Next Issue
Volume 4, December
Previous Issue
Volume 4, June
 
 

Agronomy, Volume 4, Issue 3 (September 2014) – 7 articles , Pages 322-451

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
250 KiB  
Article
Maize Response to Fertilizer Dosing at Three Sites in the Central Rift Valley of Ethiopia
by Getachew Sime and Jens B. Aune
Agronomy 2014, 4(3), 436-451; https://doi.org/10.3390/agronomy4030436 - 5 Sep 2014
Cited by 36 | Viewed by 10722
Abstract
This study examines the agronomic response, efficiency and profitability of fertilizer microdosing in maize. An experiment with the following treatments was conducted: control without fertilizer, microdosing treatments, with the rate of 27 + 27, 53 + 53 and 80 + 80 kg ha [...] Read more.
This study examines the agronomic response, efficiency and profitability of fertilizer microdosing in maize. An experiment with the following treatments was conducted: control without fertilizer, microdosing treatments, with the rate of 27 + 27, 53 + 53 and 80 + 80 kg ha−1, and banding of fertilizer with 100 + 100 kg ha−1 of di ammonium phosphate (DAP) + urea, applied at planting and jointing, respectively. The treatments were arranged in a randomized complete block design with four replications. The experiment was conducted during the 2011/2012 and 2012/2013 cropping seasons at Ziway, Melkassa and Hawassa in the semiarid central rift valley region of Ethiopia. Compared to the control, the fertilizer treatments had higher yield and fertilizer use efficiency (FUE) profitably. The 27 + 27 kg ha−1 fertilizer rate increased the grain yield by 19, 45 and 46% at Hawassa, Ziway and Melkassa, respectively, and it was equivalent to the higher rates. The value cost ratio (VCR) was highest with the lowest fertilizer rate, varying between seven and 11 in the treatment with 27 + 27 kg ha−1, but two and three in the banding treatment. Similarly, FUE was highest with the lowest fertilizer rate, varying between 23 and 34 kg kg−1 but 7 and 8 kg kg−1 in the banding treatment. The improved yield, FUE, VCR and gross margin in maize with microdosing at the 27 + 27 kg ha−1 of DAP + urea rate makes it low cost, low risk, high yielding and profitable. Therefore, application of this particular rate in maize may be an option for the marginal farmers in the region with similar socioeconomic and agroecological conditions. Full article
7883 KiB  
Article
Field Phenotyping of Soybean Roots for Drought Stress Tolerance
by Berhanu A. Fenta, Stephen E. Beebe, Karl J. Kunert, James D. Burridge, Kathryn M. Barlow, Jonathan P. Lynch and Christine H. Foyer
Agronomy 2014, 4(3), 418-435; https://doi.org/10.3390/agronomy4030418 - 13 Aug 2014
Cited by 164 | Viewed by 17756
Abstract
Root architecture was determined together with shoot parameters under well watered and drought conditions in the field in three soybean cultivars (A5409RG, Jackson and Prima 2000). Morphology parameters were used to classify the cultivars into different root phenotypes that could be important in [...] Read more.
Root architecture was determined together with shoot parameters under well watered and drought conditions in the field in three soybean cultivars (A5409RG, Jackson and Prima 2000). Morphology parameters were used to classify the cultivars into different root phenotypes that could be important in conferring drought tolerance traits. A5409RG is a drought-sensitive cultivar with a shallow root phenotype and a root angle of <40°. In contrast, Jackson is a drought-escaping cultivar. It has a deep rooting phenotype with a root angle of >60°. Prima 2000 is an intermediate drought-tolerant cultivar with a root angle of 40°–60°. It has an intermediate root phenotype. Prima 2000 was the best performing cultivar under drought stress, having the greatest shoot biomass and grain yield under limited water availability. It had abundant root nodules even under drought conditions. A positive correlation was observed between nodule size, above-ground biomass and seed yield under well-watered and drought conditions. These findings demonstrate that root system phenotyping using markers that are easy-to-apply under field conditions can be used to determine genotypic differences in drought tolerance in soybean. The strong association between root and nodule parameters and whole plant productivity demonstrates the potential application of simple root phenotypic markers in screening for drought tolerance in soybean. Full article
(This article belongs to the Special Issue Field Phenotyping for Yield and Environmental Stress Tolerance Traits)
Show Figures

