Surrogates of Long-Term Vitamin D Exposure and Ovarian Cancer Risk in Two Prospective Cohort Studies
Abstract
:1. Introduction
2. Results
Characteristics | NHS in 1998 | NHSII in 1999 | ||||
---|---|---|---|---|---|---|
Categories of UV-B flux (R-B × 10−4) | ||||||
Low (<113) (n = 27,408) | Medium (113) (n = 25,197) | High (>113) (n = 23,008) | Low (<113) (n = 31,679) | Medium (113) (n = 22,903) | High (>113) (n = 48,322) | |
Age, years a | 61.6 (7.1) | 61.6 (7.1) | 63.0 (7.2) | 42.2 (4.7) | 42.7 (4.5) | 42.4 (4.6) |
Cumulative average UV-B flux, R-B × 10−4 | 105 (3) | 113 (0) | 149 (22) | 104 (3) | 113 (0) | 145 (21) |
UV-B flux at birth, R-B × 10−4 | 107 (9) | 114 (7) | 126 (25) | 107 (11) | 114 (9) | 132 (24) |
UV-B flux at age 15, R-B × 10−4 | 107 (8) | 113 (6) | 128 (26) | 106 (9) | 113 (6) | 135 (24) |
UV-B flux at age 30, R-B × 10−4 | 106 (8) | 113 (6) | 139 (28) | 105 (10) | 114 (7) | 143 (23) |
UV-B flux at baseline, R-B × 10−4 | 105 (4) | 113 (0) | 143 (28) | 104 (4) | 113 (0) | 145 (23) |
BMI, kg/m2 | 26.4 (5.2) | 26.8 (5.4) | 25.9 (5.2) | 26.0 (6.0) | 26.4 (6.1) | 25.9 (5.9) |
Cumulative average total dietary vitamin D b, IU/day | 351 (203) | 339 (201) | 359 (224) | 388 (222) | 364 (217) | 369 (224) |
Cumulative average energy-adjusted food vitamin D b, IU/day | 213 (87) | 199 (82) | 203 (87) | 253 (110) | 234 (105) | 236 (110) |
Cumulative average supplemental vitamin D b, IU/day | 125 (163) | 128 (164) | 148 (192) | 133 (168) | 128 (164) | 135 (171) |
Age at menarche, years | 12.5 (1.4) | 12.6 (1.4) | 12.6 (1.4) | 12.4 (1.4) | 12.4 (1.4) | 12.4 (1.4) |
Ever use of oral contraceptives, % | 49 | 46 | 56 | 82 | 83 | 89 |
Duration of OC use, years c | 4.1 (3.8) | 4.0 (3.7) | 4.4 (4.0) | 4.7 (4.2) | 5.0 (4.4) | 5.6 (4.7) |
Ever parous, % | 95 | 95 | 93 | 81 | 82 | 78 |
Number of children among parous women | 3.4 (1.6) | 3.2 (1.5) | 3.0 (1.4) | 2.3 (1.0) | 2.3 (1.0) | 2.2 (0.9) |
Tubal ligation, % | 19 | 22 | 19 | 22 | 28 | 25 |
Family history of ovarian cancer, % | 3 | 3 | 3 | 2 | 2 | 2 |
Postmenopausal, % | 86 | 85 | 85 | 4 | 5 | 4 |
Ever use of postmenopausal hormones d, % | 50 | 52 | 67 | 68 | 71 | 76 |
Exposure | Nurses’ Health Study | Nurses’ Health Study II | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cases, N | Person-years | Multivariable-adjusted RR a | 95% CI | P-trend b | Cases, N | Person-years | Multivariable-adjusted RR a | 95% CI | P-trend b | P-het c | |
UV-B flux at birth, R-B × 10−4 | |||||||||||
Low (<113) | 166 | 329,536 | 1.00 | ref | 0.11 | 83 | 535,110 | 1.00 | ref | 0.14 | 0.06 |
Medium (113) | 158 | 314,502 | 0.95 | 0.76–1.18 | 55 | 413,614 | 0.88 | 0.62–1.24 | |||
High (>113) | 97 | 142,714 | 1.21 | 0.93–1.56 | 68 | 587,015 | 0.78 | 0.56–1.07 | |||
UV-B flux at age 15, R-B × 10−4 | |||||||||||
Low | 168 | 330,546 | 1.00 | ref | 0.12 | 73 | 412,386 | 1.00 | ref | 0.06 | 0.02 |
Medium | 167 | 323,148 | 0.98 | 0.79–1.21 | 49 | 326,486 | 0.86 | 0.59–1.23 | |||
High | 95 | 140,306 | 1.20 | 0.93–1.56 | 56 | 460,142 | 0.71 | 0.50–1.00 | |||
UV-B flux at age 30, R-B × 10−4 | |||||||||||
Low | 160 | 325,939 | 1.00 | ref | <0.01 | 69 | 370,470 | 1.00 | ref | 0.05 | <0.01 |
Medium | 151 | 303,456 | 0.98 | 0.79–1.23 | 42 | 291,105 | 0.78 | 0.53–1.15 | |||
High | 132 | 178,182 | 1.35 | 1.07–1.71 | 66 | 515,274 | 0.69 | 0.49–0.96 | |||
UV-B flux at baseline, R-B × 10−4 | |||||||||||
Low | 351 | 1,040,302 | 1.00 | ref | 0.15 | 96 | 629,292 | 1.00 | ref | 0.02 | 0.01 |
Medium | 366 | 1,020,194 | 1.04 | 0.90–1.21 | 63 | 476,575 | 0.86 | 0.62–1.18 | |||
