Assessment of the Persistence of Avena sterilis L. Patches in Wheat Fields for Site-Specific Sustainable Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Remote Imagery, and Discrimination of Wild Oat Patches in Wheat Fields
2.2. Spatial Persistence of Wild Oat Patches in Wheat Fields
2.2.1. Change Detection Test
2.2.2. Spatial Autocorrelation Test
2.2.3. Spreading Distance Test
2.3. Maps for Site-Specific Weed Management (SSWM) Simulations
2.4. Economic Analysis
3. Results
3.1. Spatial Persistence of Wild Oat Patches in Wheat Fields
3.1.1. Change Detection
3.1.2. Spatial Autocorrelation
3.1.3. Dispersal Distance
3.2. Maps for Site-Specific Weed Management (SSWM)
3.3. Economic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fernández-Quintanilla, C.; Navarrete, L.; Torner, C.; Sánchez Del Arco, M.J. Avena sterilis en cultivos de cereales. In Biología de las Malas Hierbas de España; Sans, F.X., Fernández-Quintanilla, C., Eds.; MV-Phytoma España: Valencia, Spain, 1997; pp. 4–17. [Google Scholar]
- Barroso, J.; Fernández-Quintanilla, C.; Ruiz, D.; Hernaiz, P.; Rew, L.J. Spatial stability of Avena sterilis spp. ludoviciana populations under annual applications of low rates of imazamethabenz. Weed Res. 2004, 44, 178–186. [Google Scholar] [CrossRef]
- Horizon 2020. Available online: http://ec.europa.eu/programmes/horizon2020 (accessed on 12 December 2018).
- Regulation (EC) 1107/2009. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1494242522151&uri=CELEX:32009R1107 (accessed on 12 December 2018).
- Directive 2009/128/EC. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1494246385637&uri=CELEX:32009L0128 (accessed on 12 December 2018).
- López-Granados, F. Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Res. 2011, 51, 1–11. [Google Scholar] [CrossRef]
- De Castro, A.I.; Jurado-Expósito, M.; Peña-Barragán, J.M.; López-Granados, F. Airborne multi-spectral imagery for mapping cruciferous weeds in cereal and legume crops. Precis. Agric. 2012, 13, 302–321. [Google Scholar] [CrossRef]
- De Castro, A.I.; López-Granados, F.; Jurado-Expósito, M. Broad-scale cruciferous weed patch classification in winter wheat using QuickBird imagery for in-season site-specific control. Precis. Agric. 2013, 14, 392–413. [Google Scholar] [CrossRef] [Green Version]
- Peña-Barragán, J.M.; López-Granados, F.; Jurado-Expósito, M.; García-Torres, L. Spectral discrimination of Ridolfia segetum and sunflower as affected by phenological stage. Weed Res. 2006, 46, 10–21. [Google Scholar] [CrossRef]
- López-Granados, F.; Peña-Barragán, J.M.; Jurado-Expósito, M.; García-Torres, L. Using remote sensing for identification of late-season grass weeds patches in wheat (Triticum aestivum L.) for precision agriculture. Weed Sci. 2006, 54, 346–353. [Google Scholar] [CrossRef]
- Gómez-Casero, M.T.; Castillejo-González, I.L.; García-Ferrer, A.; Peña-Barragán, J.M.; Jurado-Expósito, M.; García-Torres, L.; López-Granados, F. Spectral discrimination of wild oat and canary grass in wheat fields for less herbicide application. Agron. Sustain. Dev. 2010, 30, 689–699. [Google Scholar] [CrossRef] [Green Version]
