Breeding for Rice Aroma and Drought Tolerance: A Review
Abstract
:1. Introduction
2. Rice Consumer Preferences and Rice Fragrance
2.1. Preferences of Rice Consumers
2.2. Aroma of Rice
2.3. Molecular and Genetic Bases of Rice Aroma
3. Molecular Markers and Selection of Aromatic Rice Varieties
3.1. Markers Used in Crop Improvement
3.2. Breeding for Aroma in Rice
4. Advances in Breeding for Drought Tolerance in Rice
4.1. Effect of Drought on Rice Growth and Production
4.2. Genetic Basis of Rice Drought-Tolerance
4.3. Breeding for Rice Drought Tolerance
5. Development of Aromatic Drought-Tolerant Rice Varieties
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Kilimo, T. Expanding Rice Markets in the East African Community. Regional Solution to Local Problems; Kilimo Trust Head Quarters: Kampala, Uganda, 2018; p. 78. [Google Scholar]
- Schenker, S. An overview of the role of rice in the UK diet. Nutr. Bull. 2012, 37, 309–323. [Google Scholar] [CrossRef]
- Bindusree, G.; Natarajan, P.; Kalva, S.; Madasamy, P. Whole genome sequencing of Oryza sativa L. cv. Seeragasamba identifies a new fragrance allele in rice. PLoS ONE 2017, 12, e0188920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, T.F.; Shannon, M.; Chevallier, O.P.; Ch, R.; Xu, F.; Kong, F.; Peng, H.; Teye, E.; Akaba, S.; Wu, D.; et al. Food Fingerprinting: Using a two-tiered approach to monitor and mitigate food fraud in rice. J. AOAC Int. 2021, 104, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Lu, L.; Guo, Z.; Zhu, Z. Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. Trends Food Sci. Technol. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/TCL (accessed on 12 July 2022).
- Nawaz, A.; Rehman, A.U.; Rehman, A.; Ahmad, S.; Siddique, K.M.; Farooq, M. Increasing sustainability for rice production systems. J. Cereal Sci. 2022, 103, 103400. [Google Scholar] [CrossRef]
- Thomas, H.B.; Vangapandu, T.; Ayyenar, B.; Sellamuthu, R. Identification and Mapping of QTLS for Drought Resistance in Rice. Centre for Plant Molecular Biology and Biotechnology, Coimbatore, Tamil Nadu, India. Int. J. Curr. Microbiol. 2017, 6, 1703–1710. [Google Scholar] [CrossRef]
- Mottaleb, K.A.; Rejesus, R.M.; Mohanty, S.; Murty, M.V.R.; Li, T.; Valera, H.G.; Gumma, M.K. Ex ante impact assessment of a drought tolerant rice variety in the presence of climate change. In Proceedings of the Applied Economics Association’s 2012 AAEA Annual Meeting, Seattle, WA, USA, 12–14 August 2012; pp. 1–41. [Google Scholar]
- United States Agency for International Development (USAID). Staple Foods Value Chain Analysis. Country Report; Chemonics International Inc.: Washington, DC, USA, 2010; p. 59. [Google Scholar]
- Gahungu, A. Socio-Economic and Financial Profitability Analysis of Rice Seed Production by Women Groups «Nawenuze » in the Framework of «Win Win» Programm Implemented by Care International in Burundi. CARE-CERDA Partnership. 2017. Available online: https://www.careevaluations.org/wp-content/uploads/Rice-Cost-effectiveness-Study_CARE_CERDA.pdf (accessed on 25 June 2022).
