Evaluation of the Antioxidant and Wound-Healing Properties of Extracts from Different Parts of Hylocereus polyrhizus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Sample Collection and Preparation
2.3. Extract Preparation
2.4. Composition Analysis
2.5. Antioxidant Activity
2.6. Cell Proliferation
2.7. DNA Damage Protection Assay
2.8. Scratch Assay
2.9. Statistical Analysis
3. Results
3.1. Effects of Extraction Solutions of Different Parts of H. polyrhizus on Extraction Yield
3.2. Composition of the Extracts from H. polyrhizus
3.3. Antioxidant Properties
3.4. Protection against DNA Damage
3.5. Cell Proliferation and Viability
3.6. Cell Migration (Scratch Assay)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adnan, L.; Osman, A.; Hamid, A.A. Antioxidant activity of different extract of red pitaya (Hylocereus polyrhizus) seed. Int. J. Food Prop. 2011, 14, 1171–1181. [Google Scholar] [CrossRef]
- Le-Bellec, F.; Vaillant, F.; Imbert, E. Pitahaya (Hylocereus spp.): A New Crop, a Market with a Future. Fruits 2006, 61, 237–250. [Google Scholar] [CrossRef]
- Wu, L.C.; Hsu, H.W.; Chen, Y.C.; Chiu, C.C.; Lin, Y.I.; Ho, J.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Gengatharan, A.; Dykes, G.A.; Choo, W.S. The effect of pH treatment and refrigerated storage on natural colourant preparations (betacyanins) from red pitahaya and their potential application in yoghurt. LWT-Food Sci. Tech. 2017, 80, 437–445. [Google Scholar] [CrossRef]
- Ashwini Gengatharan, A.; Dykes, G.A.; Choo, W.S. Stability of betacyanin from red pitahaya (Hylocereus polyrhizus) and its potential application as a natural colourant in milk. Int. J. Food Sci. Tech. 2016, 51, 427–434. [Google Scholar] [CrossRef]
- Soccio, M.; Laus, M.N.; Alfarano, M.; Dalfino, G.; Panunzio, M.F.; Donato Pastore, D. Antioxidant/Oxidant Balance as a novel approach to evaluate the effect on serum of long-term intake of plant antioxidant-rich foods. J. Funct. Food. 2018, 40, 778–784. [Google Scholar] [CrossRef]
- Costa-Rodrigues, J.; Pinho, O.; Monteiro, P.R.R. Can lycopene be considered an effective protection against cardiovascular disease? Food Chem. 2018, 245, 1148–1153. [Google Scholar] [CrossRef]
- Sadeghi Ekbatan, S.; Li, X.-Q.; Ghorbani, M.; Azadi, B.; Kubow, S. Chlorogenic Acid and Its Microbial Metabolites Exert Anti-Proliferative Effects, S-Phase Cell-Cycle Arrest and Apoptosis in Human Colon Cancer Caco-2 Cells. Int. J. Mol. Sci. 2018, 19, 723. [Google Scholar] [CrossRef]
- Ivana Vrhovac Madunić, I.V.; Madunić, J.; Antunović, M.; Paradžik, M.; Garaj-Vrhovac, V.; Breljak, D.; Marijanović, I.; Gajski, G. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells. Naunyn. Schmiedebergs. Arch. Pharmacol. 2018, 391, 537–550. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Forbes-Hernández, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; Carrasco-Pancorbo, A.; Simal-Gándara, J.; Giampieri, F.; et al. Characterization of phenolic extracts from Brava extra virgin olive oils and their cytotoxic effects on MCF-7 breast cancer cells. Food Chem. Toxicol. 2018, 119, 73–85. [Google Scholar] [CrossRef]
- Du, W.X.; Olsen, C.W.; Avena-Bustillos, R.J.; Friedman, M.; McHugh, T.H. Physical and antibacterial properties of edible films formulated with apple skin polyphenols. J. Food Sci. 2011, 76, 149–155. [Google Scholar] [CrossRef]