High | 253 | 585,652 | 1.13 | 0.96–1.33 | 96 | 876,633 | 0.70 | 0.53–0.93 | |||
UV-B flux cumulative updated average from baseline questionnaire, R-B × 10−4 | |||||||||||
Low | 326 | 986,280 | 1.00 | ref | 0.08 | 95 | 613,895 | 1.00 | ref | <0.01 | <0.01 |
Medium | 317 | 927,286 | 1.02 | 0.87–1.19 | 60 | 444,825 | 0.87 | 0.63–1.21 | |||
High | 327 | 732,582 | 1.14 | 0.97–1.33 | 100 | 923,780 | 0.67 | 0.50–0.89 | |||
Cumulative average vitamin D intake from food, IU/day d | |||||||||||
<200 | 406 | 952,357 | 1.00 | ref | 0.61 | 77 | 597,819 | 1.00 | ref | 0.74 | 0.36 |
200–299 | 234 | 533,531 | 0.96 | 0.81–1.13 | 78 | 480,302 | 1.26 | 0.92–1.72 | |||
300+ | 91 | 217,913 | 0.96 | 0.76–1.20 | 45 | 352,606 | 1.03 | 0.71–1.50 | |||
Cumulative average supplemental vitamin D intake, IU/day | |||||||||||
None | 266 | 751,728 | 1.00 | ref | 0.71 | 58 | 539,404 | 1.00 | ref | 0.43 | 0.25 |
<200 | 238 | 463,540 | 1.15 | 0.95–1.39 | 83 | 396,170 | 1.78 | 1.24–2.56 | |||
200+ | 227 | 488,533 | 1.07 | 0.89–1.29 | 59 | 495,153 | 1.05 | 0.72–1.52 | |||
Cumulative average predicted 25(OH)D score | |||||||||||
Lowest tertile | 139 | 300,915 | 1.00 | ref | 0.07 | 60 | 357,464 | 1.00 | ref | 0.05 | <0.01 |
Intermetdiate tertile | 148 | 330,632 | 0.91 | 0.72–1.15 | 70 | 454,709 | 0.98 | 0.69–1.38 | |||
Highest tertile | 154 | 230,673 | 1.27 | 1.00–1.61 | 51 | 470,741 | 0.68 | 0.48–1.00 |
Exposure | Premenopausal | Postmenopausal | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cases, N | Person-years | Multivariable-adjusted RR b | 95% CI | P-trend c | Cases, N | Person-years | Multivariable-adjusted RR b | 95% CI | P-trend c | P-int d | |
UV-B flux at birth, R-B × 10−4 | |||||||||||
Low (<113) | 70 | 470,702 | 1.00 | ref | 0.21 | 167 | 360,834 | 1.00 | ref | 0.59 | 0.06 |
Medium (113) | 44 | 365,110 | 0.80 | 0.55–1.17 | 165 | 331,549 | 1.01 | 0.82–1.26 | |||
High (>113) | 53 | 498,500 | 0.77 | 0.53–1.11 | 107 | 195,134 | 1.21 | 0.89–1.64 | |||
UV-B flux at age 15, R-B × 10−4 | |||||||||||
Low | 59 | 350,076 | 1.00 | ref | 0.04 | 170 | 360,316 | 1.00 | ref | 0.49 | 0.02 |
Medium | 41 | 277,252 | 0.85 | 0.57–1.27 | 172 | 339,988 | 1.02 | 0.82–1.26 | |||
High | 38 | 369,923 | 0.66 | 0.43–1.00 | 105 | 193,486 | 1.13 | 0.76–1.69 | |||
UV-B flux at age 30, R-B × 10−4 | |||||||||||
Low | 57 | 313,749 | 1.00 | ref | 0.02 | 160 | 351,564 | 1.00 | ref | <0.01 | <0.01 |
Medium | 35 | 248,444 | 0.76 | 0.50–1.16 | 156 | 316,438 | 1.04 | 0.83–1.29 | |||
High | 43 | 409,234 | 0.61 | 0.40–0.91 | 146 | 241,551 | 1.37 | 1.09–1.73 | |||
UV-B flux at baseline, R-B × 10−4 | |||||||||||
Low | 148 | 902,035 | 1.00 | ref | 0.03 | 270 | 661,894 | 1.00 | ref | 0.05 | <0.01 |
Medium | 126 | 759,919 | 0.98 | 0.77–1.25 | 283 | 626,680 | 1.07 | 0.91–1.27 | |||
High | 101 | 902,447 | 0.75 | 0.58–0.98 | 225 | 448,003 | 1.21 | 1.01–1.45 | |||
UV-B flux cumulative updated average from baseline questionnaire, R-B × 10−4 | |||||||||||
Low | 145 | 884,813 | 1.00 | ref | 0.07 | 248 | 614,338 | 1.00 | ref | 0.87 | <0.01 |
Medium | 117 | 718,793 | 0.97 | 0.76–1.24 | 241 | 552,788 | 1.04 | 0.87–1.24 | |||
High | 113 | 960,795 | 0.78 | 0.59–1.03 | 289 | 569,449 | 1.11 | 0.77–1.60 | |||
Cumulative average vitamin D intake from food, IU/day e | |||||||||||
<200 | 119 | 748,511 | 1.00 | ref | 0.20 | 341 | 695,347 | 1.00 | ref | 0.31 | 0.05 |
200–299 | 96 | 523,242 | 1.27 | 0.91.67 | 206 | 431,725 | 0.94 | 0.79–1.12 | |||
300+ | 57 | 358,610 | 1.22 | 0.81.69 | 71 | 180,409 | 0.66 | 0.27–1.62 | |||
Cumulative average supplemental vitamin D intake, IU/day | |||||||||||