- Sahebi, M.; Hanafi, M.M.; Rafii, M.Y.; Mahmud, T.M.M.; Azizi, P.; Osman, M.; Abiri, R.; Taheri, S.; Kalhori, N.; Shabanimofrad, M.; et al. Improvement of drought tolerance in rice (Oryza sativa L.): Genetics, genomic tools, and the WRKY gene family. Biomed. Res. Int. 2018, 18, 20. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.A.R.; Haque, M.E.; Siddique, M.A.E.; Bhandariz, H. Priorities in Rice Breeding in Bangladesh: A Market Demand Approach for Developing an Ideal Product Profile; International Rice Research Institute (IRRI): Los Baños, Philippines, 2017; p. 3. [Google Scholar]
- Cuevas, R.P.; Pede, V.O.; McKinley, J.; Velarde, O.; Demont, M. Rice grain quality and consumer preferences: A case study of two rural towns in the Philippines. PLoS ONE 2016, 11, 0150345. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, A. Consumer Characteristics and Preferences of Rice Attribute Based on the Income Levels in Palembang. Asian J. Adv. Res. Rep. 2020, 11, 16–25. [Google Scholar]
- Verma, D.K.; Srivastav, P.P. Extraction, identification and quantification methods of rice aroma compounds with emphasis on 2-acetyl-1-pyrroline (2-AP) and its relationship with rice quality: A comprehensive review. Food Rev. Int. 2022, 38, 111–162. [Google Scholar] [CrossRef]
- Gahiro, L. Compétitivité des Filières Rizicoles Burundaises: Le Riz de l’Imbo et le Riz des Marais. Doctoral Dissertation, Université de Liège, Gembloux, Belgium, 2011. [Google Scholar]
- Varatharajan, N.; Sekaran, D.C.; Murugan, K.; Chockalingam, V. Rice Aroma: Biochemical, Genetics and Molecular Aspects and Its Extraction and Quantification Methods. In Integrative Advances in Rice Research; IntechOpen: London, UK, 2021. [Google Scholar]
- Kongchum, M.; Harrell, D.L.; Linscombe, S.D. Comparison of 2-Acetyl-1-Pyrroline (2AP) in Rice Leaf at Different Growth Stages Using Gas Chromatography. Agric. Sci. 2022, 13, 165–176. [Google Scholar] [CrossRef]
- Ramtekey, V.; Cherukuri, S.; Modha, K.G.; Kumar, A.; Kethineni, U.B.; Pal, G.; Singh, A.N.; Kumar, S. Extraction, characterization, quantification, and application of volatile aromatic compounds from Asian rice cultivars. Rev. Anal. Chem. 2021, 40, 272–292. [Google Scholar] [CrossRef]
- Hinge, V.R.; Patil, H.B.; Nadaf, A.B. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice 2021, 9, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, O.; Rongrong, Z.; Martin, O.; Michael, K.; Angele, P.I.; Agnes, A.; Bill, W.K.; Ephraim, N.; Jimmy, L.; Melissa, A.F.; et al. Relationship between 2-acetyl-1-pyrroline and aroma in Uganda rice populations with Oryza (barthi, glaberrima and sativa) backgrounds. Afr. J. Biotechnol. 2019, 18, 1016–1024. [Google Scholar] [CrossRef] [Green Version]
- Hinge, V.; Patil, H.; Nadaf, A. Comparative characterization of aroma volatiles and related gene expression analysis at vegetative and mature stages in basmati and non-basmati rice (Oryza sativa L.) cultivars. Appl. Biochem. Biotechnol. 2016, 178, 619–639. [Google Scholar] [CrossRef]
- Wei, X.; Sun, Q.; Methven, L.; Elmore, J.S. Comparison of the sensory properties of fragrant and non-fragrant rice (Oryza sativa), focusing on the role of the popcorn-like aroma compound 2-acetyl-1-pyrroline. Food Chem. 2021, 339, 128077. [Google Scholar] [CrossRef] [PubMed]