- Moskovitz, J.; Yim, K.A.; Choke, P.B. Free radicals and disease. Arch. Biochem. Biophys. 2002, 397, 354–359. [Google Scholar] [CrossRef]
- Sevgi, K.; Tepe, B.; Sarikurkcu, C. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem. Toxicol. 2015, 77, 12–21. [Google Scholar] [CrossRef]
- Kokane, D.D.; More, R.Y.; Kale, M.B.; Nehete, M.N.; Mehendale, P.C.; Gadgoli, C.H. Evaluation of wound healing activity of root of Mimosa pudica. J. Ethnopharmacol. 2009, 124, 311–315. [Google Scholar] [CrossRef]
- Gangwar, M.; Gautam, M.K.; Ghildiyal, S.; Nath, G.; Goel, R.K. Mallotus philippinensis Muell. Arg fruit glandular hairs extract promotes wound healing on different wound model in rats. BMC Complem. Altern. M. 2015, 15, 123. [Google Scholar] [CrossRef]
- Pitz, H.S.; Pereira, A.; Blasius, M.B.; Voytena, A.P.L.; Affonso, R.C.L.; Fanan, S.; Trevisan, A.C.D.; Ribeiro-do-Valle, R.M.; Maraschin, M. In vitro evaluation of the antioxidant activity and wound healing properties of Jaboticaba (Plinia peruviana) fruit peel hydroalcoholic Extract. Oxid. Med. Cell Longev. 2016, 2016, 3403586. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Compost. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Guendez, R.; Kallithraka, S.; Makris, D.P.; Kefalas, P. An analytical survey of the polyphenols of seeds of varieties of grape (Vitis vinifera sp.) cultivated in Greece: Implications for exploitation as a source of value-added phytochemicals. Phytochem. Anal. 2005, 16, 17–23. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Health aspects of functional grape seed constituents. Trend Food Sci. Technol. 2004, 15, 422–433. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Nunez, J.M. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Kammerer, D.; Claus, A.; Schieber, A.; Carle, A. A novel process for the recovery of polyphenols from grape (Vitis vinifera L.) pomace. J. Food Sci. 2005, 70, C157–C163. [Google Scholar] [CrossRef]
- Louli, V.; Ragoussis, N.; Magoulas, K. Recovery of phenolic antioxidants from wine industry by-products. Bioresour. Technol. 2004, 92, 201–208. [Google Scholar] [CrossRef]
- Alonso, A.M.; Guille’n, D.A.; Barroso, C.G.; Puertas, B.; Garcı’a, A. Determination of antioxidant activity of wine byproducts and its correlation with polyphenolic content. J. Agric. Food Chem. 2002, 50, 5832–5836. [Google Scholar] [CrossRef]
- Souquet, J.M.; Labarbe, B.; Le Guerneve’, C.; Cheynier, V.; Moutounet, M. Phenolic composition of grape stems. J. Agric. Food Chem. 2000, 48, 1076–1080. [Google Scholar] [CrossRef]
- Chiang, H.M.; Chen, H.C.; Lin, T.J.; Shih, I.C.; Wen, K.C. Michelia alba extract attenuates UVB-induced expression of matrix metalloproteinases via MAP kinase pathway in human dermal fibroblast. Food Chem. Toxicol. 2012, 50, 4260–4269. [Google Scholar] [CrossRef]
- Lin, J.Y.; Tang, C.Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.; Lee, Y.C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef]
- Wen, K.-C.; Chiu, H.-H.; Fan, P.-C.; Chen, C.-W.; Wu, S.-M.; Chang, J.-H.; Chiang, H.-M. Antioxidant Activity of Ixora parviflora in a Cell/Cell-Free System and in UV-Exposed Human Fibroblasts. Molecules 2011, 16, 5735–5752. [Google Scholar] [CrossRef]