None | 128 | 741,436 | 1.00 | ref | 0.18 | 181 | 459,440 | 1.00 | ref | 0.91 | 0.19 |
<200 | 74 | 379,762 | 1.13 f | 0.51–2.50 | 233 | 431,678 | 1.25 | 1.02–1.54 | |||
200+ | 70 | 509,165 | 0.87 | 0.64–1.18 | 204 | 416,361 | 1.15 | 0.93–1.41 | |||
Cumulative average predicted 25(OH)D score | |||||||||||
Lowest tertile | 65 | 360,441 | 1.00 | ref | 0.99 f | 134 | 297,939 | 1.00 | ref | 0.72 | 0.18 |
Intermediate tertile | 68 | 457,829 | 0.90 | 0.64–1.27 | 150 | 327,512 | 1.07 | 0.61–1.87 | |||
Highest tertile | 58 | 443,145 | 1.00f | 0.43–2.35 | 147 | 258,269 | 1.05 | 0.61–1.80 |
Cumulative average UV-B flux, R-B × 10−4 Person-years | Nurses’ Health Study | Nurses’ Health Study II | P-het c | ||||||
---|---|---|---|---|---|---|---|---|---|
Low | Medium | High | P-trend b | Low | Medium | High | P-trend b | ||
986,280 | 927,286 | 732,582 | 613,895 | 444,825 | 923,780 | ||||
Serous, N | 183 | 205 | 213 | 46 | 30 | 42 | |||
Multivariate-adjusted RR a | 1.00 | 1.19 | 1.34 | <0.01 | 1.00 | 0.90 | 0.59 | 0.01 | <0.01 |
(95% CI) | (ref) | (0.97–1.45) | (1.10–1.64) | (ref) | (0.57–1.43) | (0.39–0.89) | |||
Mucinous, N | 33 | 25 | 17 | 8 | 6 | 12 | |||
Multivariate-adjusted RR a | 1.00 | 0.79 | 0.62 | 0.14 | 1.00 | 1.04 | 0.95 | 0.87 | 0.47 |
(95% CI) | (ref) | (0.47–1.32) | (0.34–1.13) | (ref) | (0.36–3.01) | (0.39–2.32) | |||
Endometrioid/clear cell, N | 58 | 53 | 54 | 25 | 15 | 33 | |||
Multivariate-adjusted RR a | 1.00 | 0.92 | 1.04 | 0.72 | 1.00 | 0.85 | 0.82 | 0.52 | 0.47 |
(95% CI) | (ref) | (0.63–1.34) | (0.71–1.51) | (ref) | (0.45–1.61) | (0.49–1.38) | |||
Invasive tumors, N | 272 | 274 | 282 | 77 | 44 | 78 | |||
Multivariate-adjusted RR a | 1.00 | 1.06 | 1.17 | 0.06 | 1.00 | 0.79 | 0.65 | 0.01 | <0.01 |
(95% CI) | (ref) | (0.90–1.25) | (0.99–1.39) | (ref) | (0.55–1.15) | (0.47–0.89) | |||
Borderline tumors, N | 37 | 30 | 25 | 16 | 14 | 16 | |||
Multivariate-adjusted RR a | 1.00 | 0.83 | 0.86 | 0.66 | 1.00 | 1.26 | 0.65 | 0.11 | 0.33 |
(95% CI) | (ref) | (0.51–1.35) | (0.51–1.44) | (ref) | (0.61–2.58) | (0.32–1.30) | |||
Rapidly fatal disease d, N | 133 | 135 | 120 | 16 | 7 | 18 | |||
Multivariate-adjusted RR a | 1.00 | 1.07 | 1.02 | 0.97 | 1.00 | 0.60 | 0.70 | 0.47 | 0.50 |
(95% CI) | (ref) | (0.84–1.36) | (0.79–1.31) | (ref) | (0.25–1.47) | (0.36–1.38) | |||
Less aggressive disease d, N | 130 | 130 | 142 | 56 | 31 | 49 | |||
Multivariate-adjusted RR a | 1.00 | 1.04 | 1.26 | 0.04 | 1.00 | 0.76 | 0.55 | <0.01 | <0.01 |
(95% CI) | (ref) | (0.82–1.33) | (0.99–1.61) | (ref) | (0.49–1.18) | (0.38–0.81) |
3. Discussion
4. Experimental
4.1. Study Populations
4.2. Case Ascertainment
4.3. Exposure Data
4.4. Statistical Analysis
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef]
- Lukanova, A.; Kaaks, R. Endogenous hormones and ovarian cancer: Epidemiology and current hypotheses. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 98–107. [Google Scholar]
- Fleming, J.S.; Beaugie, C.R.; Haviv, I.; Chenevix-Trench, G.; Tan, O.L. Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: Revisiting old hypotheses. Mol. Cell. Endocrinol. 2006, 247, 4–21. [Google Scholar] [CrossRef]
- Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science 1988, 240, 889–895. [Google Scholar]
- Deeb, K.K.; Trump, D.L.; Johnson, C.S. Vitamin D signalling pathways in cancer: Potential for anticancer therapeutics. Nat. Rev. Cancer 2007, 7, 684–700. [Google Scholar] [CrossRef]
- Adams, J.S.; Hewison, M. Unexpected actions of vitamin D: New perspectives on the regulation of innate and adaptive immunity. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 80–90. [Google Scholar] [CrossRef]