- Castillejo-González, I.L.; Pena-Barragán, J.M.; Jurado-Expósito, M.; Mesas-Carrascosa, F.J.; López-Granados, F. Evaluation of pixel- and object-based approaches for mapping wild oat (Avena sterilis) weed patches in wheat fields using Quick Bird imagery for site-specific management. Eur. J. Agron. 2014, 59, 57–66. [Google Scholar] [CrossRef]
- Jurado-Expósito, M.; López-Granados, F.; González-Andújar, J.L.; García-Torres, L. Spatial and temporal analysis of Convolvulus arvensis L. populations over four growing seasons. Eur. J. Agron. 2004, 21, 287–296. [Google Scholar] [CrossRef]
- Jurado-Expósito, M.; López-Granados, F.; González-Andújar, J.L.; García-Torres, L. Characterizing population growth rate of Convolvulus arvensis L. in wheat-sunflower no-tillage systems. Crop Sci. 2005, 45, 2106–2112. [Google Scholar] [CrossRef]
- Heijting, S.; Van Der Werf, W.; Stein, A.; Kropf, M.J. Are weed patches stable in location? Application of an explicitly two-dimensional methodology. Weed Res. 2007, 47, 381–395. [Google Scholar] [CrossRef]
- Colbach, N.; Forcella, F.; Johnson, G.A. Spatial and temporal stability of weed populations over five years. Weed Sci. 2000, 48, 366–377. [Google Scholar] [CrossRef]
- Barroso, J.; Navarrete, L.; Del Arco, M.J.S.; Fernández-Quintanilla, C.; Lutman, P.J.W.; Perry, N.H.; Hull, R.I. Dispersal of Avena fatua and Avena sterilis patches by natural dissemination, soil tillage and combine harvesters. Weed Res. 2006, 46, 118–128. [Google Scholar] [CrossRef]
- González-Díaz, L.; Leguizamón, E.; Forcella, F.; González-Andújar, J.L. Short comunication. Integration of emergence and population dynamic models for long term weed management using wild oat (Avena fatua L.) as an example. Span. J. Agric. Res. 2007, 5, 199–203. [Google Scholar] [CrossRef]
- Gómez-Candón, D.; López-Granados, F.; Caballero-Novella, J.; García-Ferrer, A.; Peña-Barragán, J.M.; Jurado-Expósito, M.; García-Torres, L. Sectioning remote imagery for characterization of Avena sterilis infestations. Part A: Weed abundance. Precis. Agric. 2012, 13, 322–336. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models and Applications; Pion Limited: London, UK, 1981; p. 266. [Google Scholar]
- Nathan, R.; Muller-Landau, H.C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends. Ecol. Evol. 2000, 15, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Barroso, J.; Alcántara, C.; Saavedra, M. Competition between Avena sterilis ssp. sterilis and wheat in south western Spain. Span. J. Agric. Res. 2011, 9, 862–872. [Google Scholar] [CrossRef]
- González-de-Santos, P.; Ribeiro, A.; Fernández-Quintanilla, C.; López-Granados, F.; Brandstoetter, M.; Tomic, S.; Pedrazzi, S.; Peruzzi, A.; Pajares, G.; Kaplanis, G.; et al. Fleets of robots for environmentally-safe pest control in agriculture. Precis. Agric. 2017, 18, 574–614. [Google Scholar] [CrossRef]