- Kasote, D.; Singh, V.K.; Bollinedi, H.; Singh, A.K.; Sreenivasulu, N.; Regina, A. Profiling of 2-Acetyl-1-Pyrroline and Other Volatile Compounds in Raw and Cooked Rice of Traditional and Improved Varieties of India. Foods 2021, 10, 1917. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, V.; Singh, M.K.; Singh, A.K.; Singh, S.; Shakeel, N.A.; Singh, V.P.; Singh, N.K. Origin and genetic diversity of aromatic rice varieties, molecular breeding and chemical and genetic basis of rice aroma. J. Plant Biochem. Biotechnol. 2010, 19, 127–143. [Google Scholar] [CrossRef]
- Sreenivasulu, N.; Zhang, C.; Tiozon, R.N., Jr.; Liu, Q. Post-genomics revolution in the design of premium quality rice in a high-yielding background to meet consumer demands in the 21st century. Plant Commun. 2022, 3, 100271. [Google Scholar] [CrossRef]
- Prodhan, Z.H.; Qingyao, S.H.U. Rice aroma: A natural gift comes with price and the way forward. Rice Sci. 2020, 27, 86–100. [Google Scholar] [CrossRef]
- Champagne, E.T. Rice aroma and flavor: A literature review. Cereal Chem. 2008, 85, 445–454. [Google Scholar] [CrossRef]
- Potcho, P.M.; Imran, M.; Korohou, T.; Kamara, N.; Tang, X. Fertilizer Deep Placement Significantly Affected Yield, Rice Quality, 2-AP Biosynthesis and Physiological Characteristics of the Fragrant Rice Cultivars. Agronomy 2022, 12, 162. [Google Scholar] [CrossRef]
- Xu, Y.; Ying, Y.; Ouyang, S.; Duan, X.; Sun, H.; Jiang, S.; Sun, S.; Bao, J. Factors affecting sensory quality of cooked japonica rice. Rice Sci. 2018, 25, 330–339. [Google Scholar]
- Jeesan, S.A.; Seo, H.S. Color-induced aroma illusion: Color cues can modulate consumer perception, acceptance, and emotional responses toward cooked rice. Foods 2020, 9, 1845. [Google Scholar] [CrossRef]
- Ocan, D.; Rongrong, Z.; Odoch, M.; Nuwamanya, E.; Ibanda, A.P.; Odong, T.L.; Lamo, J.; Fitzgerald, A.M.; Daygon, V.D.; Rubaihayo, P.R. Volatile organic compound based markers for the aroma trait of rice grain. J. Agric. Sci. 2020, 12, 8. [Google Scholar] [CrossRef]
- Li, C.; Yang, F.; Luo, L.; Luo, T.; Liu, N.; Yang, Q. Research advance of the aroma of rice and its use in hybrid rice breeding with aromatic and soft. Southwest China J. Agric. Sci. 2008, 21, 220–225. [Google Scholar]
- Singh, R.; Singh, A.K.; Sharma, T.R.; Singh, A.; Singh, N.K. Fine mapping of aroma QTLs in basmati rice (Oryza sativa L.) on chromosomes 3, 4 and 8. J. Plant Biochem. Biotechnol. 2007, 16, 75–82. [Google Scholar] [CrossRef]
- Akwero, A.; Ocan, D.; Akech, W.; Lamo, J.; Ochwo-Ssemakula, M.; Rubaihayo, P. Allelic variations in aroma gene in cultivated rice varieties. Afr. Crop Sci. J. 2020, 28, 241–254. [Google Scholar] [CrossRef]
- Vanavichit, A.; Yoshihashi, T. Molecular aspects of fragrance and aroma in rice. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2010; Volume 56, pp. 49–73. [Google Scholar]
- Kumar, A. Breeding Rice for Drought Tolerance and Adaptation to Climate Change. Rice knowledge Management Portal. Available online: http://www.rkmp.co.in (accessed on 31 October 2019).
