MicroRNAs in Head and Neck Squamous Cell Carcinoma (HNSCC) and Oral Squamous Cell Carcinoma (OSCC)
Abstract
:1. Introduction
2. miRNA Expression Profiling in HNSCC/OSCC
Authors (year) | Altered expression of miRNAs | Materials/methods for miRNA expression profiling | Ref. | |
---|---|---|---|---|
Up | Down | |||
Avissar et al. | miR-21 | miR-375 | HNSCC samples/ | [34] |
(2009) | miR-18a | Microarray | ||
miR-221 | Quantitative RT-PCR | |||
Cervigne et al. | miR-21 | OSCC and leukoplakia samples/ | [33] | |
(2009) | miR-181b | TaqMan low density arrays (TLDA) | ||
miR-345 | Quantitative RT-PCR | |||
Chang et al. | miR-211 | OSCC samples/ | [63] | |
(2008) | TaqMan MicroRNA Assay kit | |||
Chang et al. | miR-21 | miR-494 | HNSCC samples and cell lines (JHU-011, JHU-012, FaDu, JHU-09)/ | [31] |
(2008) | let-7 | Microarray | ||
miR-18 | Quantitative RT-PCR | |||
miR-29c | ||||
miR-142-3p | ||||
miR-155 | ||||
miR-146b | ||||
Childs et al. | miR-21 | miR-1 | HNSCC samples/ | [32] |
(2009) | miR-133a | Microarray | ||
miR-205 | Quantitative RT-PCR | |||
let-7d | ||||
Henson et al. | miR-125b | OSCC samples and cell lines (UPCI: SCC084, SCC078, SCC131, SCC040, SCC029, SCC032, SCC104, SCC142, SCC116, SCC066)/Quantitative PCR | [21] | |
(2009) | miR-100 | |||
Jiang et al. | miR-205 | HNSCC cell lines (SCC17A, SCC17B, SCCD12, SCC10B, SCC5)/ | [70] | |
(2005) | Real-time quantitative PCR | |||
Northern blotting | ||||
Kozaki et al. | miR-374 | miR-27a | OSCC cell lines (Ca9-22, HO-1-N-1, HOC313, HOC815, HSC-2, HSC-3, HSC-4, HSC-5, HSC-6, HSC-7, KON, KOSC-2, NA, OM1, OM2, SKN3, TSU, ZA)/Real-time RT-PCR | [22] |
(2008) | miR-340 | miR-34b | ||
miR-224 | miR-34c | |||
miR-10a | miR-203 | |||
miR-140 | miR-302c | |||
miR-181a | miR-23a | |||
miR-146a | miR-27b | |||
miR-126 | miR-34a | |||
miR-31 | miR-215 | |||
miR-9 | miR-299 | |||
miR-9* | miR-330 | |||
miR-337 | ||||
miR-107 | ||||
miR-133b | ||||
miR-138 | ||||
miR-139 | ||||
miR-223 | ||||
miR-204 | ||||
miR-370 | ||||
let-7d | ||||
miR-95 | ||||
miR-302a | ||||
miR-367 | ||||
let-7g | ||||
miR-23b | ||||
miR-128a | ||||
miR-148a | ||||
miR-155 | ||||
miR-200c | ||||
miR-302b | ||||
miR-368 | ||||
miR-122a | ||||
miR-371 | ||||
let-7a | ||||
miR-26b | ||||
miR-30e-5p | ||||
miR-96 | ||||
miR-125a | ||||
miR-132 | ||||
miR-200b | ||||
miR-199b | ||||
miR-296 | ||||
miR-373 | ||||
miR-137 | ||||
miR-197 | ||||
miR-193a | ||||
let-7e | ||||
miR-30d | ||||
miR-331 | ||||
miR-342 | ||||
miR-338 | ||||
miR-199a | ||||
miR-372 | ||||
miR-184 | ||||
Li et al. | miR-21 | Tongue squamous cell carcinoma samples/ | [30] | |
(2009) | Microarray | |||
Quantitative reverse transcription-PCR | ||||
Northern blotting | ||||
Park et al. | miR-125a | Saliva of oral squamous cell carcinoma patients/ | [65] | |
(2009) | miR-200a | Reverse transcriptase-preamplification-quantitative PCR | ||
Tran et al. | miR-21 | miR-200c | Head and neck cancer cell lines (FaduD, HN6, HN13, UM-SCC9, UM-SCC47, UM-SCC10A, UM-SCC11A, TUM-SCC38, UMSCC4)/MicroarrayNorthern blotting | [35] |
(2007) | miR-200a | miR-373 | ||
miR-103 | miR-345 | |||
miR-19a | miR-382 | |||
miR-361 | miR-342 | |||
miR-27a | miR-133b | |||
miR-US33-1 | miR-373* | |||
miR-7b | miR-US25-2-5p | |||
miR-100 | miR-346 | |||
miR-125b | miR-212 | |||
miR-28 | miR-375 | |||
miR-18 | miR-328 | |||
miR-22 | miR-127 | |||