- Van den Berg, R.; Haenen, G.R.; van den Berg, H.; Bast, A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Kim, D.-O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Chiang, H.M.; Lin, T.J.; Chiu, C.Y.; Chang, C.W.; Hsu, K.C.; Fan, P.C.; Wen, K.C. Coffea arabica extract and its constituents prevent photoaging by suppressing MMPs expression and MAP kinase pathway. Food Chem. Toxicol. 2011, 49, 309–318. [Google Scholar] [CrossRef]
- Russo, A.; Cardile, V.; Lombardo, L.; Vanella, L.; Acquaviva, R. Genistin inhibits UV light-induced plasmid DNA damage and cell growth in human melanoma cells. J. Nutr. Biochem. 2006, 17, 103–108. [Google Scholar] [CrossRef]
- Balekar, N.; Katkam, G.; Nakpheng, T.; Jehtae, K.; Srichana, T. Evaluation of the wound healing potential of Wedelia trilobata (L.) leaves. J. Ethnopharmacol. 2012, 141, 817–824. [Google Scholar] [CrossRef]
- Li, B.B.; Smith, B.; Hossain, Md.M. Extraction of phenolics from citrus peels I. Solvent extraction method. Sep. Purif. Technol. 2006, 48, 182–188. [Google Scholar] [CrossRef]
- Choo, W.S.; Yong, W.K. Antioxidant properties of two species of Hylocereus fruits. Adv. Appl. Sci. Res. 2011, 2, 418–425. [Google Scholar]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the folin-Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef]
- Amri, B.; Martino, E.; Vitulo, F.; Corana, F.; Kaâb, L.-B.; Rui, M.; Rossi, D.; Mori, M.; Rossi, S.; Collina, S. Marrubium vulgare L. leave extract: Phytochemical composition, antioxidant and wound healing properties. Molecules 2017, 22, 1851. [Google Scholar] [CrossRef]
- Villanueva, J.R.; Esteban, J.M. An insight into a blockbuster phytomedicine; Marrubium vulgare L. Herb. More of a myth than a reality? Phytother. Res. 2016, 30, 1551–1558. [Google Scholar]
- Dizdaroglu, T.P.A.; Jaruga, P.; Birincioglu, M.; Rodriguez, H. Free radical induced damage to DNA: Mechanisms and measurement. Free Radic. Biol. Med. 2002, 32, 1102–1115. [Google Scholar] [CrossRef]
- Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C.J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell Biochem. 2004, 266, 37–56. [Google Scholar] [CrossRef]
- Aruoma, O.I. Methodological consideration for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat. Res. 2003, 523, 9–20. [Google Scholar] [CrossRef]
Sample | Solvent | Extraction Yield (%) |
---|---|---|
Stem | 95% aqueous Ethanol | 3.85 ± 1.11 a |
50% aqueous Ethanol | 44.70 ± 1.77 f | |
Distilled Water | 20.80 ± 2.75 c | |
Peel | 95% aqueous Ethanol | 4.21 ± 1.48 a |
50% aqueous Ethanol | 31.90 ± 1.20 e | |
Distilled Water | 43.47 ± 1.95 f | |
Flower | 95% aqueous Ethanol | 7.43 ± 1.23 b |
50% aqueous Ethanol | 21.72 ± 1.66 c | |
Distilled Water | 26.90 ± 2.56 d |
Sample | Solvent | Content (%) | |||
---|---|---|---|---|---|
Phenolic (GAE) | Flavonoid (QE) | Protein (AE) | Glucose (GE) | ||
95% Aqueous Ethanol | 8.16 ± 0.45 e | 0.87 ± 0.08 c | 8.56 ± 0.94 b | 40.15 ± 2.15 a | |
Stem | 50% Aqueous Ethanol | 5.50 ± 0.37 b | 0.87 ± 0.05 c | 12.14 ± 1.62 d,e | 53.91 ± 3.49 b |
Distilled Water | 4.91 0.72 a,b | 0.38 ± 0.06 a | 12.98 ± 1.23 e | 35.38 ± 1.90 a | |
95% Aqueous Ethanol | 7.28 ± 0.49 d | 0.59 ± 0.06 b | 7.84 ± 0.45 b | 50.45 ± 2.12 b | |