Figure 1

6070 KiB  
Review
Infra-Red Thermography as a High-Throughput Tool for Field Phenotyping
by Ankush Prashar and Hamlyn G. Jones
Agronomy 2014, 4(3), 397-417; https://doi.org/10.3390/agronomy4030397 - 31 Jul 2014
Cited by 95 | Viewed by 14473
Abstract
The improvements in crop production needed to meet the increasing food demand in the 21st Century will rely on improved crop management and better crop varieties. In the last decade our ability to use genetics and genomics in crop science has been revolutionised, [...] Read more.
The improvements in crop production needed to meet the increasing food demand in the 21st Century will rely on improved crop management and better crop varieties. In the last decade our ability to use genetics and genomics in crop science has been revolutionised, but these advances have not been matched by our ability to phenotype crops. As rapid and effective phenotyping is the basis of any large genetic study, there is an urgent need to utilise the recent advances in crop scale imaging to develop robust high-throughput phenotyping. This review discusses the use and adaptation of infra-red thermography (IRT) on crops as a phenotyping resource for both biotic and abiotic stresses. In particular, it addresses the complications caused by external factors such as environmental fluctuations and the difficulties caused by mixed pixels in the interpretation of IRT data and their effects on sensitivity and reproducibility for the detection of different stresses. Further, it highlights the improvements needed in using this technique for quantification of genetic variation and its integration with multiple sensor technology for development as a high-throughput and precise phenotyping approach for future crop breeding. Full article
(This article belongs to the Special Issue New Phenotyping Platforms for Field Trials)
Show Figures

Figure 1

45972 KiB  
Review
Scaling of Thermal Images at Different Spatial Resolution: The Mixed Pixel Problem
by Hamlyn G. Jones and Xavier R. R. Sirault
Agronomy 2014, 4(3), 380-396; https://doi.org/10.3390/agronomy4030380 - 23 Jul 2014
Cited by 75 | Viewed by 16917
Abstract
The consequences of changes in spatial resolution for application of thermal imagery in plant phenotyping in the field are discussed. Where image pixels are significantly smaller than the objects of interest (e.g., leaves), accurate estimates of leaf temperature are possible, but when pixels [...] Read more.
The consequences of changes in spatial resolution for application of thermal imagery in plant phenotyping in the field are discussed. Where image pixels are significantly smaller than the objects of interest (e.g., leaves), accurate estimates of leaf temperature are possible, but when pixels reach the same scale or larger than the objects of interest, the observed temperatures become significantly biased by the background temperature as a result of the presence of mixed pixels. Approaches to the estimation of the true leaf temperature that apply both at the whole-pixel level and at the sub-pixel level are reviewed and discussed. Full article
(This article belongs to the Special Issue New Phenotyping Platforms for Field Trials)
Show Figures

Figure 1

4941 KiB  
Review
Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping
by David Deery, Jose Jimenez-Berni, Hamlyn Jones, Xavier Sirault and Robert Furbank
Agronomy 2014, 4(3), 349-379; https://doi.org/10.3390/agronomy4030349 - 10 Jul 2014
Cited by 325 | Viewed by 21870
Abstract
The achievements made in genomic technology in recent decades are yet to be matched by fast and accurate crop phenotyping methods. Such crop phenotyping methods are required for crop improvement efforts to meet expected demand for food and fibre in the future. This [...] Read more.
The achievements made in genomic technology in recent decades are yet to be matched by fast and accurate crop phenotyping methods. Such crop phenotyping methods are required for crop improvement efforts to meet expected demand for food and fibre in the future. This review evaluates the role of proximal remote sensing buggies for field-based phenotyping with a particular focus on the application of currently available sensor technology for large-scale field phenotyping. To illustrate the potential for the development of high throughput phenotyping techniques, a case study is presented with sample data sets obtained from a ground-based proximal remote sensing buggy mounted with the following sensors: LiDAR, RGB camera, thermal infra-red camera and imaging spectroradiometer. The development of such techniques for routine deployment in commercial-scale breeding and pre-breeding operations will require a multidisciplinary approach to leverage the recent technological advances realised in computer science, image analysis, proximal remote sensing and robotics. Full article
(This article belongs to the Special Issue New Phenotyping Platforms for Field Trials)
Show Figures