- Ahonen, M.H.; Zhuang, Y.H.; Aine, R.; Ylikomi, T.; Tuohimaa, P. Androgen receptor and vitamin D receptor in human ovarian cancer: Growth stimulation and inhibition by ligands. Int. J. Cancer 2000, 86, 40–46. [Google Scholar] [CrossRef]
- Villena-Heinsen, C.; Meyberg, R.; Axt-Fliedner, R.; Reitnauer, K.; Reichrath, J.; Friedrich, M. Immunohistochemical analysis of 1,25-dihydroxyvitamin-D3-receptors, estrogen and progesterone receptors and Ki-67 in ovarian carcinoma. Anticancer Res. 2002, 22, 2261–2267. [Google Scholar]
- Thill, M.; Fischer, D.; Kelling, K.; Hoellen, F.; Dittmer, C.; Hornemann, A.; Salehin, D.; Diedrich, K.; Friedrich, M.; Becker, S. Expression of vitamin D receptor (VDR), cyclooxygenase-2 (COX-2) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in benign and malignant ovarian tissue and 25-hydroxycholecalciferol (25(OH2)D3) and prostaglandin E2 (PGE2) serum level in ovarian cancer patients. J. Steroid Biochem. Mol. Biol. 2010, 121, 387–390. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K. A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Mol. Nutr. Food Res. 2011, 55, 96–108. [Google Scholar] [CrossRef]
- Saunders, D.E.; Christensen, C.; Wappler, N.L.; Schultz, J.F.; Lawrence, W.D.; Malviya, V.K.; Malone, J.M.; Deppe, G. Inhibition of c-myc in breast and ovarian carcinoma cells by 1,25-dihydroxyvitamin D3, retinoic acid and dexamethasone. Anticancer Drugs 1993, 4, 201–208. [Google Scholar] [CrossRef]
- Li, P.; Li, C.; Zhao, X.; Zhang, X.; Nicosia, S.V.; Bai, W. p27(Kip1) stabilization and G(1) arrest by 1,25-dihydroxyvitamin D(3) in ovarian cancer cells mediated through down-regulation of cyclin E/cyclin-dependent kinase 2 and Skp1-Cullin-F-box protein/Skp2 ubiquitin ligase. J. Biol. Chem. 2004, 279, 25260–25267. [Google Scholar]
- Jiang, F.; Bao, J.; Li, P.; Nicosia, S.V.; Bai, W. Induction of ovarian cancer cell apoptosis by 1,25-dihydroxyvitamin D3 through the down-regulation of telomerase. J. Biol. Chem. 2004, 279, 53213–53221. [Google Scholar]
- Lefkowitz, E.S.; Garland, C.F. Sunlight, vitamin D, and ovarian cancer mortality rates in US women. Int. J. Epidemiol. 1994, 23, 1133–1136. [Google Scholar] [CrossRef]
- Garland, C.F.; Mohr, S.B.; Gorham, E.D.; Grant, W.B.; Garland, F.C. Role of ultraviolet B irradiance and vitamin D in prevention of ovarian cancer. Am. J. Prev. Med. 2006, 31, 512–514. [Google Scholar] [CrossRef]
- Grant, W.B. The likely role of vitamin D from solar ultraviolet-B irradiance in increasing cancer survival. Anticancer Res. 2006, 26, 2605–2614. [Google Scholar]
- Grant, W.B. A meta-analysis of second cancers after a diagnosis of nonmelanoma skin cancer: Additional evidence that solar ultraviolet-B irradiance reduces the risk of internal cancers. J. Steroid Biochem. Mol. Biol. 2007, 103, 668–674. [Google Scholar] [CrossRef]
- Grant, W.B. An ecological study of cancer mortality rates in the United States with respect to solar ultraviolet-B doses, smoking, alcohol consumption and urban/rural residence. Dermatoendocrinology 2010, 2, 68–76. [Google Scholar] [CrossRef]
- Cook, L.S.; Neilson, H.K.; Lorenzetti, D.L.; Lee, R.C. A systematic literature review of vitamin D and ovarian cancer. Am. J. Obstet. Gynecol. 2010, 203, 70.e1–70.e8. [Google Scholar]
- Merritt, M.A.; Cramer, D.W.; Vitonis, A.F.; Titus, L.J.; Terry, K.L. Dairy foods and nutrients in relation to risk of ovarian cancer and major histological subtypes. Int. J. Cancer 2013, 132, 1114–1124. [Google Scholar] [CrossRef]