miR-15a | miR-154 | |||
miR-30b | miR-133a | |||
miR-320 | miR-371 | |||
miR-98 | miR-302d | |||
miR-15b | miR-302c | |||
miR-200b | miR-302b | |||
miR-16 | miR-449 | |||
let-7f | miR-340 | |||
miR-29a | miR-378 | |||
let-7a | ||||
miR-221 | ||||
let-7d | ||||
miR-23a | ||||
miR-31 | ||||
miR-107 | ||||
let-7c | ||||
miR-29b | ||||
miR-24 | ||||
miR-23b | ||||
miR-205 | ||||
Wong et al. | miR-184 | miR-133a | Tongue squamous cell carcinoma samples/Quantitative reverse transcription-PCR of mature miRNAs | [42] |
(2008) | miR-34c | miR-99a | ||
miR-137 | miR-194 | |||
miR-372 | miR-133b | |||
miR-124a | miR-219 | |||
miR-21 | miR-100 | |||
miR-124b | miR-125b | |||
miR-31 | miR-26b | |||
miR-128a | miR-138 | |||
miR-34b | miR-149 | |||
miR-154 | miR-195 | |||
miR-197 | miR-107 | |||
miR-132 | miR-139 | |||
miR-147 | ||||
miR-325 | ||||
miR-181c | ||||
miR-198 | ||||
miR-155 | ||||
miR-30a-3p | ||||
miR-338 | ||||
miR-17-5p | ||||
miR-104 | ||||
miR-134 | ||||
miR-213 | ||||
Yu et al. | miR-21 | miR-16 | The animal model of oral squamous cell carcinoma (hamster)/Microarray | [62] |
(2009) | miR-200b | miR-26a | ||
miR-221 | miR-29 | |||
miR-338 | miR-124a | |||
miR-762 | miR-125b | |||
miR-126-5p | ||||
miR-143 | ||||
miR-145 | ||||
miR-148b | ||||
miR-155 | ||||
miR-199a | ||||
miR-203 |
3. Functional Analysis of miRNAs in HNSCC/OSCC Cells
Authors (Year) | Results of functional analysis of miRNAs in HNSCC /OSCC cells | Ref. |
---|---|---|
Hebert
et al. (2007) | Expression of high mobility group A2 (HMGA2), which is associated with enhanced selective chemosensitivity towards the topoisomerase (topo) II inhibitor, doxorubicin, was regulated in part by miR-98. | [60] |
Henson
et al. (2009) | Transfection of miR-125b and miR-100 reduced cell proliferation and modified the expression of target and nontarget genes. Some of the genes are overexpressed in radioresistant OSCC cells. | [21] |
Kozaki
et al. (2008) | Transfection of miR-137 or miR-193a reduced cell growth, with down-regulation of the translation of cyclin-dependent kinase 6 or E2F transcription factor, respectively. | [22] |
Liu
et al. (2009) | Transfection of miR-138 suppressed cell invasion and led to cell cycle arrest and apoptosis. Knockdown of miR-138 enhanced cell invasion and suppressed apoptosis. | [71] |
Liu
et al. (2009) | Transfection of miR-222 reduced the expression of matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2). The data indicated that miR-222 inhibits invasion of oral tongue squamous cell carcinoma. | [72] |
Chang
et al. (2008) | Transfection of miR-21 increased cell growth, and transfection of the miR-21 inhibitor caused decreased cell growth. Flow cytometry analysis showed that mir-21 inhibitor transfection induced significant increase in cytochrome c release and increased apoptosis. | [31] |
Chang
et al. (2008) | Enforced miR-211 expression increased proliferation, migration, and anchorage-independent colony formation, suggesting that high miR-211 expression may be associated with the progression of oral carcinoma. | [63] |
Li
et al. (2009) | Inhibiting miR-21 with antisense oligonucleotide (ASO) reduced survival and anchorage-independent growth, and induced apoptosis. Repeated injection of miR-21 ASO suppresses tumor formation in nude mice by reducing cell proliferation and inducing apoptosis | [30] |