- Barroso, J.; Fernández-Quintanilla, C.; Maxwell, B.D.; Rew, L.J. Simulating the effects of weed spatial pattern and resolution of mapping and spraying on economics of site-specific management. Weed Res. 2004, 44, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Gibson, K.; Dirks, R.; Medlin, C.; Johnston, L. Detection of weed species in soybean using multispectral digital images. Weed Tech. 2004, 18, 742–749. [Google Scholar] [CrossRef]
- Reichardt, M.; Jurgens, C. Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups. Precis. Agric. 2009, 10, 73–94. [Google Scholar] [CrossRef]
- Gómez-Candón, D.; López-Granados, F.; Caballero-Novella, J.J.; García-Ferrer, A.; Peña-Barragán, J.M.; Jurado-Expósito, M.; García-Torres, L. Sectioning remote imagery for characterization of Avena sterilis infestations. Part B: Efficiency and economics of control. Precis. Agric. 2012, 13, 337–350. [Google Scholar] [CrossRef]
- Fernández-Quintanilla, C.; Ruiz, D.; Villa, C.E.; Barroso, J.; Ribeiro, A. El manejo de la avena loca mediante técnicas de agricultura de precisión. Vida Rural 2006, 13, 36–38. [Google Scholar]
- Benaragama, D.; Shirtliffe, S.J.; Gossen, B.D.; Brandt, S.A.; Lemke, R.; Johnson, E.N.; Zentner, R.P.; Olfert, O.; Leeson, J.; Moulin, A.; et al. Long-term weed dynamics and crop yields under diverse crop rotations in organic and conventional cropping systems in the Canadian prairies. Field Crops Res. 2016, 196, 357–367. [Google Scholar] [CrossRef]
- Jurado-Expósito, M.; López-Granados, F.; Peña-Barragán, J.M.; García-Torres, L. A digital elevation model to aid geostatistical mapping of weeds in sunflower crops. Agron. Sustain. Dev. 2009, 29, 391–400. [Google Scholar] [CrossRef]
- Roham, R.; Pirdashti, H.; Yaghubi, M.; Nematzadeh, G. Spatial distribution of nutsedge (Cyperus spp. L.) seed bank in rice growth cycle using geostatistics. Crop Prot. 2014, 55, 133–141. [Google Scholar] [CrossRef]
- San Martín, C.; Andújar, D.; Fernández-Quintanilla, C.; Dorado, J. Spatial Distribution patterns of weed communities in corn fields of central Spain. Weed Sci. 2015, 63, 936–945. [Google Scholar] [CrossRef]
- Pollnac, F.W.; Rew, L.J.; Maxwell, B.D.; Menalled, F.D. Spatial patterns, species richness and cover in weed communities of organic and conventional no-tillage spring wheat systems. Weed Res. 2008, 48, 398–407. [Google Scholar] [CrossRef]
- Adhikari, S.; Menalled, F.D. Impacts of dryland farm management systems on weeds and ground beetles (Carabidae) in the Northern Great Plains. Sustainability 2018, 10, 2146. [Google Scholar] [CrossRef]
- Van Groenendael, J.M. Patchy distribution of weeds and some implications for modelling population dynamics: A short literature review. Weed Res. 1988, 28, 437–441. [Google Scholar] [CrossRef]
- Ruiz, D.; Barroso, J.; Hernaiz, P.; Fernández-Quintanilla, C. The competitive interactions between winter barley and Avena sterilis are site-specific. Weed Res. 2008, 48, 38–47. [Google Scholar] [CrossRef]
- González-Andújar, J.L.; Saavedra, M. Spatial distribution of annual grass weed populations in winter cereals. Crop Prot. 2003, 22, 629–633. [Google Scholar] [CrossRef]
- Xuan, T.D.; Anh, L.H.; Khang, D.T.; Tuyen, P.T.; Minh, T.N.; Khanh, T.D.; Trung, K.H. Weed Allelochemicals and Possibility for Pest Management. Int. Lett. Nat. Sci. 2016, 56, 25–39. [Google Scholar] [CrossRef]
