Considerations for Managing Agricultural Co-Existence between Transgenic and Non-Transgenic Cultivars of Outcrossing Perennial Forage Plants in Dairy Pastures
Abstract
:1. Introduction
- The ability to detect the transgene or its products in relevant commodities.
- A knowledge of the mechanism and extent of pollen (gene) flow and seed dispersal in the species.
- The strategic use of management interventions to “separate” GM and non-GM crops and prevent gene flow between them.
- The equivalence or otherwise in the agronomic or nutritional aspects of the GM and non-GM crops.
- The segregation of products during marketing and supply.
- Seed production where high pollination is required
- Pasture production where most management seeks to minimise reproductive development and seed set—particularly in dairy grazing systems.
2. Detection of Transgenes in Forages and Related Agricultural Products
3. Composition and Performance of GM Feeds and Forages
4. Gene Flow in Out-Crossing Perennial Forage Species
4.1. Isolation, Separation, and Segregation of Seed Crops
4.2. Transport of Seed and Hay Crops
4.3. Isolation, Separation, and Segregation of Forage Crops
4.3.1. Seedbank and Recruitment of Perennial Ryegrass into Existing Pastures
- Allow pasture to increase to 3000 kg/ha by the end of November
- Remove stock from mid-November to mid-January
- Graze the dry standing feed down to 1000 kg/ha before the autumn break
4.3.2. Management Practices That Could Be Used to Further Minimise Any Gene Flow between Adjacent Forage Crops
- pollen barriers
- flowering coincidence
- crop rotation
- regional strategies
- biological confinement
- Selecting seed that is certified for purity and quality
- Preventing transfer during harvest through cleaning machinery
- Testing to confirm non-GM status, if required
4.3.3. Management of the “Donor Paddock” and “Recipient Paddock”
4.3.3.1. Sow One Large Paddock as Opposed to Multiple Small Ones
4.3.3.2. Utilise Management to Avoid Flowering and Seed Set
4.3.3.3. Consider the Use of a Boundary Crop Sown to a Non-GM Cultivar Around the “Donor” Paddock or Farm
4.3.3.4. Consider the Use of “Reproductive” Barriers to Gene Flow Such as Flowering Time and Ploidy
4.3.3.5. Consider the Use of Shelter Belts between Farm Boundaries
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- James, C. 20th Anniversary (1996 to 2015) of the Global Commercialization of Biotech Crops and Biotech Crop Highlights in 2015. ISAAA Brief No. 51; ISAAA: Ithaca, NY, USA, 2015. [Google Scholar]
- Van Eeenennaam, A.L.; Young, A.E. Prevalence and impacts of genetically engineered feedstuffs on livestock populations. J. Anim. Sci. 2014, 92, 4255–4278. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.F.; Forster, J.W.; Spangenberg, G.C. Converting genomic discoveries into genetic solutions for diary pastures. Aust. J. Exp. Agric. 2007, 47, 1032–1038. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Brummer, E.C. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding. Ann. Bot. 2012, 110, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission recommendation of 23 July 2003 on guidelines for the development of national strategies and best practices to ensure the coexistence of genetically modified crops with conventional and organic farming. Off. J. Eur. Comm. 2003, L189, 36–47. [Google Scholar]
- Devos, Y.; Demont, M.; Dillen, K.; Reheul, D.; Kaiser, M.; Sanvido, O. Coexistence of genetically modified (GM) and non-GM crops in the European Union. A review. Agron. Sustain. Dev. 2009, 29, 11–30. [Google Scholar] [CrossRef] [Green Version]
- Binimelis, R. Coexistence of plants and coexistence of farmers: Is individual choice possible? J. Agric. Environ. Ethics 2008, 21, 437–457. [Google Scholar] [CrossRef]
- European Commission. Report on the Implementation of National Measures on the Co-Existence of Genetically Modified Crops with Conventional and Organic Farming. European Commission. 2006. Available online: http://ec.europa.eu/agriculture/coexistence/sec313_en.pdf (accessed on 24 November 2016).