Wong
et al. (2008) | Transfection of miR-133a and miR-133b precursors reduced Pyruvate Kinase type M2 (PKM2) expression was reduced. | [47] |
Wong
et al. (2008) | Inhibition of miR-184 reduced cell proliferation rate and induced down-regulation of c-Myc. Suppressing miR-184 induced apoptosis. | [42] |
4. Animal Models
5. miRNAs as a Biomarker Associated with HNSCC/OSCC
Authors (Year) | Properties of miRNAs as biomarkers | Ref. |
---|---|---|
Avissar et al.(2009) | The expression ratio of “miR-221: miR-375” exhibited the strongest predictive ability for differentiating HNSCC tumor from non-diseased epithelia. | [34] |
Cervigne et al. (2009) | Expression of miR-21, miR-181b, and miR-345 was consistently upregulated and associated with increased severity during progression. | [33] |
Chang et al. (2008) | MiR-211 expression was higher in tumors with nodal metastasis or vascular invasion than less aggressive tumors. Patients with high miR-211 expression had worse survival rates than the other groups. The data suggested that miR-211 expression could be a valuable prognostic indicator. | [63] |
Childs et al. (2009) | Low expression levels of miR205 were associated with loco-regional recurrence. A combination of low levels of miR-205 and low levels of let-7d expression was significantly associated with poor survival rates. | [32] |
Park et al. (2009) | Expression levels of miR-200a and miR-125a were significantly lower in the saliva of OSCC patients. | [65] |
Wong et al. (2008) | Plasma miR-184 levels were significantly higher in tongue cancer patients, and were significantly reduced after surgical removal of the primary tumors. | [42] |
Liu et al. (2008) | MiR-31 in plasma was significantly elevated in OSCC patients, and it was remarkably reduced after tumor resection. | [66] |
6. Discussion
7. Conclusions
References
- Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Lee, Y.S.; Dutta, A. MicroRNAs in cancer. Annu. Rev. Pathol. 2009, 4, 199–227. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75, 855–862. [Google Scholar] [CrossRef]
- Miska, E.A. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev. 2005, 15, 563–568. [Google Scholar] [CrossRef]
- Alvarez-Garcia, I.; Miska, E.A. MicroRNA functions in animal development and human disease. Development 2005, 132, 4653–4662. [Google Scholar] [CrossRef]
- Galardi, S.; Mercatelli, N.; Giorda, E.; Massalini, S.; Frajese, G.V.; Ciafre, S.A.; Farace, M.G. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J. Biol. Chem. 2007, 282, 23716–23724. [Google Scholar]
- Hayashita, Y.; Osada, H.; Tatematsu, Y.; Yamada, H.; Yanagisawa, K.; Tomida, S.; Yatabe, Y.; Kawahara, K.; Sekido, Y.; Takahashi, T. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005, 65, 9628–9632. [Google Scholar] [CrossRef]
- Liu, N.; Bezprozvannaya, S.; Williams, A.H.; Qi, X.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008, 22, 3242–3254. [Google Scholar] [CrossRef]
- Harfe, B.D. MicroRNAs in vertebrate development. Curr. Opin. Genet. Dev. 2005, 15, 410–415. [Google Scholar] [CrossRef]
- Williams, A.H.; Liu, N.; van Rooij, E.; Olson, E.N. MicroRNA control of muscle development and disease. Curr. Opin. Cell Biol. 2009, 21, 461–469. [Google Scholar] [CrossRef]
- Brennecke, J.; Hipfner, D.R.; Stark, A.; Russell, R.B.; Cohen, S.M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003, 113, 25–36. [Google Scholar] [CrossRef]
