. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, H.; Zhong, G.; Fu, Z.; Peng, Y.; Yao, T. Development and validation of a nomogram to predict the probability of venous thromboembolism in patients with epithelial ovarian cancer. Clin. Appl. Thromb. Hemost. 2022, 28, 10760296221095558. [Google Scholar] [CrossRef] [PubMed]
- Lobastov, K.; Urbanek, T.; Stepanov, E.; Lal, B.K.; Marangoni, J.; Krauss, E.S.; Cronin, M.; Dengler, N.; Segal, A.; Welch, H.J.; et al. The thresholds of Caprini score associated with increased risk of venous thromboembolism across different specialties: A systematic review. Ann. Surg. 2023, 277, 929–937. [Google Scholar] [CrossRef]
- Cella, C.A.; Knoedler, M.; Hall, M.; Arcopinto, M.; Bagnardi, V.; Gervaso, L.; Pellicori, S.; Spada, F.; Zampino, M.G.; Ravenda, P.S.; et al. Validation of the ONKOTEV risk prediction model for venous thromboembolism in outpatients with cancer. JAMA Netw. Open 2023, 6, e230010. [Google Scholar] [CrossRef]
- Li, A.; La, J.; May, S.B.; Guffey, D.; da Costa, W.L., Jr.; Amos, C.I.; Bandyo, R.; Milner, E.M.; Kurian, K.M.; Chen, D.C.R.; et al. Derivation and validation of a clinical risk assessment model for cancer-associated thrombosis in two unique US health care systems. J. Clin. Oncol. 2023, 41, 2926–2938. [Google Scholar] [CrossRef] [PubMed]
- Romano, F.; Di Lorenzo, G.; Stabile, G.; Mirandola, M.; Restaino, S.; Ianniello, P.; Mirenda, G.; Ricci, G. A systematic review of the guidelines on venous thromboembolism prophylaxis in gynecologic oncology. Cancers 2022, 14, 2439. [Google Scholar] [CrossRef]
- Nicholson, M.; Chan, N.; Bhagirath, V.; Ginsberg, J. Prevention of venous thromboembolism in 2020 and beyond. J. Clin. Med. 2020, 9, 2467. [Google Scholar] [CrossRef]
- Italian Association of Medical Oncology. Tromboembolismo Venoso Nei Pazienti Con Tumori Solidi. Linee Guida. 2021. Available online: https://snlg.iss.it/wp-content/uploads/2021/11/LG_227_TEV_Tumori_Solidi_agg2021.pdf (accessed on 1 January 2024).
- National Comprehensive Cancer Network Cancer-Associated Venous Thromboembolic Disease (Version 1. 2020). Available online: www.nccn.org/professionals/physician_gls/pdf/vte.pdf (accessed on 1 January 2024).
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Gates, L.E.; et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO guideline update. J. Clin. Oncol. 2023, 41, 3063–3071. [Google Scholar] [CrossRef]
- Zwicker, J.I.; Rojan, A.; Campigotto, F.; Rehman, N.; Funches, R.; Connolly, G.; Webster, J.; Aggarwal, A.; Mobarek, D.; Faselis, C.; et al. Pattern of frequent but nontargeted pharmacologic thromboprophylaxis for hospitalized patients with cancer at academic medical centers: A prospective.; cross-sectional.; multicenter study. J. Clin. Oncol. 2014, 32, 1792–1796. [Google Scholar] [CrossRef] [PubMed]