- Tran, B.; Jordan, S.J.; Lucas, R.; Webb, P.M.; Neale, R. Association between ambient ultraviolet radiation and risk of epithelial ovarian cancer. Cancer Prev. Res. (Phila.) 2012, 5, 1330–1336. [Google Scholar] [CrossRef]
- Zheng, W.; Danforth, K.N.; Tworoger, S.S.; Goodman, M.T.; Arslan, A.A.; Patel, A.V.; McCullough, M.L.; Weinstein, S.J.; Kolonel, L.N.; Purdue, M.P.; et al. Circulating 25-hydroxyvitamin D and risk of epithelial ovarian cancer: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am. J. Epidemiol. 2010, 172, 70–80. [Google Scholar] [CrossRef]
- Gates, M.A.; Rosner, B.A.; Hecht, J.L.; Tworoger, S.S. Risk factors for epithelial ovarian cancer by histologic subtype. Am. J. Epidemiol. 2010, 171, 45–53. [Google Scholar] [CrossRef]
- Schouten, L.J.; Rivera, C.; Hunter, D.J.; Spiegelman, D.; Adami, H.O.; Arslan, A.; Beeson, W.L.; van den Brandt, P.A.; Buring, J.E.; Folsom, A.R.; et al. Height, body mass index, and ovarian cancer: A pooled analysis of 12 cohort studies. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 902–912. [Google Scholar] [CrossRef]
- Ryder, N.B.; Westoff, C.F. Use of oral contraception in the United States, 1965. In only 5 years oral contraception has become a major means of regulating fertility. Science 1966, 153, 1199–1205. [Google Scholar]
- Dawson, D.A. Trends in use of oral contraceptives—Data from the 1987 National Health Interview Survey. Fam. Plann. Perspect. 1990, 22, 169–172. [Google Scholar]
- Franceschi, S.; La Vecchia, C.; Negri, E.; Booth, M.; Trichopoulos, D. Ovarian cancer: Age at menopause and at first oral contraceptive use. Int. J. Cancer 1992, 51, 335–336. [Google Scholar] [CrossRef]
- Schildkraut, J.M.; Calingaert, B.; Marchbanks, P.A.; Moorman, P.G.; Rodriguez, G.C. Impact of progestin and estrogen potency in oral contraceptives on ovarian cancer risk. J. Natl. Cancer Inst. 2002, 94, 32–38. [Google Scholar] [CrossRef]
- Pike, M.C.; Pearce, C.L.; Peters, R.; Cozen, W.; Wan, P.; Wu, A.H. Hormonal factors and the risk of invasive ovarian cancer: A population-based case-control study. Fertil. Steril. 2004, 82, 186–195. [Google Scholar]
- Lurie, G.; Thompson, P.; McDuffie, K.E.; Carney, M.E.; Terada, K.Y.; Goodman, M.T. Association of estrogen and progestin potency of oral contraceptives with ovarian carcinoma risk. Obstet. Gynecol. 2007, 109, 597–607. [Google Scholar] [CrossRef]
- Lurie, G.; Wilkens, L.R.; Thompson, P.J.; McDuffie, K.E.; Carney, M.E.; Terada, K.Y.; Goodman, M.T. Combined oral contraceptive use and epithelial ovarian cancer risk: Time-related effects. Epidemiology 2008, 19, 237–243. [Google Scholar] [CrossRef]
- Tsilidis, K.K.; Allen, N.E.; Key, T.J.; Dossus, L.; Lukanova, A.; Bakken, K.; Lund, E.; Fournier, A.; Overvad, K.; Hansen, L.; et al. Oral contraceptive use and reproductive factors and risk of ovarian cancer in the European Prospective Investigation into Cancer and Nutrition. Br. J. Cancer 2011, 105, 1436–1442. [Google Scholar] [CrossRef]
- Mizoue, T. Ecological study of solar radiation and cancer mortality in Japan. Health Phys. 2004, 87, 532–538. [Google Scholar] [CrossRef]
- Boscoe, F.P.; Schymura, M.J. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993–2002. BMC Cancer 2006, 6, e264. [Google Scholar] [CrossRef]
- Waltz, P.; Chodick, G. Assessment of ecological regression in the study of colon, breast, ovary, non-Hodgkin’s lymphoma, or prostate cancer and residential UV. Eur. J. Cancer Prev. 2008, 17, 279–286. [Google Scholar] [CrossRef]