Peel | 50% Aqueous Ethanol | 5.59 ± 0.56 b,c | 0.34 ± 0.05 a | 8.97 ± 0.85 b | 40.56 ± 3.41 a |
Distilled Water | 4.50 ± 0.25 a | 0.40 ± 0.07 a | 9.44 ± 0.63 b,c | 83.88 ± 3.43 d | |
95% Aqueous Ethanol | 6.41 ± 0.68 c | 0.53 ± 0.06 b | 5.49 ± 0.88 a | 67.61 ± 4.28 c | |
Flower | 50% Aqueous Ethanol | 5.77 ± 0.15 b,c | 0.42 ± 0.03 a | 11.00 ± 1.36 c,d | 69.01 ± 3.91 c |
Distilled Water | 4.11 ± 0.10 a | 0.39 ± 0.05 a | 12.36 ± 1.01 d,e | 36.34 ± 1.72 a |
Sample | Solvent | IC50 Value(µg/ml) | |
---|---|---|---|
DPPH | ABTS | ||
95% Aqueous Ethanol | 224.00 ± 14.81 b | 59.05 ± 3.49 d | |
Stem | 50% Aqueous Ethanol | 441.85 ± 16.13 d | 46.05 ± 3.07 b |
Distilled Water | 351.83 ± 23.27 c | 52.51 ± 2.54 c | |
95% Aqueous Ethanol | 994.25 ± 29.63 h | 144.25 ± 4.65 g | |
Peel | 50% Aqueous Ethanol | 951.00 ± 26.84 g | 164.77 ± 5.14 h |
Distilled Water | 908.60 ± 32.49 g | 186.49 ± 5.34 i | |
95% Aqueous Ethanol | 655.57 ± 29.50 f | 83.45 ± 2.77 f | |
Flower | 50% Aqueous Ethanol | 579.13 ± 28.92 e | 61.61 ± 3.14 d |
Distilled Water | 575.67 ± 30.15 e | 68.49 ± 2.56 e | |
Trolox | 5.89 ± 0.17 a | 6.11 ± 0.11 a |
µg/mL | Distilled Water Extract | 50% Aqueous Ethanol Extract | 95% Aqueous Ethanol Extract | ||||||
---|---|---|---|---|---|---|---|---|---|
Stem | Peel | Flower | Stem | Peel | Flower | Stem | Peel | Flower | |
250 | 99.28 ± 6.50 | 98.82 ± 1.77 | 97.45 ± 8.85 | 97.03 ± 2.57 | 105.29 ± 9.29 | 91.30 ± 8.06 | 94.60 ± 4.50 | 101.50 ± 1.88 | 95.23 ± 4.17 |
500 | 107.27 ± 3.25 | 97.05 ± 4.16 | 92.01 ± 8.57 | 96.34 ± 2.35 | 96.21 ± 2.88 | 86.05 ± 5.38 | 94.61 ± 5.49 | 91.91 ± 7.48 | 94.68 ± 7.80 |
750 | 100.89 ± 4.27 | 90.96 ± 8.01 | 88.54 ± 8.34 | 95.63 ± 3.17 | 92.99 ± 7.69 | 90.10 ± 7.65 | 83.22 ± 6.25 | 97.04 ± 5.58 | 90.57 ± 8.45 |
1000 | 108.90 ± 8.98 | 85.96 ± 8.55 | 111.97 ± 2.39 | 93.99 ± 4.91 | 96.85 ± 8.68 | 94.51 ± 6.68 | 84.55 ± 9.97 | 96.60 ± 9.16 | 93.82 ± 7.69 |
2000 | 118.27 ± 5.03 | 76.50 ± 3.71 * | 120.42 ± 6.05 | 96.59 ± 9.58 | 106.88 ± 3.65 | 86.27 ± 4.55 | 75.81 ± 2.60 * | 94.33 ± 4.89 | 79.47 ± 7.15 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, Y.; Lin, C.-G.; Chen, W.-L.; Huang, Y.-C.; Chen, C.-Y.; Huang, K.-F.; Yang, C.-H. Evaluation of the Antioxidant and Wound-Healing Properties of Extracts from Different Parts of Hylocereus polyrhizus. Agronomy 2019, 9, 27. https://doi.org/10.3390/agronomy9010027
Tsai Y, Lin C-G, Chen W-L, Huang Y-C, Chen C-Y, Huang K-F, Yang C-H. Evaluation of the Antioxidant and Wound-Healing Properties of Extracts from Different Parts of Hylocereus polyrhizus. Agronomy. 2019; 9(1):27. https://doi.org/10.3390/agronomy9010027
Chicago/Turabian StyleTsai, Yu, Ching-Gong Lin, Wei-Lin Chen, Yu-Chun Huang, Cheng-Yu Chen, Keh-Feng Huang, and Chao-Hsun Yang. 2019. "Evaluation of the Antioxidant and Wound-Healing Properties of Extracts from Different Parts of Hylocereus polyrhizus" Agronomy 9, no. 1: 27. https://doi.org/10.3390/agronomy9010027
APA StyleTsai, Y., Lin, C.-G., Chen, W.-L., Huang, Y.-C., Chen, C.-Y., Huang, K.-F., & Yang, C.-H. (2019). Evaluation of the Antioxidant and Wound-Healing Properties of Extracts from Different Parts of Hylocereus polyrhizus. Agronomy, 9(1), 27. https://doi.org/10.3390/agronomy9010027