Regulatory Effect of Light and Rhizobial Inoculation on the Root Architecture and Plant Performance of Pasture Legumes
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramana, V.; Ramakrishna, M.; Purushotham, K.; Reddy, K.B. Effect of bio-fertilizers on growth, yield attributes and yield of french bean (Phaseolus vulgaris L.). Legume Res. 2010, 33, 178–183. [Google Scholar]
- Sadowsky, M.J.; Cregan, P.B.; Keyser, H.H. Nodulation and Nitrogen Fixation Efficacy of Rhizobium fredii with Phaseolus vulgaris Genotypes. Appl. Environ. Microbiol. 1988, 54, 1907–1910. [Google Scholar] [CrossRef] [PubMed]
- Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-Fixing Bacteria Associated with Leguminous and Non-Leguminous Plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
- Magadlela, A.; Vardien, W.; Kleinert, A.; Dreyer, L.L.; Valentine, A.J. The Role of Phosphorus Deficiency in Nodule Microbial Composition, and Carbon and Nitrogen Nutrition of a Native Legume Tree in the Cape Fynbos Ecosystem. Aust. J. Bot. 2015, 63, 379. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.; Míguez-Montero, Á.; Valentine, A. Phosphorus and Nitrogen Modulate Plant Performance in Shrubby Legumes from the Iberian Peninsula. Plants 2019, 8, 334. [Google Scholar] [CrossRef] [Green Version]
- Míguez-Montero, M.A.; Valentine, A.; Pérez-Fernández, M.A. Regulatory Effect of Phosphorus and Nitrogen on Nodulation and Plant Performance of Leguminous Shrubs. AoB Plants 2019, 12, plz047. [Google Scholar] [CrossRef] [Green Version]
- Sprent, J.I.; Sprent, P. Nitrogen Fixing Organisms: Pure and Applied Aspects, 1st ed.; Chapman and Hall: London, UK, 1990. [Google Scholar]
- Carney, K.M.; Matson, P.A. Plant Communities, Soil Microorganisms, and Soil Carbon Cycling: Does Altering the World Belowground Matter to Ecosystem Functioning? Ecosystems 2005, 8, 928–940. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Lodge, D.J.; Hawksworth, D.L.; Ritchie, B.J. Microbial diversity and tropical forest functioning. In Biodiversity and Ecosystem Processes in Tropical Forests; Orians, G.H., Dirzo, R., Cushman, J.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 122, pp. 69–100. [Google Scholar]
- Safapour, M.; Ardakani, M.; Khaghani, S.; Rejali, F.; Zargari, K.; Changizi, M.; Teimuri, M. Response of Yield and Yield Components of Three Red Bean (Phaseolus vulgaris L.) Genotypes to Co-Inoculation with Glomus intraradices and Rhizobium phaseoli. Am.-Eurasian J. Agric. Environ. Sci. 2011, 11, 398–405. [Google Scholar]
- Hayman, D.S. Mycorrhizae of Nitrogen-Fixing Legumes. Mircen J. 1986, 2, 121–145. [Google Scholar] [CrossRef]
- Mathur, N.; Vyas, A. Influence of Arbuscular Mycorrhizae on Biomass Production, Nutrient Uptake and Physiological Changes in Ziziphus Mauritiana Lam. under Water Stress. J. Arid Environ. 2000, 45, 191–195. [Google Scholar] [CrossRef]
- Vejsadova, H.; Siblikova, D.; Gryndler, M.; Simon, T.; Miksik, I. Influence of inoculation with Bradyrhizobium japonicum and Glomus claroideum on seed yield of soybean under greenhouse and field conditions. J. Plant Nutr. 1993, 16, 619–629. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Menexes, G.; Rillig, M.C. Do Arbuscular Mycorrhizal Fungi Affect the Allometric Partition of Host Plant Biomass to Shoots and Roots? A Meta-Analysis of Studies from 1990 to 2010. Mycorrhiza 2012, 22, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Gavito, M.E.; Curtis, P.S.; Mikkelsen, T.N.; Jakobsen, I. Atmospheric CO2 and Mycorrhiza Effects on Biomass Allocation and Nutrient Uptake of Nodulated Pea (Pisum sativum L.). Plants 2000, 51, 1931–1938. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Fernández, M.; Calvo-Magro, E.; Ramírez-Rojas, I.; Moreno-Gallardo, L.; Alexander, V. Patterns of Growth Costs and Nitrogen Acquisition in Cytisus striatus (Hill) Rothm. and Cytisus balansae (Boiss.) Ball Are Mediated by Sources of Inorganic N. Plants 2016, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Muleta, D. Legume Responses to Arbuscular Mycorrhizal Fungi Inoculation in Sustainable Agriculture. Microbes for Legume Improvement; Springer: Vienna, Austria, 2010; pp. 293–323. [Google Scholar] [CrossRef]