- Al-Samarai, G.F.; Mahdi, W.M.; Al-Hilali, B.M. Reducing environmental pollution by chemical herbicides using natural plant derivatives—allelopathy effect. Ann. Agric. Environ. Med. 2018, 25, 449–452. [Google Scholar] [CrossRef] [PubMed]
- López-Granados, F.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.I.; Mesas-Carrascosa, F.J.; Peña, J.M. Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precis. Agric. 2016, 17, 183–199. [Google Scholar] [CrossRef]
- López-Granados, F.; Torres-Sánchez, J.; de Castro, A.I.; Serrano-Pérez, A.; Mesas-Carrascosa, F.J.; Peña, J.M. Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery. Agron. Sustain. Dev. 2016, 36, 67. [Google Scholar] [CrossRef]
- Fernández-Quintanilla, C.; Peña, J.M.; Andújar, D.; Dorado, J.; Ribeiro, A.; López-Granados, F. Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? Weed Res. 2018, 58, 259–272. [Google Scholar] [CrossRef]
Area 1 | Field A | Field B | Field C | Field D | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WO06 2 | W06 | T08 | WO06 | W06 | T08 | WO06 | W06 | T08 | WO06 | W06 | T08 | |
WO08 | 0.37 | 0.45 | 0.82 | 0.68 | 0.83 | 1.51 | 0.98 | 0.84 | 1.82 | 0.62 | 0.48 | 1.10 |
W08 | 0.31 | 0.61 | 0.92 | 0.05 | 0.96 | 1.01 | 1.21 | 3.35 | 4.56 | 0.30 | 1.37 | 1.67 |
W06 | 0.68 | 1.06 | 1.74 | 0.73 | 1.79 | 2.52 | 2.19 | 4.19 | 6.38 | 0.92 | 1.85 | 2.77 |
Moran Index 1 | ||
---|---|---|
Field A | 2006 | 0.67 |
2008 | 0.82 | |
Field B | 2006 | 0.76 |
2008 | 0.83 | |
Field C | 2006 | 0.84 |
2008 | 0.60 | |
Field D | 2006 | 0.76 |
2008 | 0.70 |
Field A | Field B | Field C | Field D | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S0m 1 | S1m | S4m | S9m | S0m | S1m | S4m | S9m | S0m | S1m | S4m | S9m | S0m | S1m | S4m | S9m | |
WOA 2 | 39.08 | 51.72 | 74.91 | 89.59 | 29.08 | 34.80 | 47.56 | 60.71 | 34.27 | 39.68 | 51.29 | 63.93 | 33.30 | 41.54 | 58.79 | 75.41 |
TA | 40.45 | 52.87 | 75.60 | 90.05 | 29.68 | 35.40 | 47.95 | 60.99 | 34.61 | 39.99 | 51.35 | 63.86 | 34.09 | 42.34 | 59.26 | 75.74 |
WOTA | 99.26 | 99.67 | 99.77 | 100 | 99.45 | 99.66 | 99.92 | 99.93 | 98.99 | 99.21 | 99.30 | 99.34 | 99.02 | 99.48 | 99.69 | 99.81 |
WOTA08 | 44.49 | 59.56 | 84.80 | 96.57 | 45.68 | 53.86 | 70.23 | 82.31 | 53.83 | 59.85 | 71.81 | 82.46 | 57.13 | 67.30 | 83.11 | 92.82 |
WOFTA08 | 17.33 | 22.74 | 33.13 | 42.03 | 1.51 | 2.10 | 4.35 | 9.35 | 17.25 | 20.65 | 28.01 | 36.94 | 9.69 | 13.47 | 23.30 | 35.20 |
Scenario #1: Expected Yield 4500 kg ha−1; Yield Losses Due to Wild Oat 100 kg ha−1 | ||||||||||
Field A | Field B | Field C | Field D | Fields A + B + C + D | ||||||
NR1 | Profit2 | NR | Profit | NR | Profit | NR | Profit | NR | Profit | |
SOT 3 | 1003 | 100.0 | 1003 | 100.0 | 1003 | 100.0 | 1003 | 100.0 | 1003 | 100.0 |
S0m | 1005 | 100.2 | 1007 | 100.4 | 1011 | 100.8 | 992 | 98.9 | 1006 | 100.2 |
S1m | 1002 | 99.9 | 1007 | 100.3 | 1010 | 100.6 | 988 | 98.5 | 1004 | 100.0 |
S4m | 997 | 99.3 | 1004 | 100.1 | 1006 | 100.3 | 980 | 97.6 | 999 | 99.6 |
S9m | 993 | 98.9 | 1001 | 99.8 | 1002 | 99.9 | 969 | 96.6 | 994 | 99.1 |