- Weatherhead, E.C.; Tiao, G.C.; Reinsel, G.C.; Frederick, J.E.; DeLuisi, J.J.; Tam, D.C.W. Analysis of long-term behavior of ultraviolet radiation measured by Robertson-Berger meters at 14 sites in the United States. J. Geophys. Res. 1997, 102, 8737–8754. [Google Scholar]
- Bodelon, C.; Cushing-Haugen, K.L.; Wicklund, K.G.; Doherty, J.A.; Rossing, M.A. Sun exposure and risk of epithelial ovarian cancer. Cancer Causes Control 2012, 23, 1985–1994. [Google Scholar] [CrossRef]
- Lin, S.W.; Wheeler, D.C.; Park, Y.; Cahoon, E.K.; Hollenbeck, A.R.; Freedman, D.M.; Abnet, C.C. Prospective study of ultraviolet radiation exposure and risk of cancer in the United States. Int. J. Cancer 2012, 131, E1015–E1023. [Google Scholar] [CrossRef]
- Goodman, M.T.; Wu, A.H.; Tung, K.H.; McDuffie, K.; Kolonel, L.N.; Nomura, A.M.; Terada, K.; Wilkens, L.R.; Murphy, S.; Hankin, J.H. Association of dairy products, lactose, and calcium with the risk of ovarian cancer. Am. J. Epidemiol. 2002, 156, 148–157. [Google Scholar] [CrossRef]
- Kushi, L.H.; Mink, P.J.; Folsom, A.R.; Anderson, K.E.; Zheng, W.; Lazovich, D.; Sellers, T.A. Prospective study of diet and ovarian cancer. Am. J. Epidemiol. 1999, 149, 21–31. [Google Scholar] [CrossRef]
- Koralek, D.O.; Bertone-Johnson, E.R.; Leitzmann, M.F.; Sturgeon, S.R.; Lacey, J.V., Jr.; Schairer, C.; Schatzkin, A. Relationship between calcium, lactose, vitamin D, and dairy products and ovarian cancer. Nutr. Cancer 2006, 56, 22–30. [Google Scholar] [CrossRef]
- Bidoli, E.; La Vecchia, C.; Talamini, R.; Negri, E.; Parpinel, M.; Conti, E.; Montella, M.; Carbone, M.A.; Franceschi, S. Micronutrients and ovarian cancer: A case-control study in Italy. Ann. Oncol. 2001, 12, 1589–1593. [Google Scholar] [CrossRef]
- Salazar-Martinez, E.; Lazcano-Ponce, E.C.; Gonzalez Lira-Lira, G.; Escudero-De los Rios, P.; Hernandez-Avila, M. Nutritional determinants of epithelial ovarian cancer risk: A case-control study in Mexico. Oncology 2002, 63, 151–157. [Google Scholar] [CrossRef]
- Genkinger, J.M.; Hunter, D.J.; Spiegelman, D.; Anderson, K.E.; Arslan, A.; Beeson, W.L.; Buring, J.E.; Fraser, G.E.; Freudenheim, J.L.; Goldbohm, R.A.; et al. Dairy products and ovarian cancer: A pooled analysis of 12 cohort studies. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 364–372. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: A millenium perspective. J. Cell. Biochem. 2003, 88, 296–307. [Google Scholar] [CrossRef]
- Bertone-Johnson, E.R.; Chen, W.Y.; Holick, M.F.; Hollis, B.W.; Colditz, G.A.; Willett, W.C.; Hankinson, S.E. Plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D and risk of breast cancer. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 1991–1997. [Google Scholar] [CrossRef]
- Wootton, A.M. Improving the measurement of 25-hydroxyvitamin D. Clin. Biochem. Rev. 2005, 26, 33–36. [Google Scholar]
- Wei, M.Y.; Giovannucci, E.L. Vitamin D and multiple health outcomes in the Harvard cohorts. Mol. Nutr. Food Res. 2010, 54, 1114–1126. [Google Scholar]
- Toriola, A.T.; Surcel, H.M.; Agborsangaya, C.; Grankvist, K.; Tuohimaa, P.; Toniolo, P.; Lukanova, A.; Pukkala, E.; Lehtinen, M. Serum 25-hydroxyvitamin D and the risk of ovarian cancer. Eur. J. Cancer 2010, 46, 364–369. [Google Scholar] [CrossRef]
- Toriola, A.T.; Surcel, H.M.; Calypse, A.; Grankvist, K.; Luostarinen, T.; Lukanova, A.; Pukkala, E.; Lehtinen, M. Independent and joint effects of serum 25-hydroxyvitamin D and calcium on ovarian cancer risk: A prospective nested case-control study. Eur. J. Cancer 2010, 46, 2799–2805. [Google Scholar] [CrossRef]