- Haystead, A.; Malajczuk, N.; Grove, T.S. Underground Transfer of Nitrogen between Pasture Plants Infected with Vesicular-Arbuscular Mycorrhizal Fungi. New Phytol. 1988, 108, 417–423. [Google Scholar] [CrossRef]
- Thamer, S.; Schädler, M.; Bonte, D.; Ballhorn, D.J. Dual Benefit from a Belowground Symbiosis: Nitrogen Fixing Rhizobia Promote Growth and Defense against a Specialist Herbivore in a Cyanogenic Plant. Plant Soil 2011, 341, 209–219. [Google Scholar] [CrossRef]
- Ballhorn, D.J.; Schädler, M.; Elias, J.D.; Millar, J.A.; Kautz, S. Friend or Foe—Light Availability Determines the Relationship between Mycorrhizal Fungi, Rhizobia and Lima Bean (Phaseolus lunatus L.). PLoS ONE 2016, 11, e0154116. [Google Scholar] [CrossRef] [Green Version]
- Kaschuk, G.; Kuyper, T.W.; Leffelaar, P.A.; Hungria, M.; Giller, K.E. Are the Rates of Photosynthesis Stimulated by the Carbon Sink Strength of Rhizobial and Arbuscular Mycorrhizal Symbioses? Soil Biol. Biochem. 2009, 41, 1233–1244. [Google Scholar] [CrossRef]
- Stevens, G.G.; Pérez-Fernández, M.A.; Morcillo, R.J.L.; Kleinert, A.; Hills, P.; Brand, D.J.; Steenkamp, E.T.; Valentine, A.J. Roots and Nodules Response Differently to P Starvation in the Mediterranean-Type Legume Virgilia Divaricata. Front. Plant Sci. 2019, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Chirko, C.P.; Gold, M.A.; Nguyen, P.V.; Jiang, J.P. Influence of Direction and Distance from Trees on Wheat Yield and Photosynthetic Photon Flux Density (Qp) in a Paulownia and Wheat Intercropping System. For. Ecol. Manag. 1996, 83, 171–180. [Google Scholar] [CrossRef]
- Villordon, A.; Ginzberg, I.; Firon, N. Root Architecture and Root and Tuber Crop Productivity. Trends Plant Sci. 2014, 19, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jennings, A.; Barlow, P.W.; Forde, B.G. Dual Pathways for Regulation of Root Branching by Nitrate. Proc. Natl. Acad. Sci. USA 1999, 96, 6529–6534. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.R.; Islam, M.T.; Robin, A.H.K. Salinity Stress Alters Root Morphology and Root Hair Traits in Brassica Napus. Plants 2019, 8, 192. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, W.; Li, K.; Sun, F.; Han, C.; Wang, Y.; Li, X. Salt-Induced Plasticity of Root Hair Development Is Caused by Ion Disequilibrium in Arabidopsis Thaliana. J. Plant Res. 2008, 121, 87–96. [Google Scholar] [CrossRef]
- IPCC; IPCC5 WGII. Climate Change 2013. The Fifth Assessment Report; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Volume 5. [Google Scholar]
- Gibson, P.B.; Cope, W.A. White clover. In Agronomy Monographs; American Society of Agronomy: Madison, WI, USA, 1985; Chapter 20. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Khan, M.N. Introduction of White Clover for Herbage Production and Nitrogen Fixation in the Hilly Areas of Azad Jammu and Kashmir. Mt. Res. Dev. 2004, 24, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Wasser, C.H.; Shoemaker, J.W. Ecology and Culture of Selected Species Useful in Revegetating Disturbed Lands in the West; Clinton, H.W., Ed.; Fish and Wildlife Service, U.S. Department of the Interior: Washington, DC, USA, 1982; 347p. [Google Scholar]
- Matlack, G.R.; Gibson, D.J.; Good, R.E. Clonal Propagation, Local Disturbance, and the Structure of Vegetation: Ericaceous Shrubs in the Pine Barrens of New Jersey. Biol. Conserv. 1993, 63, 1–8. [Google Scholar]
- Coca Pérez, M. Árboles, Arbustos y Matas Del Parque Natural Los Alcornocales (Cádiz-Málaga): Clave de Determinación, Descripción, Usos, 2nd ed.; ORNI TOUR: Cádiz, Spain, 2001. [Google Scholar]
- Menéndez Valderrey, J.L. Ornithopus compressus. 2013. Available online: https://www.asturnatura.com/especie/ornithopus-perpusillus (accessed on 9 May 2023).