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N.; et al. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 2018, 32, 261–285. [Google Scholar] [CrossRef] [Green Version]
- Afiukwa, C.A.A.; Faluyi, J.O.; Atkinson, C.J.; Ubi, B.E.U.; Igwe, D.O.; Akinwale, R.O. Screening of some rice varieties and landraces cultivated in Nigeria for drought tolerance based on phenotypic traits and their association with SSR polymorphisms. Afr. J. Agric. Res. 2016, 11, 2599–2615. [Google Scholar]
- McCouch, S.R.; Zhao, K.; Wright, M.; Tung, C.W.; Ebana, K.; Thomson, M.; Reynolds, A.; Wang, D.; DeClerck, G.; Ali, L.; et al. Development of genome-wide SNP assays for rice. Breed. Sci. 2010, 60, 524–535. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Singh, P.K.; Singh, R.; Pandit, A.; Mahato, A.K.; Gupta, D.K.; Tyagi, K.; Singh, A.K.; Singh, N.K.; Sharma, T.R. SNP haplotypes of the BADH1 gene and their association with aroma in rice (Oryza sativa L.). Mol. Breed. 2020, 26, 325–338. [Google Scholar] [CrossRef]
- Addison, C.K.; Angira, B.; Kongchum, M.; Harrell, D.L.; Baisakh, N.; Linscombe, S.D.; Famoso, A.N. Characterization of haplotype diversity in the badh2 aroma gene and development of a KASP SNP assay for predicting aroma in US rice. Rice 2020, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Sagwal, V.; Sihag, P.; Singh, Y.; Mehla, S.; Kapoor, P.; Balyan, P.; Kumar, A.; Mir, R.R.; Dhankher, O.P.; Kumar, U. Development and characterization of nitrogen and phosphorus use efficiency responsive genic and miRNA derived SSR markers in wheat. Heredity 2022, 128, 391–401. [Google Scholar] [CrossRef]
- Jiang, G.L. Molecular markers and marker-assisted breeding in plants. Plant Breed. Lab. Fields 2013, 3, 45–83. [Google Scholar]
- Iqbal, M.; Shahzad, R.; Shahzad, R.; Bilal, K.; Qaisar, R.; Nisar, A.; Kanwal, S.; Bhatti, M. DNA Fingerprinting of Crops and Its Applications in the Field of Plant Breeding. J. Agric. Res. 2021, 59, 13–28. [Google Scholar]
- Kibria, K.; Islam, M.M.; Begum, S.N. Screening of aromatic rice lines by phenotypic and molecular markers. Bangladesh J. Bot. 2008, 37, 141–147. [Google Scholar] [CrossRef]
- Kim, M.K. Sensory profile of rice-based snack (nuroongji) prepared from rice with different levels of milling degree. Foods 2020, 9, 685. [Google Scholar] [CrossRef]
- Sandhu, N.; Kumar, A. Bridging the rice yield gaps under drought: QTLs, genes, and their use in breeding programs. Agronomy 2017, 7, 27. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, S.; Ram, T.; Yadav, R.B.; Mishra, K.K.; Mandal, N.P. Breeding high-yielding drought-tolerant rice: Genetic variations and conventional and molecular approaches. J. Exp. Bot. 2014, 65, 6265–6278. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, G.; Kumar, A.; Dwivedi, P.; Gopala Krishnan, S.; Pal, M.; Vinod, K.K.; Bhowmick, P.K.; Bollinedi, H.; Ellur, R.K.; Ravikiran, K.T.; et al. Introgression of qDTY1. 1 Governing Reproductive Stage Drought Tolerance into an Elite Basmati Rice Variety “Pusa Basmati 1” through Marker Assisted Backcross Breeding. Agronomy 2021, 11, 202. [Google Scholar] [CrossRef]