- Scotto, J.; Cotton, G.; Urbach, F.; Berger, D.; Fears, T. Biologically effective ultraviolet radiation: Surface measurements in the United States, 1974 to 1985. Science 1988, 239, 762–764. [Google Scholar]
- Rich-Edwards, J.W.; Corsano, K.A.; Stampfer, M.J. Test of the national death index and Equifax nationwide death search. Am. J. Epidemiol. 1994, 140, 1016–1019. [Google Scholar]
- Tworoger, S.S.; Hecht, J.L.; Giovannucci, E.; Hankinson, S.E. Intake of folate and related nutrients in relation to risk of epithelial ovarian cancer. Am. J. Epidemiol. 2006, 163, 1101–1111. [Google Scholar] [CrossRef]
- Scotto, J.; Fears, T.R.; Fraumeni, J.F., Jr. Solar radiation. In Cancer Epidemiology and Prevention, 2nd ed.; Schottenfeld, D., Fraumeni, J.F., Jr., Eds.; Oxford University Press: New York, NY, USA, 1996; pp. 355–372. [Google Scholar]
- Fears, T.R.; Bird, C.C.; Guerry, D.T.; Sagebiel, R.W.; Gail, M.H.; Elder, D.E.; Halpern, A.; Holly, E.A.; Hartge, P.; Tucker, M.A. Average midrange ultraviolet radiation flux and time outdoors predict melanoma risk. Cancer Res. 2002, 62, 3992–3996. [Google Scholar]
- U.S. Department of Agriculture, Agricultural Research Service. USDA nutrient database for standard reference, release 13. In Nutrient Data Laboratory, Agricultural Research Service; US Department of Agriculture: Washington, DC, USA, 1999. [Google Scholar]
- Salvini, S.; Hunter, D.J.; Sampson, L.; Stampfer, M.J.; Colditz, G.A.; Rosner, B.; Willett, W.C. Food-based validation of a dietary questionnaire: The effects of week-to-week variation in food consumption. Int. J. Epidemiol. 1989, 18, 858–867. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Browne, M.L.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Speizer, F.E. The use of a self-administered questionnaire to assess diet four years in the past. Am. J. Epidemiol. 1988, 127, 188–199. [Google Scholar]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar]
- Adams, J.S.; Clemens, T.L.; Parrish, J.A.; Holick, M.F. Vitamin-D synthesis and metabolism after ultraviolet irradiation of normal and vitamin-D-deficient subjects. N. Engl. J. Med. 1982, 306, 722–725. [Google Scholar] [CrossRef]
- Feskanich, D.; Willett, W.C.; Colditz, G.A. Calcium, vitamin D, milk consumption, and hip fractures: A prospective study among postmenopausal women. Am. J. Clin. Nutr. 2003, 77, 504–511. [Google Scholar]
- Wu, T.; Willett, W.C.; Giovannucci, E. Plasma C-peptide is inversely associated with calcium intake in women and with plasma 25-hydroxy vitamin D in men. J. Nutr. 2009, 139, 547–554. [Google Scholar] [CrossRef]
- Bertrand, K.A.; Giovannucci, E.; Liu, Y.; Malspeis, S.; Eliassen, A.H.; Wu, K.; Holmes, M.D.; Laden, F.; Feskanich, D. Determinants of plasma 25-hydroxyvitamin D and development of prediction models in three US cohorts. Br. J. Nutr. 2012, 108, 1889–1896. [Google Scholar] [CrossRef]
- Hollis, B.W. Quantitation of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D by radioimmunoassay using radioiodinated tracers. Methods Enzymol. 1997, 282, 174–186. [Google Scholar]
- Gallicchio, L.; Helzlsouer, K.J.; Chow, W.H.; Freedman, D.M.; Hankinson, S.E.; Hartge, P.; Hartmuller, V.; Harvey, C.; Hayes, R.B.; Horst, R.L.; et al. Circulating 25-hydroxyvitamin D and the risk of rarer cancers: Design and methods of the Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am. J. Epidemiol. 2010, 172, 10–20. [Google Scholar] [CrossRef]