- Liu, X.; Nelson, A.; Wang, X.; Kanaji, N.; Kim, M.; Sato, T.; Nakanishi, M.; Li, Y.; Sun, J.; Michalski, J.; Patil, A.; Basma, H.; Rennard, S.I. MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochem. Biophys. Res. Commun. 2009, 380, 177–182. [Google Scholar] [CrossRef]
- Tang, Y.; Zheng, J.; Sun, Y.; Wu, Z.; Liu, Z.; Huang, G. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int. Heart J. 2009, 50, 377–387. [Google Scholar] [CrossRef]
- Carleton, M.; Cleary, M.A.; Linsley, P.S. MicroRNAs and cell cycle regulation. Cell Cycle 2007, 6, 2127–2132. [Google Scholar] [CrossRef]
- Cohen, E.E.; Zhu, H.; Lingen, M.W.; Martin, L.E.; Kuo, W.L.; Choi, E.A.; Kocherginsky, M.; Parker, J.S.; Chung, C.H.; Rosner, M.R. A feed-forward loop involving protein kinase Calpha and microRNAs regulates tumor cell cycle. Cancer Res. 2009, 69, 65–74. [Google Scholar] [CrossRef]
- Liu, M.; Wu, H.; Liu, T.; Li, Y.; Wang, F.; Wan, H.; Li, X.; Tang, H. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res. 2009, 19, 828–837. [Google Scholar] [CrossRef]
- He, L.; Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Christensen, B.C.; Moyer, B.J.; Avissar, M.; Ouellet, L.G.; Plaza, S.L.; McClean, M.D.; Marsit, C.J.; Kelsey, K.T. A let-7 microRNA-binding site polymorphism in the KRAS 3' UTR is associated with reduced survival in oral cancers. Carcinogenesis 2009, 30, 1003–1007. [Google Scholar] [CrossRef]
- Henson, B.J.; Bhattacharjee, S.; O'Dee, D.M.; Feingold, E.; Gollin, S.M. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Canc. 2009, 48, 569–582. [Google Scholar] [CrossRef]
- Kozaki, K.; Imoto, I.; Mogi, S.; Omura, K.; Inazawa, J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008, 68, 2094–2105. [Google Scholar] [CrossRef]
- Calin, G.A. MicroRNAs and cancer: what we know and what we still have to learn. Genome Med. 2009, 1, 78. [Google Scholar] [CrossRef]
- Garzon, R.; Calin, G.A.; Croce, C.M. MicroRNAs in Cancer. Annu. Rev. Med. 2009, 60, 167–179. [Google Scholar] [CrossRef]
- Cimmino, A.; Calin, G.A.; Fabbri, M.; Iorio, M.V.; Ferracin, M.; Shimizu, M.; Wojcik, S.E.; Aqeilan, R.I.; Zupo, S.; Dono, M.; Rassenti, L.; Alder, H.; Volinia, S.; Liu, C.G.; Kipps, T.J.; Negrini, M.; Croce, C.M. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 2005, 102, 13944–13949. [Google Scholar] [CrossRef]
- Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell 2005, 120, 635–647. [Google Scholar] [CrossRef]
- Sampson, V.B.; Rong, N.H.; Han, J.; Yang, Q.; Aris, V.; Soteropoulos, P.; Petrelli, N.J.; Dunn, S.P.; Krueger, L.J. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 2007, 67, 9762–9770. [Google Scholar] [CrossRef]
- Lee, Y.S.; Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 2007, 21, 1025–1030. [Google Scholar] [CrossRef]
- Gomes, C.C.; Gomez, R.S. MicroRNA and oral cancer: future perspectives. Oral Oncol. 2008, 44, 910–914. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Sun, L.; Yang, M.; Pan, C.; Chen, W.; Wu, D.; Lin, Z.; Zeng, C.; Yao, Y.; Zhang, P.; Song, E. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin. Cancer Res. 2009, 15, 3998–4008. [Google Scholar] [CrossRef]
- Chang, S.S.; Jiang, W.W.; Smith, I.; Poeta, L.M.; Begum, S.; Glazer, C.; Shan, S.; Westra, W.; Sidransky, D.; Califano, J.A. MicroRNA alterations in head and neck squamous cell carcinoma. Int. J. Cancer 2008, 123, 2791–2797. [Google Scholar] [CrossRef]