- National Alfalfa and Forage Alliance Co-Existence Documents. 2016. Available online: https://www.alfalfa.org/CSCoexistenceDocs.html (accessed on 2 November 2016).
- Putnam, D.H.; Woodward, T.; Reisen, P.; Orloff, S. Coexistence and market assurance for production of non-genetically engineered alfalfa hay and forage in a biotech era. Crop Forage Turfgrass Manag. 2016, 2. [Google Scholar] [CrossRef]
- Phipps, R.H.; Deaville, E.R.; Maddison, B.C. Detection of transgenic and endogenous plant DNA in rumen fluid, duodenal digesta, milk, blood and feces of lactating dairy cows. J. Dairy Sci. 2003, 86, 4070–4078. [Google Scholar] [CrossRef]
- Bertheau, Y.; Helbling, J.C.; Fortabat, M.N.; Makhzami, S.; Sotinel, I.; Audeon, C.; Nignol, A.C.; Koblinsky, A.; Petit, L.; Fach, P.; et al. Persistence of plant DNA sequences in the blood of dairy cows fed with genetically modified (Bt176) and conventional corn silage. J. Agric. Food Chem. 2009, 57, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Klotz, A.; Einspanier, R. Nachweis von “novel-feed” in tier? Beeintrchtigung des verbrauchers von fleisch oder milch ist nicht zu erwarten. Mais 1998, 3, 109–111. [Google Scholar]
- Einspanier, R.A.; Klotz, A.; Kraft, J.; Aulrich, K.; Poser, R.; Schwaegle, F.; Jahreis, G.; Flachowsky, G. The fate of forage plant DNA in farm animals: A collaborative case study investigating cattle and chicken fed recombinant plant material. Eur. Food Res. Technol. 2001, 212, 129–134. [Google Scholar] [CrossRef]
- Phipps, R.H.; Beever, D.E.; Humphries, D.J. Detection of transgenic DNA in milk from cows receiving herbicide tolerant (CP4EPSPS) soybean meal. Livest. Prod. Sci. 2002, 73, 269–273. [Google Scholar] [CrossRef]
- Poms, R.E.; Hochsteiner, W.; Luger, K.; Glossl, J.; Foissy, H. Model studies on the detectability of genetically modified feeds in milk. J. Food Prot. 2003, 66, 304–310. [Google Scholar] [PubMed]
- Combs, D.K.; Hartnell, G.F. Alfalfa containing the glyphosate-tolerant trait has no effect on feed intake, milk composition, or milk production of dairy cattle. J. Dairy Sci. 2008, 91, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Guertler, P.; Paul, V.; Steinke, K.; Weidemann, S.; Preissinger, W.; Albrecht, C.; Spiekers, H.; Schwarz, F.J.; Meyer, H.H.D. Long-term feeding of genetically modified corn (MON810)—Fate of cry 1 Ab DNA and recombinant protein during the metabolism of the dairy cow. Livest. Sci. 2010, 131, 250–259. [Google Scholar] [CrossRef]
- Steinke, K.; Guertler, P.; Paul, V.; Weidemann, S.; Ettle, T.; Albrecht, C.; Meyer, H.H.; Spiekers, H.; Schwarz, F.J. Effects of long-term feeding of genetically modified corn (event MON810) on the performance of lactating dairy cows. J. Anim. Physiol. Anim. Nutr. (Berl.) 2010, 94, E185–E193. [Google Scholar] [CrossRef] [PubMed]
- Einspanier, R. The fate of transgenic DNA and newly expressed proteins. In Animal Nutrition with Transgenic Plants; CABI Biotechnology Series; Flachowsky, G., Ed.; CABI: Oxfordshire, UK, 2013; pp. 112–127. [Google Scholar]
- Birkman, L.; van den Bosse, E.; Carrero, I.; Vogt, A.; Weistra, K.; Oortwijn, W. Clarifying the Status of Pollen in Honey. Substitute Impact Assessment of EC Directive Amending Council Honey Directive 2001/110/EC. 2013. Available online: http://www.europarl.europa.eu/committees/en.studiesdownload.html?languageDocument=EN&file=96720 (accessed on 24 November 2016).