- Carrier, M.; Khorana, A.A.; Moretto, P.; Rehman, N.; Funches, R.; Connolly, G.; Webster, J.; Aggarwal, A.; Mobarek, D.; Faselis, C.; et al. Lack of evidence to support thromboprophylaxis in hospitalized medical patients with cancer. Am. J. Med. 2014, 127, 82–86.e1. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Huang, B.; Zhao, J.; Ma, Y.; Yuan, D.; Yang, Y.; Du, X. Perioperative pharmacological thromboprophylaxis in patients with cancer: A systematic review and meta-analysis. Ann. Surg. 2017, 265, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Carrier, M.; Altman, A.D.; Blais, N.; Diamantouros, A.; McLeod, D.; Moodley, U.; Nguyen, C.; Young, S.; Schwenter, F. Extended thromboprophylaxis with low-molecular weight heparin (LMWH) following abdominopelvic cancer surgery. Am. J. Surg. 2019, 218, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Vedovati, M.C.; Becattini, C.; Rondelli, F.; Boncompagni, M.; Camporese, G.; Balzarotti, R.; Mariani, E.; Flamini, O.; Pucciarelli, S.; Donini, A.; et al. A randomized study on 1-week versus 4-week prophylaxis for venous thromboembolism after laparoscopic surgery for colorectal cancer. Ann. Surg. 2014, 259, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Guntupalli, S.R.; Brennecke, A.; Behbakht, K.; Tayebnejad, A.; Breed, C.A.; Babayan, L.M.; Cheng, G.; Ramzan, A.A.; Wheeler, L.J.; Corr, B.R.; et al. Safety and efficacy of apixaban vs enoxaparin for preventing postoperative venous thromboembolism in women undergoing surgery for gynecologic malignant neoplasm: A randomized clinical trial. JAMA Netw. Open 2020, 3, e207410. [Google Scholar] [CrossRef] [PubMed]
- Becattini, C.; Pace, U.; Pirozzi, F.; Donini, A.; Avruscio, G.; Rondelli, F.; Boncompagni, M.; Chiari, D.; De Prizio, M.; Visonà, A.; et al. Rivaroxaban vs placebo for extended antithrombotic prophylaxis after laparoscopic surgery for colorectal cancer. Blood 2022, 140, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.E.; Langstraat, C.L.; McGree, M.E.; Weaver, A.L.; Sarangi, S.; Mokri, B.; Dowdy, S.C.; Cliby, W.A.; Kumar, A.; Bakkum-Gamez, J.N. Beyond prophylaxis: Extended risk of venous thromboembolism following primary debulking surgery for ovarian cancer. Gynecol. Oncol. 2019, 152, 286–292. [Google Scholar] [CrossRef]
- Schmeler, K.M.; Wilson, G.L.; Cain, K.; Munsell, M.F.; Ramirez, P.T.; Soliman, P.T.; Nick, A.M.; Frumovitz, M.; Coleman, R.L.; Kroll, M.H.; et al. Venous thromboembolism (VTE) rates following the implementation of extended duration prophylaxis for patients undergoing surgery for gynecologic malignancies. Gynecol. Oncol. 2013, 128, 204–208. [Google Scholar] [CrossRef]
- Einstein, M.H.; Pritts, E.A.; Hartenbach, E.M. Venous thromboembolism prevention in gynecologic cancer surgery: A systematic review. Gynecol. Oncol. 2007, 105, 813–819. [Google Scholar] [CrossRef]
- Rahn, D.D.; Mamik, M.M.; Sanses, T.V.D.; Matteson, K.A.; Aschkenazi, S.O.; Washington, B.B.; Steinberg, A.C.; Harvie, H.S.; Lukban, J.C.; Uhlig, K.; et al. Venous thromboembolism prophylaxis in gynecologic surgery: A systematic review. Obstet Gynecol. 2011, 118, 1111–1125. [Google Scholar] [CrossRef] [PubMed]