- Childs, G.; Fazzari, M.; Kung, G.; Kawachi, N.; Brandwein-Gensler, M.; McLemore, M.; Chen, Q.; Burk, R.D.; Smith, R.V.; Prystowsky, M.B.; Belbin, T.J.; Schlecht, N.F. Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am. J. Pathol. 2009, 174, 736–745. [Google Scholar] [CrossRef]
- Cervigne, N.K.; Reis, P.P.; Machado, J.; Sadikovic, B.; Bradley, G.; Galloni, N.N.; Pintilie, M.; Jurisica, I.; Gilbert, R.; Gullane, P.; Irish, J.; Kamel-Reid, S. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum. Mol. Genet. 2009, 18, 4818–4829. [Google Scholar] [CrossRef]
- Avissar, M.; Christensen, B.C.; Kelsey, K.T.; Marsit, C.J. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin. Cancer Res. 2009, 15, 2850–2855. [Google Scholar] [CrossRef]
- Tran, N.; McLean, T.; Zhang, X.; Zhao, C.J.; Thomson, J.M.; O'Brien, C.; Rose, B. MicroRNA expression profiles in head and neck cancer cell lines. Biochem. Biophys. Res. Commun. 2007, 358, 12–17. [Google Scholar] [CrossRef]
- Calin, G.A.; Ferracin, M.; Cimmino, A.; Di Leva, G.; Shimizu, M.; Wojcik, S.E.; Iorio, M.V.; Visone, R.; Sever, N.I.; Fabbri, M.; Iuliano, R.; Palumbo, T.; Pichiorri, F.; Roldo, C.; Garzon, R.; Sevignani, C.; Rassenti, L.; Alder, H.; Volinia, S.; Liu, C.G.; Kipps, T.J.; Negrini, M.; Croce, C.M. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 2005, 353, 1793–1801. [Google Scholar] [CrossRef]
- Garzon, R.; Volinia, S.; Liu, C.G.; Fernandez-Cymering, C.; Palumbo, T.; Pichiorri, F.; Fabbri, M.; Coombes, K.; Alder, H.; Nakamura, T.; Flomenberg, N.; Marcucci, G.; Calin, G.A.; Kornblau, S.M.; Kantarjian, H.; Bloomfield, C.D.; Andreeff, M.; Croce, C.M. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008, 111, 3183–3189. [Google Scholar] [CrossRef]
- Frankel, L.B.; Christoffersen, N.R.; Jacobsen, A.; Lindow, M.; Krogh, A.; Lund, A.H. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 2008, 283, 1026–1033. [Google Scholar] [CrossRef]
- Meng, F.; Henson, R.; Wehbe-Janek, H.; Ghoshal, K.; Jacob, S.T.; Patel, T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007, 133, 647–658. [Google Scholar] [CrossRef]
- Volinia, S.; Calin, G.A.; Liu, C.G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; Prueitt, R.L.; Yanaihara, N.; Lanza, G.; Scarpa, A.; Vecchione, A.; Negrini, M.; Harris, C.C.; Croce, C.M. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 2006, 103, 2257–2261. [Google Scholar] [CrossRef]
- Ciafre, S.A.; Galardi, S.; Mangiola, A.; Ferracin, M.; Liu, C.G.; Sabatino, G.; Negrini, M.; Maira, G.; Croce, C.M.; Farace, M.G. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 2005, 334, 1351–1358. [Google Scholar] [CrossRef]
- Wong, T.S.; Liu, X.B.; Wong, B.Y.; Ng, R.W.; Yuen, A.P.; Wei, W.I. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin. Cancer Res. 2008, 14, 2588–2592. [Google Scholar] [CrossRef]
- Wong, Q.W.; Lung, R.W.; Law, P.T.; Lai, P.B.; Chan, K.Y.; To, K.F.; Wong, N. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology 2008, 135, 257–269. [Google Scholar] [CrossRef]
- Slaby, O.; Svoboda, M.; Fabian, P.; Smerdova, T.; Knoflickova, D.; Bednarikova, M.; Nenutil, R.; Vyzula, R. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007, 72, 397–402. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Li, D.; Xiao, B.; Miao, Y.; Jiang, Z.; Zhuo, H. Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. Med. Oncol. 2009, in press. [Google Scholar]
- Schaefer, A.; Jung, M.; Mollenkopf, H.J.; Wagner, I.; Stephan, C.; Jentzmik, F.; Miller, K.; Lein, M.; Kristiansen, G.; Jung, K. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int. J. Cancer 2010, 126, 1166–1176. [Google Scholar]
- Wong, T.S.; Liu, X.B.; Chung-Wai Ho, A.; Po-Wing Yuen, A.; Wai-Man Ng, R.; Ignace Wei, W. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int. J. Cancer 2008, 123, 251–257. [Google Scholar] [CrossRef]
- Ichimi, T.; Enokida, H.; Okuno, Y.; Kunimoto, R.; Chiyomaru, T.; Kawamoto, K.; Kawahara, K.; Toki, K.; Kawakami, K.; Nishiyama, K.; Tsujimoto, G.; Nakagawa, M.; Seki, N. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int. J. Cancer 2009, 125, 345–352. [Google Scholar] [CrossRef]
- Sarver, A.L.; French, A.J.; Borralho, P.M.; Thayanithy, V.; Oberg, A.L.; Silverstein, K.A.; Morlan, B.W.; Riska, S.M.; Boardman, L.A.; Cunningham, J.M.; Subramanian, S.; Wang, L.; Smyrk, T.C.; Rodrigues, C.M.; Thibodeau, S.N.; Steer, C.J. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer 2009, 9, 401. [Google Scholar] [CrossRef]
- Arndt, G.M.; Dossey, L.; Cullen, L.M.; Lai, A.; Druker, R.; Eisbacher, M.; Zhang, C.; Tran, N.; Fan, H.; Retzlaff, K.; Bittner, A.; Raponi, M. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer 2009, 9, 374. [Google Scholar] [CrossRef]
- Crawford, M.; Batte, K.; Yu, L.; Wu, X.; Nuovo, G.J.; Marsh, C.B.; Otterson, G.A.; Nana-Sinkam, S.P. MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer. Biochem. Biophys. Res. Commun. 2009, 388, 483–489. [Google Scholar] [CrossRef]
- Bandres, E.; Cubedo, E.; Agirre, X.; Malumbres, R.; Zarate, R.; Ramirez, N.; Abajo, A.; Navarro, A.; Moreno, I.; Monzo, M.; Garcia-Foncillas, J. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol. Cancer 2006, 5, 29. [Google Scholar]
- Tang, X.; Gal, J.; Zhuang, X.; Wang, W.; Zhu, H.; Tang, G. A simple array platform for microRNA analysis and its application in mouse tissues. RNA 2007, 13, 1803–1822. [Google Scholar] [CrossRef]
- Yin, J.Q.; Zhao, R.C.; Morris, K.V. Profiling microRNA expression with microarrays. Trends Biotechnol. 2008, 26, 70–76. [Google Scholar] [CrossRef]
- Chan, J.A.; Krichevsky, A.M.; Kosik, K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005, 65, 6029–6033. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Yang, Y.; Lu, Y.; He, C.; Hu, G.; Liu, H.; Chen, J.; He, J.; Yu, H. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res. 2009, 1286, 13–18. [Google Scholar] [CrossRef]
- Asangani, I.A.; Rasheed, S.A.; Nikolova, D.A.; Leupold, J.H.; Colburn, N.H.; Post, S.; Allgayer, H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008, 27, 2128–2136. [Google Scholar] [CrossRef]
- Qi, L.; Bart, J.; Tan, L.P.; Platteel, I.; Sluis, T.; Huitema, S.; Harms, G.; Fu, L.; Hollema, H.; Berg, A. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer 2009, 9, 163. [Google Scholar]
- Boo, L.M.; Lin, H.H.; Chung, V.; Zhou, B.; Louie, S.G.; O'Reilly, M.A.; Yen, Y.; Ann, D.K. High mobility group A2 potentiates genotoxic stress in part through the modulation of basal and DNA damage-dependent phosphatidylinositol 3-kinase-related protein kinase activation. Cancer Res. 2005, 65, 6622–6630. [Google Scholar] [CrossRef]
- Hebert, C.; Norris, K.; Scheper, M.A.; Nikitakis, N.; Sauk, J.J. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol. Cancer 2007, 6, 5. [Google Scholar] [CrossRef]
- Ishigami, T.; Uzawa, K.; Higo, M.; Nomura, H.; Saito, K.; Kato, Y.; Nakashima, D.; Shiiba, M.; Bukawa, H.; Yokoe, H.; Kawata, T.; Ito, H.; Tanzawa, H. Genes and molecular pathways related to radioresistance of oral squamous cell carcinoma cells. Int. J. Cancer 2007, 120, 2262–2270. [Google Scholar] [CrossRef]
- Yu, T.; Wang, X.Y.; Gong, R.G.; Li, A.; Yang, S.; Cao, Y.T.; Wen, Y.M.; Wang, C.M.; Yi, X.Z. The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster. J. Exp. Clin. Cancer Res. 2009, 28, 64. [Google Scholar] [CrossRef]
- Chang, K.W.; Liu, C.J.; Chu, T.H.; Cheng, H.W.; Hung, P.S.; Hu, W.Y.; Lin, S.C. Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma. J. Dent. Res. 2008, 87, 1063–1068. [Google Scholar] [CrossRef]
- Li, Y.; St John, M.A.; Zhou, X.; Kim, Y.; Sinha, U.; Jordan, R.C.; Eisele, D.; Abemayor, E.; Elashoff, D.; Park, N.H.; Wong, D.T. Salivary transcriptome diagnostics for oral cancer detection. Clin. Cancer Res. 2004, 10, 8442–8450. [Google Scholar] [CrossRef]
- Park, N.J.; Zhou, H.; Elashoff, D.; Henson, B.S.; Kastratovic, D.A.; Abemayor, E.; Wong, D.T. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res. 2009, 15, 5473–5477. [Google Scholar] [CrossRef]
- Liu, C.J. ; Kao, S.Y.; Tu, H.F.; Tsai, M.M.; Chang, K.W.; Lin, S.C. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis. 2010, in press. [Google Scholar]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Nelson, P.T.; Baldwin, D.A.; Scearce, L.M.; Oberholtzer, J.C.; Tobias, J.W.; Mourelatos, Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat. Methods 2004, 1, 155–161. [Google Scholar] [CrossRef]
- Zhang, X.; Cairns, M.; Rose, B.; O'Brien, C.; Shannon, K.; Clark, J.; Gamble, J.; Tran, N. Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int.J.Cancer 2009, 124, 2855–2863. [Google Scholar] [CrossRef]
- Jiang, J.; Lee, E.J.; Gusev, Y.; Schmittgen, T.D. Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res. 2005, 33, 5394–5403. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, L.; Wang, A.; Yu, J.; Shi, F.; Zhou, X. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett. 2009, 286, 217–222. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Jiang, L.; Wang, A.; Shi, F.; Ye, H.; Zhou, X. MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics 2009, 6, 131–139. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Shiiba, M.; Uzawa, K.; Tanzawa, H. MicroRNAs in Head and Neck Squamous Cell Carcinoma (HNSCC) and Oral Squamous Cell Carcinoma (OSCC). Cancers 2010, 2, 653-669. https://doi.org/10.3390/cancers2020653
Shiiba M, Uzawa K, Tanzawa H. MicroRNAs in Head and Neck Squamous Cell Carcinoma (HNSCC) and Oral Squamous Cell Carcinoma (OSCC). Cancers. 2010; 2(2):653-669. https://doi.org/10.3390/cancers2020653
Chicago/Turabian StyleShiiba, Masashi, Katsuhiro Uzawa, and Hideki Tanzawa. 2010. "MicroRNAs in Head and Neck Squamous Cell Carcinoma (HNSCC) and Oral Squamous Cell Carcinoma (OSCC)" Cancers 2, no. 2: 653-669. https://doi.org/10.3390/cancers2020653
APA StyleShiiba, M., Uzawa, K., & Tanzawa, H. (2010). MicroRNAs in Head and Neck Squamous Cell Carcinoma (HNSCC) and Oral Squamous Cell Carcinoma (OSCC). Cancers, 2(2), 653-669. https://doi.org/10.3390/cancers2020653