- Hornitzky, M.; Ghalayini, A. Honey produced from genetically modified canola (Brassica napus) nectar will not need to be labelled as a GM food under current Australian guidelines. Aust. J. Exp. Agric. 2006, 46, 1101–1104. [Google Scholar] [CrossRef]
- Moar, N.T. Pollen analysis of New Zealand honey. N. Z. J. Agric. Res. 1985, 28, 39–70. [Google Scholar] [CrossRef]
- Panter, S.; Chu, P.G.; Ludlow, E.; Garrett, R.; Kalla, R.; Jahufer, M.Z.Z.; de Lucas Arbiza, A.; Mouradov, A.; Smith, K.F.; Spangenberg, G. Molecular breeding of transgenic white clover (Trifolium repens L.) with field resistance to alfalfa mosaic virus through the expression of the AMV coat protein. Transgenic Res. 2012, 21, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Panter, S.; Mouradov, A.; Smith, K.F.; Spangenberg, G. Development and validation of protocols for product stewardship in transgenic white clover (Trifolium repens L.): Detection of the AMV CP and npt2 transgenes in pollen, honey and honeybees. Crop Pasture Sci. 2015, 66, 474–480. [Google Scholar] [CrossRef]
- Panter, S.; Mouradov, A.; Smith, K.F.; Spangenberg, G. Development and validation of protocols for product stewardship in transgenic white clover (Trifolium repens L.): Detection of the AMV CP and npt2 transgenes in seed, herbage and hay. Crop Pasture Sci. 2015, 66, 1039–1048. [Google Scholar] [CrossRef]
- Remund, K.M.; Dixon, D.A.; Wright, D.L.; Holden, L.R. Statistical considerations in seed purity testing for transgenic traits. Seed Sci. Res. 2001, 11, 101–119. [Google Scholar]
- Koblinksy, A.; Bertheau, Y. Minimum cost acceptance sampling plans for grain control, with application to GMO detection. Chemom. Intell. Lab. Syst. 2005, 75, 189–200. [Google Scholar]
- Elmslie, K.R.; Whaites, L.; Griffiths, K.R.; Murby, E.J. Sampling plan and test protocol for the semiquantitative detection of genetically modified canola (Brassica napus) seed in bulk canola seed. J. Agric. Food Chem. 2007, 55, 4414–4421. [Google Scholar] [CrossRef] [PubMed]
- Watrud, L.S.; Lee, E.H.; Fairbrother, A.; Burdick, C.; Reichman, J.R.; Bollman, M.; Storm, M.; King, G.; Van de Water, P.K. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc. Natl. Acad. Sci. USA 2004, 101, 14533–14538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, L.; Guo, J.; Li, X.; Jiang, L.; Zhang, D. Development of one novel multiple-target plasmid for duplex quantitative PCR analysis of Roundup Ready soybean. J. Agric. Food Chem. 2008, 56, 5514–5520. [Google Scholar] [CrossRef] [PubMed]