Scenario #2: Expected Yield 4500 kg ha−1; Yield Losses Due to Wild Oat 400 kg ha−1 | ||||||||||
Field A | Field B | Field C | Field D | Fields A + B + C + D | ||||||
NR | Profit | NR | Profit | NR | Profit | NR | Profit | NR | Profit | |
SOT | 1003 | 100.0 | 1003 | 100.0 | 1003 | 100.0 | 1003 | 100.0 | 1003 | 100.0 |
S0m | 982 | 97.8 | 978 | 97.5 | 999 | 99.6 | 977 | 97.3 | 988 | 98.5 |
S1m | 985 | 98.2 | 982 | 97.8 | 999 | 99.6 | 977 | 97.3 | 989 | 98.6 |
S4m | 990 | 98.7 | 988 | 98.5 | 999 | 99.5 | 974 | 97.0 | 991 | 98.7 |
S9m | 991 | 98.8 | 992 | 98.9 | 997 | 99.4 | 967 | 96.4 | 989 | 98.6 |
Scenario #3: Expected Yield 1500 kg ha−1; Yield Losses Due to Wild Oat 100 kg ha−1 | ||||||||||
Field A | Field B | Field C | Field D | Fields A + B + C + D | ||||||
NR | Profit | NR | Profit | NR | Profit | NR | Profit | NR | Profit | |
SOT | 103 | 100.0 | 103 | 100.0 | 103 | 100.0 | 103 | 100.0 | 103 | 100.0 |
S0m | 105 | 101.6 | 107 | 103.8 | 111 | 107.6 | 92 | 89.0 | 106 | 102.2 |
S1m | 102 | 98.8 | 107 | 103.0 | 110 | 106.0 | 88 | 85.4 | 104 | 100.2 |
S4m | 97 | 93.5 | 104 | 101.0 | 106 | 102.6 | 80 | 77.1 | 99 | 95.8 |
S9m | 93 | 89.5 | 101 | 98.1 | 102 | 98.6 | 69 | 67.1 | 94 | 90.8 |
Scenario #4: Expected Yield 1500 kg ha−1; Yield Losses Due to Wild Oat 400 kg ha−1 | ||||||||||
Field A | Field B | Field C | Field D | Fields A + B + C + D | ||||||
NR | Profit | NR | Profit | NR | Profit | NR | Profit | NR | Profit | |
SOT | 103 | 100.0 | 103 | 100.0 | 103 | 100.0 | 103 | 100.0 | 103 | 100.0 |
S0m | 82 | 78.9 | 78 | 75.4 | 99 | 96.2 | 77 | 74.2 | 88 | 85.5 |
S1m | 85 | 82.2 | 82 | 78.9 | 99 | 96.1 | 77 | 74.1 | 89 | 86.5 |
S4m | 90 | 87.3 | 88 | 85.5 | 99 | 95.6 | 74 | 71.2 | 91 | 87.6 |
S9m | 91 | 88.1 | 92 | 88.9 | 97 | 94.3 | 67 | 64.6 | 89 | 86.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillejo-González, I.L.; De Castro, A.I.; Jurado-Expósito, M.; Peña, J.-M.; García-Ferrer, A.; López-Granados, F. Assessment of the Persistence of Avena sterilis L. Patches in Wheat Fields for Site-Specific Sustainable Management. Agronomy 2019, 9, 30. https://doi.org/10.3390/agronomy9010030
Castillejo-González IL, De Castro AI, Jurado-Expósito M, Peña J-M, García-Ferrer A, López-Granados F. Assessment of the Persistence of Avena sterilis L. Patches in Wheat Fields for Site-Specific Sustainable Management. Agronomy. 2019; 9(1):30. https://doi.org/10.3390/agronomy9010030
Chicago/Turabian StyleCastillejo-González, Isabel Luisa, Ana Isabel De Castro, Montserrat Jurado-Expósito, José-Manuel Peña, Alfonso García-Ferrer, and Francisca López-Granados. 2019. "Assessment of the Persistence of Avena sterilis L. Patches in Wheat Fields for Site-Specific Sustainable Management" Agronomy 9, no. 1: 30. https://doi.org/10.3390/agronomy9010030
APA StyleCastillejo-González, I. L., De Castro, A. I., Jurado-Expósito, M., Peña, J. -M., García-Ferrer, A., & López-Granados, F. (2019). Assessment of the Persistence of Avena sterilis L. Patches in Wheat Fields for Site-Specific Sustainable Management. Agronomy, 9(1), 30. https://doi.org/10.3390/agronomy9010030