- Allah, A.A.; Ammar, M.H.; Badawi, A.T. Screening rice genotypes for drought resistance in Egypt. J. Plant Breed. Crop Sci. 2010, 2, 205–215. [Google Scholar]
- Matsumoto, S.; Tsuboi, T.; Asea, G.; Maruyama, A.; Kikuchi, M.; Takagaki, M. Water response of upland rice varieties adopted in sub-Saharan Africa: A water application experiment. Rice Res. 2014, 2, 1000121. [Google Scholar]
- Sakran, R.M.; Ghazy, M.I.; Rehan, M.; Alsohim, A.S.; Mansour, E. Molecular genetic diversity and combining ability for some physiological and agronomic traits in rice under well-watered and water-deficit conditions. Plants 2022, 11, 702. [Google Scholar] [CrossRef]
- Pandey, V.; Shukla, A. Acclimation and tolerance strategies of rice under drought stress. Rice Sci. 2015, 22, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Noelle, N.M.; Weru, W.P.; Rodrigue, S.J.; Karlin, G. The effects of drought on rice cultivation in sub-Saharan Africa and its mitigation: A review. Afr. J. Agric. Res. 2018, 13, 1257–1271. [Google Scholar]
- IRRI. Standard Evaluation System for Rice, 5th ed.; IRRI: Los Baños, Philippines, 2013; pp. 1–52. [Google Scholar]
- Swamy, B.M.; Shamsudin, N.A.A.; Rahman, S.N.A.; Mauleon, R.; Ratnam, W.; Cruz, M.T.S.; Kumar, A. Association mapping of yield and yield-related traits under reproductive stage drought stress in rice (Oryza sativa L.). Rice 2017, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Hoang, G.T.; Van Dinh, L.; Nguyen, T.T.; Ta, N.K.; Gathignol, F.; Mai, C.D.; Jouannic, S.; Tran, K.D.; Khuat, T.H.; Do, V.N.; et al. Genome-wide Association Study of a Panel of Vietnamese Rice Landraces Reveals New QTLs for Tolerance to Water Deficit During the Vegetative Phase. Rice 2019, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Sabar, M.; Shabir, G.; Shah, S.M.; Aslam, K.; Naveed, S.A.; Arif, M. Identification and mapping of QTLs associated with drought tolerance traits in rice by a cross between Super Basmati and IR55419-04. Breed. Sci. 2019, 69, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Swamy, B.M.; Vikram, P.; Dixit, S.; Ahmed, H.U.; Kumar, A. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genom. 2011, 12, 319. [Google Scholar] [CrossRef] [Green Version]
- Bernier, J.; Kumar, A.; Ramaiah, V.; Spaner, D.; Atlin, G. A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci. 2007, 47, 507–516. [Google Scholar] [CrossRef]
- Kumar, R.; Venuprasad, R.; Atlin, G.N. Genetic analysis of rainfed lowland rice drought tolerance under naturally-occuring stress in India: Heritability and QTLs effects. Field Crops Res. 2007, 103, 42–52. [Google Scholar] [CrossRef]
- Venuprasad, R.; Bool, M.E.; Quiatchon, L.; Cruz, M.S.; Amante, M.; Atlin, G.N. A large-effect QTL for rice grain yield under upland drought stress on chromosome 1. Mol. Breed. 2012, 30, 535–547. [Google Scholar] [CrossRef]
- Waheed, R.; Ignacio, J.C.; Arbelaez, J.D.; Juanillas, V.M.; Asif, M.; Henry, A.; Kretzschmar, T.; Arif, M. Drought response QTLs in a Super Basmati x Azucena population by high-density GBS-based SNP linkage mapping. Plant Breed. 2021, 140, 758–774. [Google Scholar] [CrossRef]