- Chaouachi, M.; Hafsa, A.B.; Nabi, N.; Zellema, M.S.; Said, K. A new dual plasmid calibrator for the quantification of the construct specific GM canola Oxy-235 with duplex real-time PCR. Food Chem. 2014, 145, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Chandu, D.; Paul, S.; Parker, M.; Dudin, Y.; King-Sitzes, J.; Perez, T.; Mittanck, D.W.; Shah, M.; Glenn, K.C.; Piepenburg, O. Development of rapid point-of-use DNA test for the screening of Genuity Roundup Ready 2 Yield soybean in seed samples. Biomed. Res. Int. 2016. [Google Scholar] [CrossRef] [PubMed]
- De Lucas, A.; Panter, S.; Mouradov, A.; Rochfort, S.; Smith, K.F.; Spangenberg, G. Assessment of Nutritional Characteristics of Virus-Resistant Transgenic White Clover (Trifolium repens L.) Grown under Field and Glasshouse Conditions. Mol. Breed. 2015, 35, 147. [Google Scholar] [CrossRef]
- Toyama, K.; Bae, C.H.; Kang, J.G.; Lim, Y.P.; Adachi, T.; Riu, K.Z.; Song, P.S.; Lee, H.Y. Production of herbicide-tolerant Zoysiagrass by Agrobacterium-mediated transformation. Mol. Cells 2003, 16, 19–27. [Google Scholar] [PubMed]
- Bae, T.W.; Vanjildorj, E.; Song, S.Y.; Nishiguchi, S.; Yang, S.S.; Song, I.J.; Chandrasekhar, T.; Kang, T.W.; Kim, J.I.; Koh, Y.J.; et al. Environmental risk assessment of genetically engineered herbicide-tolerant Zoysia japonica. J. Environ. Qual. 2008, 37, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Cunliffe, K.V.; Vecchies, A.C.; Jones, E.S.; Kearney, G.A.; Forster, J.W.; Spangenberg, G.C.; Smith, K.F. Assessment of gene flow using tetraploid genotypes of perennial ryegrass (Lolium perenne L.). Aust. J. Agric. Res. 2004, 55, 389–396. [Google Scholar] [CrossRef]
- De Lucas, J.A.; Forster, J.W.; Smith, K.F.; Spangenberg, G.C. Assessment of gene flow in white clover (Trifolium repens L.) under field and conditions in Australia using phenotypic characters and genetic markers. Crop Pasture Sci. 2011, 63, 155–163. [Google Scholar] [CrossRef]
- Smith, P.; Baxter, L. South Australian Seed Certification Scheme—Procedures and Standards Manual. Seed Services, Primary Industries & Resources South Australia, Plant Research Centre, Hartley Grove, Urrbrae, SA 5064. 2002. Available online: http://www.ruralsolutions.sa.gov.au/__data/assets/pdf_file/0005/43349/seeds_manual.pdf (accessed on 24 November 2016). [Google Scholar]
- Rognli, O.A.; Nilsson, N.O.; Nurminiemi, M. Effects of distance and pollen competition on gene flow in the wind-pollinated grass Festuca pratensis Huds. Heredity 2000, 85, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Anon Oregon Seed Certification Handbook. 2014. Available online: http://seedcert.oregonstate.edu/sites/default/files/publications/handbook.pdf (accessed on 24 November 2016).