- Bouchard-Fortier, G.; Geerts, W.H.; Covens, A.; Vicus, D.; Kupets, R.; Gien, L.T. Is venous thromboprophylaxis necessary in patients undergoing minimally invasive surgery for a gynecologic malignancy? Gynecol. Oncol. 2014, 134, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Mills, K.A.; Fehniger, J.; Liao, C.; Hurteau, J.A.; Kirschner, C.V.; Lee, N.K.; Rodriguez, G.C.; Yamada, S.D.; Diaz Moore, E.S.; et al. Venous thromboembolism in patients receiving extended pharmacologic prophylaxis after robotic surgery for endometrial cancer. Int. J. Gynecol. Cancer 2017, 27, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Kahr, H.S.; Christiansen, O.B.; Høgdall, C.; Grove, A.; Mortensen, R.N.; Torp-Pedersen, C.; Knudsen, A.; Thorlacius-Ussing, O. Endometrial cancer does not increase the 30-day risk of venous thromboembolism following hysterectomy compared to benign disease. A Danish National Cohort Study. Gynecol. Oncol. 2019, 155, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Christopoulou, A.; Ardavanis, A.; Papandreou, C.; Koumakis, G.; Papatsimpas, G.; Papakotoulas, P.; Tsoukalas, N.; Andreadis, C.; Samelis, G.; Papakostas, P.; et al. Prophylaxis of cancer-associated venous thromboembolism with low-molecular-weight heparin-tinzaparin: Real world evidence. Oncol. Lett. 2022, 23, 115. [Google Scholar] [CrossRef] [PubMed]
- Bosch, F.T.M.; Mulder, F.I.; Kamphuisen, P.W.; Middeldorp, S.; Bossuyt, P.M.; Büller, H.R.; van Es, N. Primary thromboprophylaxis in ambulatory cancer patients with a high Khorana score: A systematic review and meta-analysis. Blood Adv. 2020, 4, 5215–5225. [Google Scholar] [CrossRef] [PubMed]
- Yuk, J.S.; Lee, B.; Kim, K.; Kim, M.H.; Seo, Y.S.; Hwang, S.O.; Yoon, S.H.; Kim, Y.B. Incidence and risk of venous thromboembolism according to primary treatment in women with ovarian cancer: A retrospective cohort study. PLoS ONE 2021, 16, e0250723. [Google Scholar] [CrossRef]
- Greco, P.S.; Bazzi, A.A.; McLean, K.; Reynolds, R.K.; Spencer, R.J.; Johnston, C.M.; Liu, J.R.; Uppal, S. Incidence and timing of thromboembolic events in patients with ovarian cancer undergoing neoadjuvant chemotherapy. Obstet. Gynecol. 2017, 129, 979–985. [Google Scholar] [CrossRef]
- Bahl, V.; Hu, H.M.; Henke, P.K.; Wakefield, T.W.; Campbell, D.A., Jr.; Caprini, J.A. A validation study of a retrospective venous thromboembolism risk scoring method. Ann. Surg. 2010, 251, 344–350. [Google Scholar] [CrossRef]
- Barber, E.L.; Clarke-Pearson, D.L. The limited utility of currently available venous thromboembolism risk assessment tools in gynecological oncology patients. Am. J. Obstet. Gynecol. 2016, 215, 445.e1–445.e9. [Google Scholar] [CrossRef]
- Woller, S.C.; Stevens, S.M.; Jones, J.P.; Lloyd, J.F.; Evans, R.S.; Aston, V.T.; Elliott, C.G. Derivation and validation of a simple model to identify venous thromboembolism risk in medical patients. Am. J. Med. 2011, 124, 947–954.e2. [Google Scholar] [CrossRef] [PubMed]
- Nendaz, M.; Spirk, D.; Kucher, N.; Aujesky, D.; Hayoz, D.; Beer, J.H.; Husmann, M.; Frauchiger, B.; Korte, W.; Wuillemin, W.A.; et al. Multicentre validation of the Geneva Risk Score for hospitalised medical patients at risk of venous thromboembolism. Explicit ASsessment of Thromboembolic RIsk and Prophylaxis for Medical PATients in SwitzErland (ESTIMATE). Thromb. Haemost. 2014, 111, 531–538. [Google Scholar] [CrossRef] [PubMed]
Risk Factor | OR (95% CI) | Ref. |
---|---|---|
Age > 60 years | OR: 1.03 (95% CI: 1.00–1.05) | [42] |
Body mass index > 30 | OR: 1.92 (95% CI: 1.03–3.57) | [43] |
OR: 1.31 (95% CI: 1.20–1.50) | [42] | |
Tumor stage | OR: 1.11 (95% CI: 0.10–5.50) | [42] |
Surgery | OR: 0.36 (95% CI: 0.30–1.00) | [42] |
Operation time | OR: 1.00 (95% CI: 0.90–1.2) | |
Chemotherapy | OR: 3.73 (95% CI: 1.90–7.32) | [43] |
D-dimer | OR: 1.00 (95% CI: 1.00–1.05) | [42] |
Hemoglobin < 11.5 | OR: 2.56 (95% CI: 1.41–4.67) | [43] |
Cervical cancer: | [41] | |
● Size ≥ 50 mm | OR: 6.46 (95% CI: 1.54–44.0) | |
● Stage IV | OR: 7.62 (95% CI: 1.87–30.5) | |
Ovarian cancer: | [44] | |
● Clear cell histology | OR: 2.8 (95% CI: 0.6–12.6) | |
● Stage III and IV | OR: 3.7 (95% CI: 1.1–13.2) | |
● Grade 2 and 3 | OR: 2.3 (95% CI: 1.3–4.13) | |
● Medium/high surgical complexity | OR: 3.2 (95% CI: 0.8–12.5) | |
Endometrial cancer: | [45] | |
● Non-endometrioid histology | OR: 1.9 (95% CI: 1.3–2.8) | |
● Stage III and IV | OR: 2.3 (95% CI: 1.5–3.4) | |
● Laparotomy (laparoscopy as reference) | OR: 1.6 (95% CI: 1.05–2.34) |
Association | Hospitalized Patients | Surgical Patients | Ambulatory Outpatients on Systemic Therapy | Patients Undergoing Central Venous Catheter |
---|---|---|---|---|
AIOM 2021 [91] |
|
| Low-molecular-weight heparin indicated only in high-risk patients (Khorana Score > 2) | Not indicated as routine prophylaxis |
ASCO 2020 [15] |
|
| Low-molecular-weight heparin indicated only in high-risk patients (Khorana Score > 2) | Not reported |
NCCN 2020 [92] |
|
| Indicated up to 6 months only in high-risk patients (Khorana score > 2) | Not indicated as routine prophylaxis |
ESMO 2023 [17] |
|
| Apixaban, rivaroxaban, or low-molecular-weight heparin may be considered for a maximum of 6 months only in high-risk patients (Khorana score > 2; the risk can individually be calculated with the Vienna-CATS nomogram score and the COMPASS-CAT score) | Compared with no prophylaxis, low-molecular-weight heparin may reduce catheter-related thrombosis without increasing the risk of bleeding. However, the absolute effect is low (38 fewer events per 1000) and the burden of injection is considerable |
ITAC 2022 [16] |
|
| Direct oral anticoagulants only in high-risk patients (Khorana Score, COMPASS-CAT score) | Not indicated as routine prophylaxis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falanga, A.; Lorusso, D.; Colombo, N.; Cormio, G.; Cosmi, B.; Scandurra, G.; Zanagnolo, V.; Marietta, M. Gynecological Cancer and Venous Thromboembolism: A Narrative Review to Increase Awareness and Improve Risk Assessment and Prevention. Cancers 2024, 16, 1769. https://doi.org/10.3390/cancers16091769
Falanga A, Lorusso D, Colombo N, Cormio G, Cosmi B, Scandurra G, Zanagnolo V, Marietta M. Gynecological Cancer and Venous Thromboembolism: A Narrative Review to Increase Awareness and Improve Risk Assessment and Prevention. Cancers. 2024; 16(9):1769. https://doi.org/10.3390/cancers16091769
Chicago/Turabian StyleFalanga, Anna, Domenica Lorusso, Nicoletta Colombo, Gennaro Cormio, Benilde Cosmi, Giuseppa Scandurra, Vanna Zanagnolo, and Marco Marietta. 2024. "Gynecological Cancer and Venous Thromboembolism: A Narrative Review to Increase Awareness and Improve Risk Assessment and Prevention" Cancers 16, no. 9: 1769. https://doi.org/10.3390/cancers16091769