- Wagner, D.; Hanwell, H.E.; Vieth, R. An evaluation of automated methods for measurement of serum 25-hydroxyvitamin D. Clin. Biochem. 2009, 42, 1549–1556. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1231S. [Google Scholar]
- Hu, F.B.; Stampfer, M.J.; Rimm, E.; Ascherio, A.; Rosner, B.A.; Spiegelman, D.; Willett, W.C. Dietary fat and coronary heart disease: A comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am. J. Epidemiol. 1999, 149, 531–540. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
Appendix
Premenopausal women | Postmenopausal women | |||
---|---|---|---|---|
Covariate | N | 2,431 | N | 3,101 |
R2 | 0.27 | 0.28 | ||
Intercept | 24.32 | 18.53 | ||
Race/ethnicity: Asian | 85 | 0.15 | 9 | −1.42 |
Race/ethnicity: Hispanic | 15 | −2.59 | 19 | −4.51 |
Race/ethnicity: Other | 36 | 0.98 | 99 | −0.09 |
Race/ethnicity: Black | 74 | −2.79 | 16 | −10.20 |
Race/ethnicity: White | 2,221 | Ref | 2,958 | Ref |
BMI 35+ kg/m2 | 118 | −3.55 | 118 | −5.09 |
BMI 30–34.9 kg/m2 | 179 | −2.37 | 321 | −2.23 |
BMI 25–29.9 kg/m2 | 565 | Ref | 935 | Ref |
BMI 22–24.9 kg/m2 | 753 | 2.22 | 985 | 1.35 |
BMI < 22 kg/m2 | 816 | 3.24 | 742 | 1.98 |
≥400 IU/day food vitamin D | 105 | 4.61 | 197 | 4.02 |
300–399 IU/day food vitamin D | 294 | 4.05 | 422 | 4.21 |
200–299 IU/day food vitamin D | 699 | 3.05 | 906 | 3.32 |
100–199 IU/day food vitamin D | 1,002 | 1.70 | 1,205 | 1.95 |
<100 IU/day food vitamin D | 331 | Ref | 371 | Ref |
≥400 IU/day supplemental vitamin D | 377 | 2.20 | 721 | 3.86 |
200–399 IU/day supplemental vitamin D | 487 | 1.51 | 403 | 2.55 |
1–199 IU/day supplemental vitamin D | 505 | 0.79 | 172 | 1.61 |
0 IU/day supplemental vitamin D | 1,062 | Ref | 1,805 | Ref |
27+ mets/week | 516 | 2.80 | 588 | 3.65 |
18 to <27 mets/week | 335 | 1.96 | 437 | 3.37 |
9 to <18 mets/week | 572 | 1.03 | 668 | 1.48 |
3 to <9 mets/week | 592 | 0.16 | 809 | 1.72 |
<3 mets/week | 416 | Ref | 599 | Ref |
Never used postmenopausal hormones | -- | 939 | −1.60 | |
Past postmenopausal hormone user | -- | 583 | −1.10 | |
Current postmenopausal hormone user | -- | 1,460 | Ref | |
Unknown postmenopausal hormone use status | -- | 119 | −0.24 | |
UV-B flux < 113 R-B × 10−4 | 826 | −0.66 | 1,049 | −1.09 |
UV-B flux = 113 R-B × 10−4 | 649 | −0.45 | 980 | −1.65 |
UV-B flux > 113 R-B × 10−4 | 956 | Ref | 1,072 | Ref |
Alcohol: 10+ grams/day | 311 | 2.72 | 574 | 2.09 |
Alcohol: 5–9.9 grams/day | 299 | 2.26 | 334 | 0.82 |
Alcohol: 0.1–4.9 grams/day | 1,020 | 1.09 | 1,046 | 0.79 |
Alcohol: 0 grams/day | 801 | Ref | 1,147 | Ref |
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Prescott, J.; Bertrand, K.A.; Poole, E.M.; Rosner, B.A.; Tworoger, S.S. Surrogates of Long-Term Vitamin D Exposure and Ovarian Cancer Risk in Two Prospective Cohort Studies. Cancers 2013, 5, 1577-1600. https://doi.org/10.3390/cancers5041577
Prescott J, Bertrand KA, Poole EM, Rosner BA, Tworoger SS. Surrogates of Long-Term Vitamin D Exposure and Ovarian Cancer Risk in Two Prospective Cohort Studies. Cancers. 2013; 5(4):1577-1600. https://doi.org/10.3390/cancers5041577
Chicago/Turabian StylePrescott, Jennifer, Kimberly A. Bertrand, Elizabeth M. Poole, Bernard A. Rosner, and Shelley S. Tworoger. 2013. "Surrogates of Long-Term Vitamin D Exposure and Ovarian Cancer Risk in Two Prospective Cohort Studies" Cancers 5, no. 4: 1577-1600. https://doi.org/10.3390/cancers5041577
APA StylePrescott, J., Bertrand, K. A., Poole, E. M., Rosner, B. A., & Tworoger, S. S. (2013). Surrogates of Long-Term Vitamin D Exposure and Ovarian Cancer Risk in Two Prospective Cohort Studies. Cancers, 5(4), 1577-1600. https://doi.org/10.3390/cancers5041577