- Pérez-Fernández, M.A.; Calvo-Magro, E.; Rodríguez-Sánchez, J.; Valentine, A. Differential growth costs and nitrogen fixation in Cytisus multiflorus (L0H_er.) Sweet and Cytisus scoparius (L.) Link are mediated by sources of inorganic N. Plant Biol. J. 2017, 19, 742–748. [Google Scholar] [CrossRef]
- Valladares, F.; Villar-Salvador, P.; Domínguez, S.; Fernandez, M.; Penuelas, J.L.; Pugnaire, F.I. Enhancing the Early Performance of the Leguminous Shrub Retama sphaerocarpa (L.) Boiss.: Fertilisation versus Rhizobium Inoculation. Plant Soil 2002, 240, 253–262. [Google Scholar] [CrossRef]
- Valverde, C.; Ferrari, A.; Gabriel Wall, L. Effects of Calcium in the Nitrogen-Fixing Symbiosis between Actinorhizal Discaria Trinervis (Rhamnaceae) and Frankia. Symbiosis 2009, 49, 151–155. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.A.; Hill, Y.J.; Calvo-Magro, E.; Valentine, A. Competing Bradyrhizobia Strains Determine Niche Occupancy by Two Native Legumes in the Iberian Peninsula. Plant Ecol. 2015, 216, 1537–1549. [Google Scholar] [CrossRef]
- Piceno, Y.M.; Lovell, C.R. Stability in natural bacterial communities: II. Plant resource allocation effects on rhizosphere diazotroph assemblage competition. Microb. Ecol. 2000, 39, 41–48. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- IBM SPSS Software. Available online: https://www.ibm.com/analytics/spss-statistics-software (accessed on 9 May 2023).
- Ames, R.N.; Bethlenfalvay, G.J. Localized increase in nodule activity but no competitive interaction of cowpea rhizobia due to pre-establishment of vesicular-arbuscular mycorrhiza. New Phytol. 1987, 106, 207–215. [Google Scholar] [CrossRef]
- Ballhorn, D.J.; Kautz, S.; Schädler, M. Induced Plant Defense via Volatile Production Is Dependent on Rhizobial Symbiosis. Oecologia 2013, 172, 833–846. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Mineral Nutrition of Higher Plants; Academic Press: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Millar, J. Effect of Mycorrhizal Colonization and Light Limitation on Growth and Reproduction of Lima Bean (Phaseolus lunatus L.). J. Appl. Bot. Food Qual. 2013, 86, 172–179. [Google Scholar] [CrossRef]
- Kiers, E.T.; Denison, R.F. Sanctions, Cooperation, and the Stability of Plant-Rhizosphere Mutualisms. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Gubry-Rangin, C.; Garcia, M.; Béna, G. Partner Choice in Medicago Truncatula–Sinorhizobium Symbiosis. Proc. R. Soc. B 2010, 277, 1947–1951. [Google Scholar] [CrossRef]
- Reinhard, S.; Weber, E.; Martin, P.; Marschner, H. Influence of Phosphorus Supply and Light Intensity on Mycorrhizal Response in Pisum-Rhizobium-Glomus Symbiosis. Experientia 1994, 50, 890–896. [Google Scholar] [CrossRef]
- Ronsheim, M.L. The Effect of Mycorrhizae on Plant Growth and Reproduction Varies with Soil Phosphorus and Developmental Stage. Am. Midl. Nat. 2012, 167, 28–39. [Google Scholar] [CrossRef]
- Mortimer, P.E.; Pérez-Fernández, M.A.; Valentine, A.J. The Role of Arbuscular Mycorrhizal Colonization in the Carbon and Nutrient Economy of the Tripartite Symbiosis with Nodulated Phaseolus vulgaris. Soil Biol. Biochem. 2008, 40, 1019–1027. [Google Scholar] [CrossRef]
- Graham, P.H.; Vance, C.P. Legumes: Importance and Constraints to Greater Use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nutrient | Concentration (mg/L) |
---|---|
KH2PO4 | 123.35 |
KNO3 | 257.05 |
CaSO4 | 0.020 |
MgSO4 | 322.51 |
H3BO3 | 0.14 |
Harvest One at 75 Days | Harvest Two at 105 Days | |||||
---|---|---|---|---|---|---|
Shoot Biomass (mg) | Root Biomass (mg) | Total Plant Biomass | Shoot Biomass (mg) | Root Biomass (mg) | Total Plant Biomass | |
C. juncea HR-C | 73 | 8 | 81 | 387 | 55 | 442 |
C. juncea HR-I | 18 | 16 | 34 | 62 | 24 | 86 |
C. juncea IR-C | 30 | 10 | 40 | 105 | 20 | 125 |
C. juncea IR-I | 176 | 28 | 204 | 247 | 83 | 330 |
C. juncea LR-C | 139 | 4 | 180 | 143 | 46 | 189 |
C. juncea LR-I | 220 | 50 | 270 | 429 | 92 | 522 |
O. compressus HR-C | 6 | 0 | 6 | 7 | 1 | 8 |
O. compressus HR-I | 7 | 1 | 8 | 10 | 3 | 13 |
O. compressus IR-C | 105 | 60 | 165 | 265 | 159 | 424 |
O. compressus IR-I | 1019 | 409 | 1428 | 300 | 1301 | 4304 |
O. compressus LR-C | 98 | 45 | 143 | 195 | 117 | 312 |
O. compressus LR-I | 865 | 146 | 1011 | 1980 | 1168 | 3148 |
T. repens HR-C | 2 | 2 | 4 | 5 | 5 | 10 |
T. repens HR-I | 28 | 8 | 36 | 503 | 108 | 611 |
T. repens IR-C | 27 | 13 | 40 | 203 | 88 | 291 |
T. repens IR-I | 1292 | 176 | 1468 | 2986 | 481 | 3467 |
T. repens LR-C | 1 | 1 | 2 | 6 | 1 | 7 |
T. repens LR-I | 1 | 1 | 2 | 6 | 1 | 7 |
V. sativa HR-C | 375 | 112 | 487 | 751 | 281 | 1032 |
V. sativa HR-I | 223 | 88 | 311 | 2525 | 637 | 3162 |
V. sativa IR-C | 295 | 80 | 375 | 1063 | 411 | 1474 |
V. sativa IR-I | 895 | 191 | 1086 | 2467 | 448 | 2915 |
V. sativa LR-C | 81 | 58 | 139 | 186 | 121 | 307 |
V. sativa LR-I | 49 | 39 | 88 | 51 | 56 | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lara-Del Rey, I.A.; Pérez-Fernández, M.A. Regulatory Effect of Light and Rhizobial Inoculation on the Root Architecture and Plant Performance of Pasture Legumes. Agronomy 2023, 13, 2058. https://doi.org/10.3390/agronomy13082058
De Lara-Del Rey IA, Pérez-Fernández MA. Regulatory Effect of Light and Rhizobial Inoculation on the Root Architecture and Plant Performance of Pasture Legumes. Agronomy. 2023; 13(8):2058. https://doi.org/10.3390/agronomy13082058
Chicago/Turabian StyleDe Lara-Del Rey, Irene Ariadna, and María A. Pérez-Fernández. 2023. "Regulatory Effect of Light and Rhizobial Inoculation on the Root Architecture and Plant Performance of Pasture Legumes" Agronomy 13, no. 8: 2058. https://doi.org/10.3390/agronomy13082058