- Wang, S.; Wei, J.; Li, R.; Qu, H.; Chater, J.M.; Ma, R.; Li, Y.; Xie, W.; Jia, Z. Identification of optimal prediction models using multi-omic data for selecting hybrid rice. Heredity 2019, 123, 395–406. [Google Scholar] [CrossRef]
- Vikram, P.; Swamy, B.M.; Dixit, S.; Ahmed, H.U.; Cruz, M.T.S.; Singh, A.K.; Kumar, A. qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet. 2011, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Swamy BP, M.; Ahmed, H.U.; Henry, A.; Mauleon, R.; Dixit, S.; Vikram, P.; Tilatto, R.; Verulkar, S.B.; Perraju, P.; Mandal, N.P.; et al. Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PLoS ONE 2013, 8, e62795. [Google Scholar] [CrossRef]
- Palanog, A.D.; Swamy, B.M.; Shamsudin, N.A.A.; Dixit, S.; Hernandez, J.E.; Boromeo, T.H.; Cruz, P.S.; Kumar, A. Grain yield QTLs with consistent-effect under reproductive-stage drought stress in rice. Field Crops Res. 2014, 161, 46–54. [Google Scholar] [CrossRef]
- Sandhu, N.; Singh, A.; Dixit, S.; Sta Cruz, M.T.; Maturan, P.C.; Jain, R.K.; Kumar, A. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet. 2014, 15, 63. [Google Scholar] [CrossRef] [Green Version]
- Dixit, S.; Singh, A.; Cruz, M.T.S.; Maturan, P.T.; Amante, M.; Kumar, A. Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities. BMC Genet. 2014, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Yadaw, R.B.; Dixit, S.; Raman, A.; Mishra, K.K.; Vikram, P.; Swamy, B.M.; Cruz, M.T.S.; Maturan, P.T.; Pandey, M.; Kumar, A. A QTL for high grain yield under lowland drought in the background of popular rice variety Sabitri from Nepal. Field Crops Res. 2013, 144, 281–287. [Google Scholar] [CrossRef]
- Mishra, K.K.; Vikram, P.; Yadaw, R.B.; Swamy, B.M.; Dixit, S.; Cruz, M.T.S.; Maturan, P.; Marker, S.; Kumar, A. qDTY 12.1: A locus with a consistent effect on grain yield under drought in rice. BMC Genet. 2013, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarawathi, Y.; Singh, R.; Singh, A.K.; Singh, V.P.; Mohapatra, T.; Sharma, T.R.; Singh, N.K. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Mol. Breed. 2008, 21, 49–65. [Google Scholar] [CrossRef]
- Yadav, S.; Sandhu, N.; Singh, V.K.; Catolos, M.; Kumar, A. Genotyping-by-sequencing based QTL mapping for rice grain yield under reproductive stage drought stress tolerance. Sci. Rep. 2019, 9, 14326. [Google Scholar] [CrossRef] [PubMed]
- Prodhan, Z.H.; Faruq, G.; Rashid, K.A.; Taha, R.M. Effects of temperature on volatile profile and aroma quality in rice. Int. J. Agric. Biol. 2017, 19, 1065–1072. [Google Scholar] [CrossRef]
- Kanyange, L.; Kamau, J.; Ombori, O.; Ndayiragije, A.; Muthini, M. Genotyping for blast (Pyricularia oryzae) resistance genes in F2 population of supa aromatic rice (Oryza sativa L.). Int. J. Genom. 2019, 2019, 5246820. [Google Scholar] [CrossRef] [Green Version]
- Luzi-Kihupi, A.; Kashenge-Killenga, S.; Bonsi, C. A review of maize, rice, tomato and banana research in Tanzania. Tanzan. J. Agric. Sci. 2015, 14, 20. [Google Scholar]
- Lamo, J.; Ochan, D.; Abebe, D.; Ayalew, Z.Z.; Mlaki, A.; Ndikuryayo, C. Irrigated and Rain-Fed Lowland Rice Breeding in Uganda: A. Cereal Grains 2021, 2, 137. [Google Scholar]
- Singh, R.K.; Murori, R.; Ndayiragije, A.; Bigirimana, J.; Kimani, J.M.; Kanyeka, Z.L.; Surapong, S.; Singh, Y.P.; Ndikumana, I.; Lamo, J.; et al. Rice breeding activities in Eastern and Southern Africa. SABRAO J. Breed. Genet. 2013, 45, 73–83. [Google Scholar]
- Steele, K.A.; Price, A.H.; Shashidhar, H.E.; Witcombe, J.R. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor. Appl. Genet. 2006, 112, 208–221. [Google Scholar] [CrossRef]
- Ganguly, M.; Roychoudhury, A.; Sengupta, D.N.; Datta, S.K.; Datta, K. Independent overexpression of OsRab16A and AtDREB1A exhibit enhanced drought tolerance in transgenic aromatic rice variety Pusa Sugandhi 2. J. Plant Biochem. Biotechnol. 2020, 29, 503–517. [Google Scholar] [CrossRef]
- Bashir, K.; Khan, N.M.; Rasheed, S.; Salim, M. Indica rice varietal development in Pakistan: An overview. Paddy Water Environ. 2007, 5, 73–81. [Google Scholar] [CrossRef]
- Arsa, I.G.A.; Ariffin, A.; Aini, N.; Lalel, H. Grain yield and aroma quality of upland rice (var. Pare Wangi) under various types and periods of drought stress. Int. J. Trop. Drylands 2017, 1, 17–23. [Google Scholar]
- Yoshihashi, T.; Huong, N.T.T.; Inatomi, H. Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. J. Agric. Food Chem. 2002, 50, 2001–2004. [Google Scholar] [CrossRef] [PubMed]
Genotype | Origin | Mean 2AP (%) | Aroma Status | Author |
---|---|---|---|---|
Agra 41 | AfricaRice, Benin | 0.1520 ± 0.0370 | 2.86 * | [22] |
Agra 55 | CRI, Ghana | 0.1595 ± 0.0159 | 2.14 * | [22] |
Ambemohar 157 | India | 0.0662 ± 0.0000 | a | [18,23] |
Basmati | India | 0.0000113 ± 0.0000 | a | [24] |
Basmati 370 | India | 0.0451 ± 0.0000 | a | [18,23] |
IR 64 | IRRI, Philippines | 0.0000 ± 0.0000 | na | [18,23,25] |
Jasmine | - | 0.0000146 ± 0.0000 | a | [24] |
Kala Jeera | IRRI, South Asia | 0.00000005 ± 0.0000 | a | [25] |
Kala Namak-2 | South Asia | 0.00000009 ± 0.1000 | a | [25] |
Komboka | IRRI, Philippines | 0.0957 ± 0.0354 | 2.21 * | [22] |
Namche 2 | NaCRRI, Uganda | 0.0031 ± 0.0029 | 1.50 * | [22] |
Nerica 4 | AfricaRice, Ivory Coast | 0.0000 ± 0.0000 | 1.14 * | [22] |
Pusa Basmati 1 | IRRI, South Asia | 0.0000 ± 0.0000 | a | [25] |
Sintanur | - | 0.000008 ± 0.0000 | a | [24] |
Supa 5 | IRRI, Philippines | 0.2445 ± 0.0268 | 2.79 * | [22] |
Yasmin Aromatic | Egypt | 0.3195 ± 0.0576 | 2.29 * | [22] |
Attributes | Factors Influencing the Attribute (s) | Author |
---|---|---|
Aroma | Volatile organic compounds, including 2AP | [23,25] |
Aroma | QTLs/genes | [27,28,29] |
Flavour, aroma and taste | Timing of field draining, harvest time during ripening, harvest moisture content and final moisture content after drying, serving temperature of cooked rice | [29] |
Flavour, taste and aroma | Milled rice storage temperature and time, degree of milling, evaluation methods, cultural practices, time of heating and cooking operations (washing, soaking, water-to-rice ratio) | [4,25,29] |
Aroma/2AP | Deep application of fertilizers at 10 cm | [30] |
Aroma/2AP | Optimum temperatures (20 to 30 °C) in area where rice is grown | [28] |
Gel hardness and flavour | Growing location | [31] |
Aroma, flavour and sweet taste-induced illusion | Rice surface colours | [32] |
Marker * | Asset | Weaknesses |
---|---|---|
AFLP | Reliable, more instructive, highly reproducible | Dominant, requires high-quality DNA |
DArT | Cost-effective, high throughput, high polymorphism, previous sequence information not needed, highly reproducible | Dominant, expensive to develop |
Isozymes | Specific instrument not needed, easy to use, co-dominant | Lower polymorphism, influence of environment |
ISSR | High polymorphism, simple and easily used, prior sequence information not needed | Poorly reproducible, requires high-quality DNA, fragments are differently sized |
RAPD | Easily used, requires lower quantity of DNA, polymorphic | Dominant, requires high-quality DNA, poorly reproducible, not locus-specific |
Retrotransposons | Simple, easily used, prior sequence information not used, highly reproducible | Dominant |
RFLPs | Co-dominant, prior sequence information not needed | Takes a long time, requires high-quality DNA, expensive |
SNP | Cost-effective, wide distribution in genome, previous sequence information not needed, highly reproducible, co-dominant | Expensive to develop |
SRAP | Simple, reliable, bands isolated easily | Dominant, moderate-to-high throughput ratio |
SSRs | Co-dominant, requires lower quantity of DNA, highly reproducible | Expensive to develop, presence of more null alleles, occurrence of homoplasy |
QTL Name * | Cross between | Marker Interval | LOD | R2 | Ecology | Chr | Author |
---|---|---|---|---|---|---|---|
qDTY1.1 | N22 and IR64 | RM11943–RM12091 | 2.5 | 16.9 | Lowland | 1 | [67] |
qDTY2.2 | IR646 and Aday Sel. | RM236/RM279–RM555 | 6.5 | 11.2 | Lowland | 2 | [68] |
qDTY2.3 | Kali Aus and IR64 | RM573–RM213 | - | 9 | Lowland | 2 | [69] |
qDTY2.3 | Kali Aus and IR64 | RM263–RM573 | - | 7.4 | Upland | 2 | [70] |
qDTY3.1 | IR55419-04 and TDK1 | RM168–RM468 | 6.3 | 7.9 | Lowland | 3 | [71] |
qDTY3.1 | IR55419-04 and TDK1 | RM168–RM468 | 3.5 | 15 | Upland | 3 | [58] |
qDTY3.2 | Sel. and Sabitri | RM569–RM517 | 10.1 | 23.4 | Lowland | 3 | [72] |
qDTY3.2 | Moroberekan and Swarna | id3000019–id3000946 | - | 19 | Upland | 3 | [50] |
qDTY12.1 | Vandana and Way Rarem | RM28048–RM511 | 34 | 33 | Upland | 12 | [49,62] |
qDTY12.1 | IR74371-46-1-1 and Sabitri | RM28166–RM28199 | - | 23.8 | Lowland | 12 | [73] |
qaro8.1 | Pusa 1121 and Pusa1342 | RM223–RM80 | 11.54 | 0.189 | - | 8 | [74] |
qaro3-1 | Pusa 1121 and Pusa1342 | RM5474–RM282 | 3.20 | 0.103 | - | 3 | [74] |
qaro4-1 | Pusa 1121 and Pusa1342 | RM5633–RM273 | 3.30 | 0.061 | - | 4 | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndikuryayo, C.; Ndayiragije, A.; Kilasi, N.; Kusolwa, P. Breeding for Rice Aroma and Drought Tolerance: A Review. Agronomy 2022, 12, 1726. https://doi.org/10.3390/agronomy12071726
Ndikuryayo C, Ndayiragije A, Kilasi N, Kusolwa P. Breeding for Rice Aroma and Drought Tolerance: A Review. Agronomy. 2022; 12(7):1726. https://doi.org/10.3390/agronomy12071726
Chicago/Turabian StyleNdikuryayo, Cyprien, Alexis Ndayiragije, Newton Kilasi, and Paul Kusolwa. 2022. "Breeding for Rice Aroma and Drought Tolerance: A Review" Agronomy 12, no. 7: 1726. https://doi.org/10.3390/agronomy12071726