- Wang, J.; Dobrowolski, M.P.; Cogan, N.O.I.; Forster, J.W.; Smith, K.F. Assignment of individual genotypes to specific forage cultivars of perennial ryegrass based on SSR markers. Crop Sci. 2009, 49, 49–58. [Google Scholar] [CrossRef]
- Wang, J.; Pembleton, L.W.; Baillie, R.C.; Drayton, M.C.; Hand, M.L.; Bain, M.; Sawbridge, T.I.; Spangenberg, G.C.; Forster, J.W.; Cogan, N.O.I. Development and implementation of a multiplexed single nucleotide polymorphism genotyping tool for differentiation of ryegrass species and cultivars. Mol. Breed. 2014, 33, 435–451. [Google Scholar] [CrossRef]
- Van Zijll de Jong, E.; Dobrowolski, M.P.; Sandford, A.; Smith, K.F.; Willocks, M.J.; Spangenberg, G.C.; Forster, J.W. Detection and characterisation of novel fungal endophyte variation in cultivars of perennial ryegrass (Lolium perenne L.). Aust. J. Agric. Res. 2008, 59, 214–221. [Google Scholar] [CrossRef]
- Greene, S.L.; Kesoju, S.R.; Martin, R.C.; Kramer, M. Occurrence of transgenic feral alfalfa (Medicago sativa subsp. sativa L.) in alfalfa seed production areas in the United States. PLoS ONE 2015, 10, e0143296. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.; Grime, J.P. Seasonal Variation in the Seed Banks of Herbaceous Species in Ten Contrasting Habitats. J. Ecol. 1979, 67, 893–921. [Google Scholar] [CrossRef]
- Lodge, G.M. Seed dormancy, germination, seedling emergence, and survival of some temperate perennial pasture grasses in northern New South Wales. Aust. J. Agric. Res. 2004, 55, 345–355. [Google Scholar] [CrossRef]
- Tozer, K.N.; Barker, G.M.; Cameron, C.A.; James, T.K. Relationship between seedbank and above-ground botanical composition during spring. N. Z. Plant Prot. 2010, 63, 90–95. [Google Scholar]
- Sanderson, M.A.; Goslee, S.C.; Klement, K.D.; Soder, K.J. Soil seed bank composition in pastures of diverse mixtures of temperate forages. Agron. J. 2007, 99, 1514–1520. [Google Scholar] [CrossRef]
- Hume, D.E.; Barker, D.J. Natural reseeding of five grass species in summer dry hill country. Proc. N. Z. Grassl. Assoc. 1991, 53, 97–104. [Google Scholar]
- Waller, R.A.; Sale, P.W.G.; Saul, G.R.; Quigley, P.E.; Kearney, G.A. Tactical versus continuous stocking for persistence of perennial ryegrass (Lolium perenne L.) in pastures grazed by sheep in south-western Victoria. Aust. J. Exp. Agric. 1999, 39, 265–274. [Google Scholar] [CrossRef]
- Edwards, G.R.; Hay, M.J.M.; Brock, J.L. Seedling recruitment dynamics of forage and weed species under continuous and rotational sheep grazing in a temperate New Zealand pasture. Grass Forage Sci. 2005, 60, 186–199. [Google Scholar] [CrossRef]
- Australian Seeds Federation. Database of Pasture Cultivars and Varieties. Available online: http://www.asf.asn.au/seed_database_mobile.php (accessed on 24 November 16).
- Bird, P.R.; Jackson, T.T.; Kearney, G.A.; Williams, K.W. Effect of two tree windbreaks on adjacent pastures in south-western Victoria Australia. Aust. J. Exp. Agric. 2002, 42, 809–830. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, K.F.; Spangenberg, G. Considerations for Managing Agricultural Co-Existence between Transgenic and Non-Transgenic Cultivars of Outcrossing Perennial Forage Plants in Dairy Pastures. Agronomy 2016, 6, 59. https://doi.org/10.3390/agronomy6040059
Smith KF, Spangenberg G. Considerations for Managing Agricultural Co-Existence between Transgenic and Non-Transgenic Cultivars of Outcrossing Perennial Forage Plants in Dairy Pastures. Agronomy. 2016; 6(4):59. https://doi.org/10.3390/agronomy6040059
Chicago/Turabian StyleSmith, Kevin F., and German Spangenberg. 2016. "Considerations for Managing Agricultural Co-Existence between Transgenic and Non-Transgenic Cultivars of Outcrossing Perennial Forage Plants in Dairy Pastures" Agronomy 6, no. 4: 59. https://doi.org/10.3390/agronomy6040059
APA StyleSmith, K. F., & Spangenberg, G. (2016). Considerations for Managing Agricultural Co-Existence between Transgenic and Non-Transgenic Cultivars of Outcrossing Perennial Forage Plants in Dairy Pastures. Agronomy, 6(4), 59. https://doi.org/10.3390/agronomy6040059