Figure 1

721 KiB  
Article
Reducing Digging Losses by Using Automated Steering to Plant and Invert Peanuts
by George Vellidis, Brenda Ortiz, John Beasley, Rodney Hill, Herman Henry and Heather Brannen
Agronomy 2014, 4(3), 337-348; https://doi.org/10.3390/agronomy4030337 - 4 Jul 2014
Cited by 12 | Viewed by 7963
Abstract
GPS guidance of farm machinery has been increasingly adopted by farmers because of the perceived gains in efficiency that it provides. In the southeastern USA one of the reasons farmers adopt GPS guidance, and specifically automated steering (auto-steer), is that it can theoretically [...] Read more.
GPS guidance of farm machinery has been increasingly adopted by farmers because of the perceived gains in efficiency that it provides. In the southeastern USA one of the reasons farmers adopt GPS guidance, and specifically automated steering (auto-steer), is that it can theoretically result in large yield gains when used to plant and invert peanuts—one of the region’s most important crops. The goal of our study was to quantify the yield benefit of using real time kinematic (RTK)-based auto-steer to plant and invert peanuts under a variety of terrain conditions. Yield benefits result from reduced digging losses. The study was conducted for two consecutive years (2010 and 2011) on a private farm in Georgia, USA. When all data are grouped together, auto-steer outperformed conventional by 579 kg/ha in 2010 and 451 kg/ha in 2011. We also evaluated the performance of auto-steer under different curvature conditions using low, medium, and high curvature rows. The results showed that auto-steer outperformed conventional under all curvature by a minimum of 338 kg/ha. Finally, we evaluated passive implement guidance in combination with auto-steer and found that it holds tremendous potential for further reducing digging losses. In many cases, auto-steer will pay for itself within a year. Full article
Show Figures

Graphical abstract

1311 KiB  
Article
Development of a Mobile Multispectral Imaging Platform for Precise Field Phenotyping
by Jesper Svensgaard, Thomas Roitsch and Svend Christensen
Agronomy 2014, 4(3), 322-336; https://doi.org/10.3390/agronomy4030322 - 1 Jul 2014
Cited by 52 | Viewed by 11060
Abstract
Phenotyping in field experiments is challenging due to interactions between plants and effects from biotic and abiotic factors which increase complexity in plant development. In such environments, visual or destructive measurements are considered the limiting factor and novel approaches are necessary. Remote multispectral [...] Read more.
Phenotyping in field experiments is challenging due to interactions between plants and effects from biotic and abiotic factors which increase complexity in plant development. In such environments, visual or destructive measurements are considered the limiting factor and novel approaches are necessary. Remote multispectral imaging is a powerful method that has shown significant potential to estimate crop physiology. However, precise measurements of phenotypic differences between crop varieties in field experiments require exclusion of the disturbances caused by wind and varying sunlight. A mobile and closed multispectral imaging system was developed to study canopies in field experiments. This system shuts out wind and sunlight to ensure the highest possible precision and accuracy. Multispectral images were acquired in an experiment with four different wheat varieties, two different nitrogen levels, replicated on two different soil types at four different dates from 15 May (BBCH 13) to 18 June (BBCH 41 to 57). The images were analyzed and derived vegetation coverage and Normalized Difference Vegetation index (NDVI) were used to assess varietal differences. The results showed potentials for differentiating between the varieties using both vegetation coverage and NDVI, especially at the early growth stages. The perspectives of high-precision and high-throughput imaging for field phenotyping are discussed including the potentials of measuring varietal differences via spectral imaging in comparison to other simpler technologies such as spectral reflectance and RGB imaging. Full article
(This article belongs to the Special Issue New Phenotyping Platforms for Field Trials)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop