Managing and Reforesting Degraded Post-Mining Landscape in Indonesia: A Review
Abstract
:1. Introduction
2. Law and Regulation of Mining in Indonesia
3. Open Pit Mining Process and Landscape Management
3.1. Land Clearing
3.2. Landscaping
3.2.1. Overburden Materials Placement and Acid Mine Drainage Control
3.2.2. Soil Materials Placement and Mine Soil Characteristics
3.2.3. Revegetation Process
3.2.4. Erosion Control
3.2.5. Drainage System and Settling Ponds
3.2.6. Ex Mine Pit Management
4. Reforestation Process
4.1. Species Selection
4.1.1. Fast Growing/Pioneer Species
4.1.2. Local/Slow-Growing Species
4.2. Producing Improved Planting Stock for Post-Mining Reclamation
4.3. Plantation and Management
4.4. Evaluation of Reclamation Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adriani, E.; Gustaman, S.; Saputri, D.R.; Kusnadi, E.; Suheri; Emo, M. Export Commodity Analysis, 2012–2019, Agriculture, Industry and Mining Sector; Statistics Indonesia: Jakarta, Indonesia, 2020. [Google Scholar]
- Ministry of Energy and Mineral Resources. Handbook of Energy & Economic Statistics of Indonesia; Ministry of Energy and Mineral Resources: Jakarta, Indonesia, 2020. [Google Scholar]
- Hilmawan, R.; Yudaruddin, R.; Wahyuni, Y.S. Coal mining operations and its impact on sectoral and regional area: Evidence of East Kalimantan, Indonesia. J. Indones. Appl. Econ. 2016, 6, 22–42. [Google Scholar] [CrossRef]
- Devi, B.; Prayogo, D. Mining and Development in Indonesia: An Overview of the Regulatory Framework and Policies; International Mining for Development Centre: Queensland, Australia, 2013. [Google Scholar]
- Kramadibrata, S. Review of the mineral development in Indonesia. Procedia Earth Planet. Sci. 2013, 6, 6–7. [Google Scholar] [CrossRef] [Green Version]
- Prematuri, R.; Turjaman, M.; Sato, T.; Tawaraya, K. The impact of nickel mining on soil properties and growth of two fast-growing tropical tree species. Int. J. For. Res. 2020, 1–9. [Google Scholar] [CrossRef]
- Alexiades, M.N.; Shanley, P. Forest Products, Livelihoods and Conservation: Case Studies of Non-Timber Forest Product Systems. Volume 3—Latin America; Center for International Forestry Research: Bogor, Indonesia, 2004. [Google Scholar]
- Segura-Salazar, J.; Tavares, L.M. Sustainability in the mineral industry: Seeking a Concensus on its meaning. Sustainability 2018, 10, 1429. [Google Scholar] [CrossRef] [Green Version]
- Statistical Review of World Energy 2020, 69th ed. Available online: https://bp.com/statisticalreview (accessed on 8 June 2021).
- Kristanti, R.; Kartodihardjo, H.; Nugroho, B.; Mansur, I. Institutional performance of mining reclamation in forest areas of East Kalimantan. J. Manaj. Hutan Trop. 2019, 25, 69–81. [Google Scholar] [CrossRef]
- Kodir, A.; Hartono, D.M.; Haeruman, H.; Mansur, I. Integrated post-mining landscape for sustainable land use: A case study in South Sumatera, Indonesia. Sustain. Environ. Res. 2017, 27, 203–213. [Google Scholar] [CrossRef]
- Park, J.; Kwon, E.; Chung, E.; Kim, H.; Battogtokh, B.; Woo, N.C. Environmental sustainability of open-pit coal mining practices at Baganuur, Mongolia. Sustainability 2020, 12, 248. [Google Scholar] [CrossRef] [Green Version]
- Popović, V.; Miljković, J.Ž.; Subić, J.; Jean-Vasile, A.; Adrian, N.; Nicolãescu, E. Sustainable land management in mining area in Serbia and Romania. Sustainability 2015, 7, 11857–11877. [Google Scholar] [CrossRef] [Green Version]
- Pietrzykowski, M. Tree species selection and reaction to mine soil reconstructed at reforested post-mine sites: Central and eastern European experiences. Ecol. Eng. X 2019, 3, 100012. [Google Scholar] [CrossRef]
- Borišev, M.; Pajević, S.; Nikolić, N.; Pilipović, A.; Arsenov, D.; Župunski, M. Mine site restoration using silvicultural approach. In Bio-Geotechnologies for Mine Rehabilitation; Prasard, M.N.V., Favas, P.J.C., Maiti, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 115–129. [Google Scholar]
- Adams, B.E.; Angel, P.; Barton, C.; Burger, J.; Davis, V.; French, M.; Graves, D.; Groninger, J.W.; Hall, N.; Keiffer, C.H.; et al. The Forestry Reclamation Approach: Guide to Successful Reforestation of Mined Lands, United States Department of Agriculture; United States Department of Agriculture: Washington, DC, USA, 2017. [Google Scholar]
- Macdonald, S.E.; Landhäusser, S.M.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.; Jacobs, D.F.; Quideau, S. Forest restoration following surface mining disturbance: Challenges and solutions. New For. 2015, 46, 703–732. [Google Scholar] [CrossRef] [Green Version]
- Jaringan Dokumentasi dan Informasi Hukum Kementerian Energi dan Sumber Daya Mineral. Available online: https://jdih.esdm.go.id (accessed on 8 June 2021).
- Jung, D.; Choi, Y. Systematic review of machine learning applications in mining: Exploration, exploitation, and reclamation. Minerals 2021, 11, 148. [Google Scholar] [CrossRef]
- Abaidoo, C.A.; Osei, E.M.; Arko-Adjei, A.; Prah, B.E.K. Monitoring the extent of reclamation of small scale mining areas using artificial neural networks. Heliyon 2019, 5, e01445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- Jaringan Dokumentasi dan Informasi Hukum Kementerian Lingkungan Hidup dan Kehutanan. Available online: https://jdih.menlhk.co.id (accessed on 8 June 2021).
- Putra, H.F.; Sulistijorini; Aryanti, N.S. Landscape function of post tin-mining land after reclamation in Bangka, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2017, 58, 012018. [Google Scholar] [CrossRef]
- Nugroho, A.W.; Yassir, I. Policy study on post coal mining reclamation assessment in Indonesia. J. Anal. Kebijak. Kehutan. 2017, 14, 121–136. [Google Scholar]
- Oktorina, S. Ex-mining land reclamation and revegetation policy (case study of Indonesian coal mining). Al-Ard J. Tek. Lingkung. 2017, 3, 16–20. [Google Scholar]
- Yu, X.; Mu, C.; Zhang, D. Assessment of land reclamation benefits in mining areas using fuzzy comprehensive evaluation. Sustainability 2020, 12, 2015. [Google Scholar] [CrossRef] [Green Version]
- Ignatyeva, M.; Yurak, V.; Pustokhina, N. Recultivation of post-mining disturbed land: Review of content and comparative law and feasibility study. Resources 2020, 9, 73. [Google Scholar] [CrossRef]
- Hartono, B.; Imran, A.M.; Idrus, M.R. Strategic reclamation policy of post-mining area based in the enviroment in North Kolaka district. IOP Conf. Ser. Earth Environ. Sci. 2020, 575, 012248. [Google Scholar] [CrossRef]
- MoEF (Ministry of Environment and Forestry). Information System of Leasehold License of the Forest Area. Available online: http://ppkh.menlhk.go.id (accessed on 1 April 2021).
- Kristanti, R.; Kartodihardjo, H.; Nugroho, B.; Mansur, I. Effects of the transfer of rights and jurisdictions on mining reclamation performance in state forest areas in East Kalimantan. J. Manaj. Hutan Trop. 2020, 26, 133–143. [Google Scholar] [CrossRef]
- Mansur, I. Integrating biodiversity conservation and agricultural production in mine reclamation for sustainable development. J. Dev. Sustain. Agric. 2012, 7, 97–102. [Google Scholar]
- Liu, R.; Lal, R. Quality change of mine soils from different sources in response to amendments—A Laboratory study. Environ. Nat. Resour. Res. 2014, 4, 20–38. [Google Scholar] [CrossRef] [Green Version]
- Mushia, N.M.; Ramoelo, A.; Ayisi, K.K. The impact of the quality of coal mine stockpile soils on sustainable vegetation growth and productivity. Sustainability 2016, 8, 546. [Google Scholar] [CrossRef] [Green Version]
- Ghose, M.K. Effect of opencast mining on soil fertility. J. Sci. Ind. Res. 2004, 63, 1006–1009. [Google Scholar]
- Skousen, J.G.; Sexstone, A.; Ziemkiewicz, P.F. Acid mine drainage control and treatment. In Reclamation of Drastically Disturbed Lands American Society of Agronomy and American Society for Surface Mining and Reclamation; Agronomy No. 41; Barnhisel, R.I., Darmody, R.G., Daniels, W.L., Eds.; American Society of Agronomy: Madison, WI, USA, 2000. [Google Scholar]
- Trumm, D. Selection of active and passive treatment systems for AMD—Flow charts for New Zealand conditions. N. Z. J. Geol. Geophys. 2010, 53, 195–210. [Google Scholar] [CrossRef]
- Pozo-Antonio, S.; Puente-Luna, I.; Lagüela-López, S.; Veiga-Ríos, M. Techniques to correct and prevent acid mine drainage: A review. DYNA 2014, 81, 73–80. [Google Scholar] [CrossRef]
- Skousen, J.G.; Ziemkiewicz, P.F.; McDonald, L.M. Acid mine drainage formation, control and treatment: Approaches and strategies. Extr. Ind. Soc. 2018, 6. [Google Scholar] [CrossRef]
- Sharma, S.; Lee, M.; Reinmann, C.S.; Pumneo, J.; Cutright, T.J.; Senko, J.M. Impact of acid mine drainage chemistry and microbiology on the development of efficient Fe removal activities. Chemosphere 2020, 249, 126117. [Google Scholar] [CrossRef]
- RoyChowdhury, A.; Sarkar, D.; Datta, R. Remediation of acid mine drainage-impacted water. Curr. Pollut. Rep. 2015, 1, 131–141. [Google Scholar] [CrossRef]
- Agus, C.; Primananda, E.; Faridah, E.; Wulandari, D.; Lestari, T. Role of arbuscular mycorrhizal fungi and Pongamia pinnata for revegetation of tropical open-pit coal mining soils. Int. J. Environ. Sci. Technol. 2019, 16, 3365–3374. [Google Scholar] [CrossRef]
- Setiawan, A.A.; Budianta, D.; Suheryanto; Priadi, D.P. Review: Pollution due to coal mining activity and its impact on environment. Sriwij. J. Environ. 2018, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Gautama, R.S.; Kusuma, G.J.; Abfertiawan, M.S.; Wiedhartono, A.; Gunawan, F.; Lestari, I.; Simbolon, R.; Diana, M.R. Study on capping options for overburden encapsulation to prevent acid mine drainage in Lati coal mine, East Kalimantan, Indonesia. In Proceedings of the Annual International Mine Water Association Conference—Reliable Mine Water Technology, Golden, CO, USA, 6–9 August 2013. [Google Scholar]
- Abfertiawan, M.S.; Palinggi, Y.; Handajani, M.; Pranoto, K.; Atmaja, A. Evaluation of non-acid-forming material layering for the prevention of acid mine drainage of pyrite and jarosite. Heliyon 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Kusuma, G.J.; Shimada, H.; Sasaoka, T.; Matsui, K.; Nugraha, C.; Gautama, R.S.; Sulistianto, B. An evaluation on the physical and chemical composition of coal combustion ash and its co-placement with coal-mine waste rock. J. Environ. Prot. 2012, 3, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Kusuma, G.J.; Shimada, H.; Nugraha, C.; Hamanaka, A.; Sasaoka, T.; Matsui, K.; Gautama, R.S.; Sulistianto, B. Study on co-placement of coal combustion ash-coal waste rock for minimizing acid mine drainage generation: A preliminary result of field column test experiment. Procedia Earth Planet. Sci. 2013, 6, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, S.; Gautama, R.S. Acid mine drainage management in Indonesian mines. In Proceedings of the 7th Australian Workshop on AMD, Darwin, Australia, 21–24 June 2011. [Google Scholar]
- Matsumoto, S.; Ishimatsu, H.; Shimada, H.; Sasaoka, T.; Kusuma, G.J.; Gautama, R.S. Placement of waste rocks in waste dump for prevention of Acid Mine Drainage (AMD) by cover system in open cast coal mine: Effects of water quality on AMD. Inz. Miner. 2017, 1, 97–102. [Google Scholar]
- Prihatini, N.S.; Priatmadi, B.J.; Masrevaniah, A.; Soemarno. Performance of the horizontal subsurface-flow constructed wetlands with different operational procedures. Int. J. Adv. Eng. Technol. 2015, 7, 1620–1629. [Google Scholar]
- Prihatini, N.S.; Nirtha, I.; Iman, M.S. Role of purun tikus in vertical subsurface flow constructed wetland in treating manganese (Mn) from coal mine drainage. Trop. Wetl. J. 2016, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Munawar, A.; Leitu, F.O.; Bustamam, H. Aquatic plants for acid mine drainage remediation in simulated wetland systems. J. Nat. Indones. 2011, 13, 244–249. [Google Scholar] [CrossRef] [Green Version]
- Sekarjannah, F.A.; Wardoyo, S.S.; Ratih, Y.W. Management of mine acid drainage in a constructed wetland using hyacinth plants and addition of organic materials. J. Degrad. Min. Lands Manag. 2019, 6, 1847–1855. [Google Scholar] [CrossRef]
- Zipper, C.E.; Burger, J.A.; Barton, C.D.; Skousen, J.G. Rebuilding soils on mined land for native forests in Appalachia. Soil Sci. Soc. Am. J. 2013, 77, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Novianti, V.; Choesin, D.N.; Iskandar, D.T.; Suprayogo, D. Plant species from coal mine overburden dumping site in Satui, South Kalimantan, Indonesia. J. Degrad. Min. Lands Manag. 2017, 4, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Daniels, W.L.; Haering, K.C.; Galbraith, J.M. Mine Soil Morphology and Properties in Pre- and Post-SMCRA Coal Mined Landscapes in Southwest Virginia. In Proceedings of the 2004 National Meeting of the America Society of Mining and Reclamation, Lexington, KY, USA, 18–24 April 2004; p. 421. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Soil reclamation of abandoned mine land by revegetation: A review. Int. J. Soil Sediment Water 2010, 3, 1–20. [Google Scholar]
- Zulkarnain, Z.; Joy, B.; Tuhpawana, P.; Prawira, I. Soil erosion assessment of the post-coal mining site in Kutai Kartanagera District, East Kalimantan Province. Int. J. Sci. Eng. 2014, 7, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Tambunan, R.P.; Syekhfani, S.; Priatmadi, B.J. The role of ground cover plant in soil improvement after mining activity in South Kalimantan. IOSR J. Agric. Vet. Sci. 2017, 10, 92–98. [Google Scholar]
- Noviyanto, A.; Purwanto; Minardi, S.; Supriyadi. The assessment of soil quality of various age of land reclamation after coal mining: A chronosequence study. J. Degrad. Min. Lands Manag. 2017, 5, 1009–1018. [Google Scholar] [CrossRef]
- Sopialena, S.; Rosfiansyah, R.; Sila, S. The benefit of topsoil and fertilizer mixture to improve the ex-coal mining land. Nusant. Biosci. 2017, 1, 36–43. [Google Scholar] [CrossRef]
- Sobek, A.A.; Skousen, J.G.; Fisher, A.E. Chemical and physical properties of overburdens and minesoils. In Reclamation of Drastically Disturbed Lands; Barnhisel, R.I., Darmody, R.G., Daniels, W.L., Eds.; Agronomy Monograph No. 41; American Society of Agronomy: Madison, WI, USA, 2000. [Google Scholar]
- Suryaningtyas, D.T.; Sulistijo, B.; Iskandar, I.; Sudadi, U.; Kusumo, A.D.; Srihartati, Y. Handbook for Best Available Practice in Onshore Alluvial Tin Mine Reclamation in Indonesia: Lessons Learned from the Air Kundur 3 Pilot Project, Bangka-Belitung Province; Bundesanstallt für Geowissenschaften und Rohstoffe: Hanover, Germany, 2019. [Google Scholar]
- Inonu, I.; Kusmiadi, R.; Yuliana, A.; Nurtjahya, E. The amelioration of post tin mining sand tailing medium with chicken manure for pepper cultivation. J. Suboptimal Lands 2020, 9, 31–40. [Google Scholar] [CrossRef]
- Narendra, B.H.; Mulyanto, B. Soil properties improvement and use of adaptive plants for land rehabilitation of post tin mining closure in Bangka Island, Indonesia. Biodiversitas 2020, 21, 505–511. [Google Scholar] [CrossRef]
- Iskandar, I.; Suryaningtyas, D.T.; Baskoro, D.P.T.; Budi, S.W.; Gozali, I.; Maswahenu, M. A chronosequence study of soil properties and microclimate in the reclamation area of Batu Hijau Mine, West Sumbawa. IOP Conf. Ser. Earth Environ. Sci. 2019, 393, 012094. [Google Scholar] [CrossRef]
- Procházka, J.; Brom, J.; Št’astny, J.; Pecharová, E. The impact of vegetation cover on the temperature and humidity properties in the reclaimed area of a brown coal dump. Int. J. Min. Reclam. Environ. 2011, 25, 350–366. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Zhang, P.; Hu, Y.; Huang, L. Effects of vegetation reclamation on temperature and humidity properties of a dumpsite: A case study in the open pit coal mine of Heidaigou. Arid Land Res. Manag. 2015, 29, 375–381. [Google Scholar] [CrossRef]
- Inoue, N.; Hamanaka, A.; Shimada, H.; Sasaoka, T.; Matsui, K. Fundamental study on assessment of soil erosion by the USLE method at rehabilitation area in Indonesian coal mine. Earth Sci. Res. 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.; Smith, A.; Caldwell, J. Surface erosion and sediment control at open-cast mines in southern Africa. In Challenges in African Hydrology and Water Resources, Proceedings of the Harare Symposium, July 1984; IAHS Publ. No. 144; International Association of Hydrological Sciences: Wallingford, UK, 1984. [Google Scholar]
- Hamanaka, A.; Inoue, N.; Shimada, H.; Sasaoka, T.; Matsui, K.; Miyajima, I. Design of self-sustainable land surface against soil erosion at rehabilitation areas in open-cut mines in tropical regions. Int. J. Min. Reclam. Environ. 2015, 29, 305–315. [Google Scholar] [CrossRef]
- Pusat Studi Reklamasi Tambang IPB. Pemantauan Potensi Erosi di Areal Revegetasi PT Berau Coal, Kabupaten Berau, Kalimantan Timur; Unpublished Report to PT Berau Coal: Berau, Indonesia, 2017. (In Indonesian) [Google Scholar]
- Kathuria, D.V.; Nawrocki, M.A.; Becker, B.C. Effectiveness of surface mine sedimentation ponds. In Environmental Protection Technology Series; EPA-600/2–76–117; U.S. Environmental Protection Agency: Springfield, VA, USA, 1976. [Google Scholar]
- Pratama, Y.I.; Syaifudin, F.; Pranoto, K. Open pit-mine water management in equatorial area. In Mine Water Solution, Proceedings of the Postponed 14th IMWA Congress, Christchurch, New Zealand, 9–13 November 2020; Pope, J., Ed.; The International Mine Water Association: Wendelstein, Germany, 2020; pp. 168–173. [Google Scholar]
- Prabowo, H.; Amran, A.; Arbain, A. Decreasing level of heavy metals Fe and Mn use the wetland method at coal open mining PT Bukit Asam South Sumatra Province. IOP Conf. Ser. Earth Environ. Sci. 2019, 314, 12023. [Google Scholar] [CrossRef]
- Bratby, J. Coagulation and Flocculation with an Emphasis on Water and Wastewater Treatment; Uplands Press Ltd.: Croydon, UK, 1980. [Google Scholar]
- Nugeraha, N.; Sumiyati, S.; Samudro, G. Waste water treatment of coal mining activities using biocoagulants: Study of reducing TSS, total Fe and total Mn using Moringa seeds (Moringa oleifera). J. Presipitasi 2010, 7, 57–61. [Google Scholar]
- Zhao, L.Y.L.; McCullough, C.D.; Lund, M.A. Mine Voids Management Strategy (I): Pit Lake Resources of the Collie Basin; Center for Ecosystem Management, Edith Cowan University: Joondalup, Australia, 2009. [Google Scholar]
- Soni, A.K.; Mishra, B.; Singh, S. Pit lakes as an end use of mining: A review. J. Min. Environ. 2014, 5, 99–111. [Google Scholar]
- McCullough, C.D.; Schultze, M.; Vandenberg, J. Realizing beneficial end uses from abandoned pit lakes. Minerals 2020, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Mentis, M. Environmental rehabilitation of damaged land. For. Ecosyst. 2020, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Pratiwi; Narendra, B.H.; Hartoyo, G.M.E.; Kalima, T.; Pradjadinata, S. Atlas Jenis-Jenis Pohon Andalan Setempat Untuk Rehabilitasi Hutan dan Lahan di Indonesia; Forda Press: Bogor, Indonesia, 2014; p. 81. (In Indonesian) [Google Scholar]
- Filoso, S.; Bezerra, M.O.; Weiss, K.C.B.; Palmer, M.A. Impacts of forest restoration on water yield: A systematic review. PLoS ONE 2017, 12, 183–210. [Google Scholar] [CrossRef] [Green Version]
- Pratiwi; Narendra, B.H.; Wardhani, M. Pemilihan jenis pohon untuk konservasi tanah dan air dalam rangka pemulihan fungsi daerah aliran sungai. In Bunga Rampai. Dukungan IPTEK Rehabilitasi Hutan dan Lahan Dalam Pemulihan Fungsi Daerah Aliran Sungai; Pratiwi, Narendra, B.H., Pamungkas, A.G., Eds.; IPB Press: Bogor, Indonesia, 2020; pp. 47–69. (In Indonesian) [Google Scholar]
- Pancel, L. Species selection in tropical forestry. In Tropical Forestry Handbook; Pancel, L., Köhl, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Chechina, M.; Hamann, A. Choosing species for reforestation in diverse forest communities: Social preference versus ecological suitability. Ecosphere 2015, 6, 1–13. [Google Scholar] [CrossRef]
- Delgado, J.A.; Mosquera, V.H.B.; Alwang, J.R.; Aveiga, A.V.; Ayala, Y.E.C.; Neer, D.; Monar, C.; López, L.O.E. Potential use of cover crops for soil and water conservation, nutrient management, and climate change adaptation across the tropics. Adv. Agron. 2021, 165, 175–247. [Google Scholar] [CrossRef]
- Nevins, C.J.; Nakatsu, C.; Armstrong, S. Characterization of microbial community response to cover crop residue decomposition. Soil Biol. Biochem. 2018, 127, 39–49. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, L.; Zhang, F. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant. Soil 2004, 262, 45–54. [Google Scholar] [CrossRef]
- Narendra, B.H.; Pratiwi. Adaptability of some legume trees on quartz tailings of a former tin mining area in Bangka Island, Indonesia. J. Degrad. Min. Lands Manag. 2016, 4, 671–674. [Google Scholar] [CrossRef] [Green Version]
- De Lima, C.L.R.; Ezequiel, C.C.M.; Luis, C.T.; Eloy, A.P.; Alvaro, P.S. Soil compressibility and least limiting water range of a constructed soil under cover crops after coal mining in Southern Brazil. Soil Till. Res. 2012, 124, 190–195. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Till. Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Reichert, J.M.; Suzuki, L.E.A.S.; Reinert, D.J.; Horn, R.; Hakansson, I. Reference bulk density and critical degree compactness for no-till crop production in subtropical highly weathered soils. Soil Till. Res. 2009, 102, 242–254. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Nascente, A.S.; Borghi, E.; Soratto, R.P.; Martins, P.O. Improving soil fertility and crop yield in a tropical region with palisadegrass cover crops. Agron. J. 2015, 107, 2271–2280. [Google Scholar] [CrossRef]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Yassir, I. Bersinergi dengan alam dalam mereklamasi hutan bekas tambang batubara. In Prosiding Seminar Hasil-Hasil Penelitian “Reklamasi Lahan Pasca Tambang: Aspek Kebijakan, Konservasi dan Teknologi; Gunawan, W., Ishak, Y., Puspanti, A., Eds.; Balai Penelitian Teknologi Konservasi Sumberdaya Alam: Samboja, Indonesia, 2015; pp. 3–10. [Google Scholar]
- Maharani, R.; Susilo, A.; Sugiharto, S.; Fernandes, A. Revegetasi lahan bekas tambang batubara. In Status Riset Reklamasi Bekas Tambang Batubara: Revegetasi Lahan Bekas Tambang Batubara; Pratiwi, Widyati, E., Boer, C., Eds.; Balai Penelitian dan Pengembangan Kehutanan: Samarinda, Indonesia, 2010; pp. 23–34. [Google Scholar]
- Narendra, B.H.; Pratiwi. Cover crops growth on tin-mined overburden in Bangka Island. Indones. For. Rehabil. J. 2014, 2, 15–24. [Google Scholar]
- Prayogo, C.; Ihsan, M. Utilization of LCC (Legume Cover Crop) and bokashi for the efficiency of Fe and Mn uptake of former coal mine land. J. Degrad. Min. Lands Manag. 2018, 6, 1527–1537. [Google Scholar] [CrossRef]
- Midega, C.A.O.; Wasonga, C.J.; Hooper, A.M.; Pickett, J.A.; Khan, Z.R. Drought-tolerant Desmodium species effectively suppress parasitic striga weed and improve cereal grain yields in western Kenya. Crop. Prot. 2017, 98, 94–101. [Google Scholar] [CrossRef]
- Hasanah, N.I.; Wasis, B.; Mansur, I. Desmodium spp. development as cover crop plant on post mining land rehabilitation. J. Silvikultur Trop. 2014, 5, 7–12. [Google Scholar]
- Magdoff, F.; Van Es, H. Building Soils for Better Crops: Sustainable Soil Management, 3rd ed.; Sustainable Agriculture Research and Education: College Park, MD, USA, 2009. [Google Scholar]
- Angeles, M.D.; Cuevas, V.C. Phytoremediation potential of Paspalum conjugate Berg. and the role of compost amendment in rehabilitation of soil materials from high copper-containing mine tailings ponds. Philipp. Agric. Sci. 2018, 101, 206–215. [Google Scholar]
- Zhang, L.; Zhang, P.; Yoza, B.; Liu, W.; Liang, H. Phytoremediation of metal-contaminated rare-earth mining sites using Paspalum conjugatum. Chemosphere 2020, 259, 127280. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.C.; Singh, A.K. Saccharum spp.—Potential role in ecorestoration and biomass production. In Phytoremediation Potential of Perennial Grasses; Elsevier: Amsterdam, The Netherlands, 2020; pp. 211–226. [Google Scholar] [CrossRef]
- Babi, K.; Guittonnya, M.; Larocqueb, G.R.; Bussièrea, B. Effects of spacing and herbaceous hydroseeding on water stress exposure and root development of poplars planted in soil-covered waste rock slopes. Ecoscience 2019, 26, 149–163. [Google Scholar] [CrossRef]
- Anshari, M.F.; Boedianto, E.; Fernandes, A.A.R.; Arisoesilaningsih, E. Hydroseeding application using pioneer local plant seeds for coal post-mining soil in Tanah Laut Regency, South Kalimantan. J. Degrad. Min. Lands Manag. 2018, 5, 1335–1345. [Google Scholar] [CrossRef]
- Bargawa, W.S.; Putra, A.; Nurcholis, M. Analysis of erosion using hydroseeding on post coal mining in Melak site. Int. J. Geomate 2019, 17, 371–377. [Google Scholar] [CrossRef]
- Gastauer, M.; Silva, J.R.; Caldeira, C.F., Jr.; Ramos, S.J.; Filho, P.W.M.S.; Neto, A.E.F.; Siquera, J.O. Mine land rehabilitation: Modern ecological approaches for more sustainable mining. J. Clean. Prod. 2018, 172, 1409–1422. [Google Scholar] [CrossRef]
- Novianti, V.; Marrs, R.H.; Choesin, D.N.; Iskandar, D.T.; Suprayogo, D. Natural Regeneration on land degraded by coal mining in tropical climate: Lesson for ecological restoration in Indonesia. Land Degrad. Dev. 2018, 29, 4050–4060. [Google Scholar] [CrossRef]
- Józefowska, A.; Pietrzykowski, M.; Wos, B.; Cajthaml, T.; Frouz, J. The efects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma 2017, 292, 9–16. [Google Scholar] [CrossRef]
- Zhao, B.; Guo, D.; Shao, H.; Bai, Z. Investigating the population structure and spatial pattern of restored forests in an opencast coal mine, China. Environ. Earth Sci. 2017, 20, 679. [Google Scholar] [CrossRef]
- Prasetyo, R.B.; Marisa, H.; Sarno. Vegetation analysis on reclamation area of coal mine of PT. Bukit Asam Tanjung Enim, South Sumatera. Bioval. Biol. Res. J. 2017, 3, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Hapsari, L.; Trimanto; Budiharta, S. Spontaneous plant recolonization on reclaimedpost-coal mining sites in East Kalimantan, Indonesia: Native versus alien and succession progress. Biodiversitas 2020, 21, 2003–2018. [Google Scholar] [CrossRef]
- Yusuf, M.; Arisoesilaningsih, E. Exotic plant species attack revegetation plants in post-coal mining areas. AIP Conf. Proc. 8th Int. Conf. Glob. Resour. Conserv. 2017, 1908, 1–5. [Google Scholar] [CrossRef]
- Pietrzykowski, M. Rehabilitation and reconstruction of terrestrial ecosystems on mine sites—Ecological effectiveness assessment. In Energy Science and Technology Series, Coal Energy; Govil, J.N., Ed.; Studium Press LLC: New Delhi, India, 2015; pp. 121–151. [Google Scholar]
- Komara, L.L.; Choesin, D.N.; Syamsudin, T.S. Plant diversity after sixty years post coal mining in East Kalimantan, Indonesia. Biodiversitas 2016, 2016, 531–538. [Google Scholar]
- Komara, L.L.; Murtinah, V.; Arbain. Evaluation of plant species composition after thirteen years post coal mining rehabilitation in East Kutai District of East Kalimantan, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 144, 1–8. [Google Scholar] [CrossRef]
- Sasmita, N.; Liris, K.; Purba, J. Adaptation of pioneer plant at the coal mining area in East Kalimantan Indonesia. J. Comput. Theor. Nanosci. 2020, 17, 750–754. [Google Scholar] [CrossRef]
- Trimanto; Sofiah, S. Exploration of flora diversity and recommending species for reclamation of coal mining with biodiversity concept in Besiq Bermai forest, East Borneo. J. Trop. Life Sci. 2018, 8, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Marrs, R.H.; Bradshaw, A.D. Primary succession on man-made wastes: The importance of resource acquisition. In Primary Succession on Land; Miles, J., Walton, D.H., Eds.; Blackwell Publishing: Oxford, UK, 1993. [Google Scholar]
- Agus, C.; Pradipa, E.; Wulandari, D.; Supriyo, H.; Saridi; Herika, D. Role of revegetation on the soil restoration in rehabilitation areas of tropical coal mining. J. Mns. Lingkung. 2014, 21, 60–66. [Google Scholar]
- Adman, B.; Hendrarto, B.; Sasongko, D.P. Pemanfaatan jenis pohon lokal cepat tumbuh untuk pemulihan lahan pasca tambang batubara (Studi Kasus di PT. Singlurus Pratama, Kalimantan Timur). J. Ilmu Lingkung. 2012, 10, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Rizal, A.; Kissinger. Analisis keberhasilan revegetasi pasca tambang batubara di pd. baramarta kabupaten banjar provinsi Kalimantan Selatan. J. Sylva Sci. 2020, 3, 13–25. [Google Scholar]
- Ren, H.; Yang, L.; Liu, N. Nurse plant theory and its application in ecological restoration in lower subtropics in China. Prog. Nat. Sci. 2008, 18, 137–142. [Google Scholar] [CrossRef]
- Heidelberg, A.; Neunner, H.; Osepashvili, I.; Ilia Schulzke, R. Forest Restoration Guidelines; WWF-Caucasus Programme Office: Berlin, Deutschland, 2011. [Google Scholar]
- Swab, R.M.; Lorenz, N.; Byrd, S.; Dick, R. Native vegetation in rehabilitation: Improving habitat and ecosystem function through using prairie species in mine land rehabilitation. Ecol. Eng. 2017, 108, 525–536. [Google Scholar] [CrossRef]
- Lestari, D.A.; Fiqa, A.P.; Fauziah, F.; Budiharta, S. Growth evaluation of native tree species planted on post coal mining reclamation site in East Kalimantan, Indonesia. Biodiversitas 2019, 20, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Akbar, A.; Priyanto, E.; Basiang, H.A. Potensi tanaman revegetasi lahan reklamasi bekas tambang batubara dalam mendukung suksesi alam. J. Penelit. Hutan Tanam. 2005, 2, 133–140. [Google Scholar] [CrossRef]
- Soendjoto, M.A.; Dharmono; Mahrudin; Riefani, M.K.; Triwibowo, D. Plant richness after revegetation on the reclaimed coal mine land of PT. Adaro Indonesia, South Kalimantan. J. Trop. For. Manag. 2014, 20, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, A.S.; Heriyanto, N.M. Keadaan suksesi tumbuhan pada kawasan bekas tambang batubara di Kalimantan Timur. J. Penelit. Hutan Konserv. Alam 2012, 9, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, I.; Suwardi, S. Meningkatkan keberhasilan reklamasi lahan bekas tambang. In Proceedings of the Seminar Nasional Pengelolaan Lingkungan Pertambangan, Lembaga Penelitian Universitas Sriwijaya, Palembang, Indonesia, 21–22 October 2009. [Google Scholar]
- Pietrzykowski, M. Soil and plant communities development and ecological effectiveness of rehabilitation on a sand mine cast. J. For. Sci. 2008, 54, 554–565. [Google Scholar] [CrossRef] [Green Version]
- Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring forests and associated ecosystem services on appalachian coal surface mines. Environ. Manag. 2011, 47, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Mansur, I.; Kadarisman, M.I. Teknik pembibitan kayu putih (Melaleuca Cajuputi) secara vegetatif di persemaian perusahaan batubara PT bukit asam (Persero) Tbk. J. Silvikultur Trop. 2019, 10, 21–28. [Google Scholar]
- Rachmat, H.H.; Subiakto, A. Conserving the previously reported extinct tree species Dipterocarpus cinereus: An ex-situ approach for the species conservation strategy. Pros. Sem. Nas. Masy. Biodivers. Indones. 2015, 1, 560–564. [Google Scholar] [CrossRef]
- Subiakto, A.; Rachmat, H.H.; Sakai, C. Choosing native tree species for establishing man-made forest: A new perspective for sustainable forest management in changing world. Biodiversitas 2016, 17, 620–625. [Google Scholar] [CrossRef]
- Susilowati, A.; Hartini, K.S.; Rachmat, H.H.; Alvaroby, M. Propagation of valuable north sumatera benzoin trees (Styrax Sp.) using macrocutting technique. IOP Conf. Ser. Mater. Sci. Eng. 2017, 180, 012046. [Google Scholar] [CrossRef]
- Rachmat, H.H.; Subiakto, A.; Susilowati, A. Mass vegetative propagation of rare and endangered tree species of Indonesia by shoot cuttings by KOFFCO method and effect of container type on nursery storage of rooted cuttings. Biodiversitas 2018, 19, 2353–2358. [Google Scholar] [CrossRef]
- Susilowati, A.; Rachmat, H.H.; Kholibrina, C.R.; Hartini, K.S.; Ramb, H.A. Propagation for conserving endangered taxol producing tree Taxus sumatrana through shoot cuttings technique. IOP Conf. Ser. J. Phys. 2019, 1282, 012110. [Google Scholar] [CrossRef]
- Siregar, I.Z.; Kustiyarini, N.F.; Wati, R.; Rachmat, H.H.; Siregar, U.J.; Dwiyanti, F.G. Vegetative propagation of Dryobalanops sumatrensis and Dryobalanops oblongifolia subsp. oblongifolia by shoot cuttings. IOP Conf. Ser. Earth Environ. Sci. 2019, 394, 012029. [Google Scholar] [CrossRef]
- Rachmat, H.H.; Fambayun, R.A.; Yulita, K.S.; Susilowati, A. Ex-situ conservation and management of dipterocarps genetic resources through seedlings collections and nursery establishment. Biodiversitas 2020, 21, 2085–4722. [Google Scholar] [CrossRef]
- Oklima, A.M.; Sudarsono; Iskandar; Suryaningtyas, D.T. Utilizing Coal Ash and Humic Substances as Soil Ameliorant on Reclaimed Post-Mining Land. Soils. J. Trop. Soils 2014, 19, 161–169. [Google Scholar] [CrossRef]
- Budiana, I.G.E.; Jumani; Biantari, M.P. Evaluasi tingkat keberhasilan revegetasi lahan bekas tambang batubara di PT Kitadin Site Embalut Kabupaten Kutai Kartanegara Kalimantan Timur. J. Agrifor 2017, 16, 195–208. (In Indonesian) [Google Scholar]
- Karlicik, V.; Curcuz, V.G.; Raicevic, V. The alleviation of reforestation challenges by beneficial soil microorganisms. Reforesta 2016, 1, 238–260. [Google Scholar]
- Setiadi, Y.; Setiawan, A. Study of arbuscular mycorrhizal fungi status at rehabilitation post-nickel mining area (case study at PT INCO Tbk Sorowaoko, South Sulawesi). J. Silvikutur Trop. 2011, 3, 88–95. [Google Scholar]
- Prayudyaningsih, R.; Sari, R.; Mangopang, A.D. Isolation of Iindigenous arbuscular mycorrhizal fungi (AMF) to support revegetation on the nickel post-mining land. IOP Conf. Ser. Earth Environ. Sci. 2019, 308. [Google Scholar] [CrossRef] [Green Version]
- Salim, M.A.; Budi, S.W.; Setyaningsih, L.; Iskandar; Kirmi, H. Diversity of arbuscular mycorrhizal fungi as affected by time consequences revegetation age in post coal mine area at PT Berau Coal Tbk, East Kalimantan Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 394, 012067. [Google Scholar] [CrossRef]
- Ulfa, M.; Kurniawan, A.; Sumardi; Sitepu, I. Population of indigenous Arbuscular Mycorrhizal Fungi (AMF) in post coal-mining land. J. Penelit. Hutan Konserv. Alam 2011, 8, 301–309. [Google Scholar] [CrossRef]
- Akib, M.A.; Mustari, K.; Kuswinanti, T.; Syaiful, S.A. Abundance of arbuscular mychorrizal fungi in rehabilitation area of nickel post-mining land of Sorowako, South Sulawesi. IOP Conf. Ser. Earth Environ. Sci. 2018, 157. [Google Scholar] [CrossRef] [Green Version]
- Turjaman, M.; Santoso, E.; Sitepu, I.R.; Tawaraya, K.; Purnomo, E.; Tambunan, R.; Osaki, M. Mycorrhizal fungi increased early growth of tropical tree seedlings in adverse soil. Indones. J. For. Res. 2009, 6, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Wulandari, D.; Saridi; Cheng, W.; Tawaraya, K. Arbuscular mycorrhizal fungal inoculation improves Albizia saman and Paraserianthes falcataria growth in post-opencast coal mine field in East Kalimantan, Indonesia. For. Ecol. Manag. 2016, 376, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Prematuri, R.; Turjaman, M.; Tawaraya, K. Effect of arbuscular mycorrhiza fungal inoculation on growth of tropical tree species under nursery and post-opencast bauxite mining field in Bintan Island, Indonesia. Int. J. Plant. Soil Sci. 2020, 32, 1–13. [Google Scholar] [CrossRef]
- Setyaningsih, L.; Dikdayatama, F.A.; Wulandari, A.S. Arbuscular mycorrhizal fungi and Rhizobium enhance the growth of Samanea saman (Trembesi) planted on gold-mine tailings in Pongkor, West Java, Indonesia. Biodiversitas 2020, 21, 611–616. [Google Scholar] [CrossRef]
- Budi, S.W.; Wibowo, C.; Sukendro, A.; Bekti, H.S. Growth improvement of Falcataria moluccana inoculated with mycosilvi grown in post-mining silica sand soil medium amended with soil ameliorants. Biodiversitas 2020, 21, 422–427. [Google Scholar]
- Akib, M.A.; Mustari, K.; Kuswinanti, T.; Syaiful, S.A.; Kumalawati, Z.S. Nickel (Ni) reduction in Sorowako post-mining soil through application of mycorrhiza Acaulospora sp. associated with Canavalia ensiformis L. J. Microb. Syst. Biotechnol. 2019, 1, 30–37. [Google Scholar] [CrossRef]
- Tuheteru, F.D.; Arif, A.; Husna; Mansur, I.; Tuheteru, E.J.; Jusniar; Basrudin; Albasri; Hadijah, M.H.; Karepesina, S. Arbuscular mycorrhizal fungal inoculation improves Nauclea orientalis L. growth and phosphorus uptake in gold mine tailing soil media. J. Degrad. Min. Lands Manag. 2020, 7, 2193–2200. [Google Scholar] [CrossRef] [Green Version]
- Ghaida, S.H.; Wasis, B.; Budi, S.W. Application of arbuscular mycorrhizal fungi and soil ameliorant on the growth of Leucaena leucocephala in limestone post-mining soil media. J. Manaj. Hutan Trop. 2020, 26, 282–290. [Google Scholar] [CrossRef]
- Sari, R.; Prayudyaningsih, R. The role of indigenous Rhizobia on Paraserianthes falcataria (L) Nielsen seedlings in nickel post mining lands. IOP Conf. Ser. Earth Environ. Sci. 2019, 308, 1–9. [Google Scholar] [CrossRef]
- Prayudyaningsih, R. The role of indigenous Arbuscular Mycorrhizal Fungi (AMF) to the growth of Bitti (Vitex cofassus Reinw.) and soil chemical properties improvement on reclamation of limestone post mining land in south Sulawesi. In Promoting Sustainable Resources from Plantation for Economic Growth and Community Benefits, Proceeding of IUFRO—INAFOR Joint International Conference, Jogjakarta, Indonesia, 24–27 July 2017; Ministry of Environment and Forestry Research Development and Innovation Agency: Bogor, Indonesia, 2017; pp. 319–324. [Google Scholar]
- Ekamawanti, H.A.; Setiadi, Y.; Sopandie, D.; Santoso, D.A. The role of arbuscular mycorrhizal fungus (Gigaspora margarita) on mercury and nutrients accumulation by Enterolobium cyclocarpum. Microbiol. Indones. 2013, 7, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Seguel, A.; Cumming, J.R.; Klugh-Stewart, K.; Cornejo, P.; Borie, F. The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: A review. Mycorrhiza 2013, 23, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Barua, A.; Gupta, S.D.; Mridha, M.A.U.; Bhuiyan, M.K. Effect of arbuscular mycorrhizal fungi on growth of Gmelina arborea in arsenic contaminated soil. J. For. Res. 2010, 21, 423–432. [Google Scholar] [CrossRef]
- Hovsepyan, A.; Greipsson, S. Effect of arbuscular mycorrhizal fungi on phytoextraction by corn (Zea mays) of lead-contaminated soil. Int. J. Phytoremediation 2004, 6, 305–321. [Google Scholar] [CrossRef]
- Rollon, R.J.C.; Galleros, J.E.V.; Galos, G.R.; Villasica, L.J.D.; Carcia, C.M. Growth and nutrient uptake of Paraserianthes falcataria (L.) as affected by carbonized rice hull and arbuscular mycorrhizal fungi grown in an artificially copper contaminated soil. AAB Bioflux 2017, 9, 57–67. [Google Scholar]
- Sourková, M.; Frouz, J.; Šantrùčková, H. Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma 2005, 124, 203–214. [Google Scholar] [CrossRef]
- Maharana, J.K.; Patel, A.K. Physico-chemical characterization and mine soil genesis in age series coal mine overburden spoil in chronosequence in a dry tropical environment. J. Phylogenet. Evol. Biol. 2013, 1, 101. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maiti, S.K.; Masto, R.E. Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecol. Eng. 2014, 71, 10–20. [Google Scholar] [CrossRef]
- Oktaviani, E.; Susanto, D. Effect of inoculant rhizobium and compost as amelioration on growth of peanut Arachis hypogaea in soil post-coal mining. Int. J. Sci. Technol. Res. 2017, 4, 1–5. [Google Scholar]
- Nurhikmah, P.I.; Kusumawati, E.; Susanto, D. Effect of vesicular-arbuscular mycorrhizae inoculation and liquid organic fertilizer application to the phosphorus concentration on soybean (Glycine max L.) in soils post-coal mining. Int. J. Sci. Technol. Res. 2018, 7, 110–112. [Google Scholar]
- Duaja, M.D.; Kartika, E.; Lizawati. Application of indigenous AMF from ex-coal mining soil combined with phosphorus fertilizers to improve oil palm seedling growth (Elaeis guineensis Jacq.). Biogenesis 2019, 7, 38–43. [Google Scholar] [CrossRef]
- Syafria, H.; Jamarun, N.; Pazla, R. Utilization of biourine and arbuscular mycorrhizal fungi as biotechnological agents for improving land productivity of ex-coal mines and testing their effects on the content of forage fiber fractions [Hymenachne amplexicaulis (Rudge) Nees]. Pak. J. Nutr. 2019, 18, 791–794. [Google Scholar] [CrossRef]
- Agus, C.; Wulandari, D.; Primananda, E.; Hendryan, A.; Harianja, V. The role of soil amendment on tropical post mining area in Bangka island Indonesia for dignified and sustainable environment and life. IOP Conf. Ser. Earth Environ. Sci. 2017, 83, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lestari, T.; Apriyadi, R.; Amandha, G. Growth and yield of edamame soybean in post-tin mining land with application of Rhizobium bacteria and organic fertilizer. IOP Conf. Ser. Earth Environ. Sci. 2021, 694, 012038. [Google Scholar] [CrossRef]
- Perala, I.; Wulandari, A.S. Kayu Kuku (Pericopsis mooniana Thw.) seedlings growth response to tailing media added with vermicompost, rhizobium, and arbuscular mycorrhizal fungi. IOP Conf. Ser. Earth Environ. Sci. 2019, 394. [Google Scholar] [CrossRef] [Green Version]
- Mansur, I. Teknik Silvikultur Untuk Reklamasi Lahan Bekas Tambang; Seameo Biotrop: Bogor, Indonesia, 2010. (In Indonesia) [Google Scholar]
- Nugroho, Y. Aplikasi silvikultur intensif untuk pertumbuhan tanaman pengayaan pada lahan reklamasi tambang batubara. J. Hutan Trop. 2015, 3, 241–246. [Google Scholar]
- Susilo, A. Planting trial of five dipterocarp species on ex-coal mining land in PT. Kitadin, Kalimantan Timur. Proc. Biol. Educ. Conf. 2016, 13, 672–676. [Google Scholar]
- Alkad, E.; Kasim, T.; Yunasril. Perencanaan Dan Biaya Reklamasi Lahan Bekas Tambang Area Tambang Batubara PT. Baturona Adimulya Desa Supat Barat Kecamatan Babat Supat Kabupaten Musi Banyuasin. J. Bina Tambang 2014, 3, 1262–1274. [Google Scholar]
- Aryadi, M.; Fauzi, H. Perception and aspiration of community and local wisdom for revegetation activities at ex-coal mined area (Study on Dusun Beliaspa, Batang Banyu Village, Banjar Regency). Hutan Trop. 2012, 13, 92–100. [Google Scholar]
- Rusdiana, O.; Setiadi, A. The evaluation of the success of plant revegetation in post coal mining block M1W. J. Silvikultur Trop. 2019, 10, 125–132. [Google Scholar]
- Isnaini, M.N.; Soendjoto, M.A. Riap diamater dari tanaman non-legum di area reklamasi dan revegtasi PT Adaro Indonesia, Provinsi Kalimantan Selatan, Indonesia Kalimantan Selatan Province, Indonesia. J. Sylva Sci. 2019, 2, 1133–1139. [Google Scholar]
- Abadi, M.R.; Winarno, E. Rencana Biaya Reklamasi Program Pascatambang lahan bekas tambang pasir kuarsa di PT Tri panorama Setia Kecamatan Kijang Kabupaten Bintan Provinsi Kepulauan Riau. J. Teknol. Pertamb. 2017, 3, 150–158. [Google Scholar]
- Setiadi, Y.; Putri, N. Evaluation of the success result plants revegetation in coal post-mining land Lati Site PT Berau Coal East Kalimantan. J. Silvikultur Trop. 2013, 4, 77–81. [Google Scholar]
- Adman, B.; Nugroho, A.W.; Yassir, I. The growth of local tree species on post-coal mining areas in east kalimantan. Indones. J. For. Res. 2020, 7, 83–97. [Google Scholar] [CrossRef]
- Toumbouroua, T.; Muhdar, M.; Wernera, T.; Bebbington, A. Political ecologies of the post-mining landscape: Activism, resistance, and legal struggles over Kalimantan’s coal mines. Energy Res. Soc. Sci. 2020, 65, 101476. [Google Scholar] [CrossRef]
- Negara, T.; Kusmana, C.; Mansur, I.; Santi, N.A.; Jaya, I.N.S. Identifying the key variables for assessing the reclamation success on early growth. J. Manaj. Hutan Trop. 2020, 25, 222–232. [Google Scholar] [CrossRef]
- Erener, A. Remote sensing of vegetation health for reclaimed areas of Seyitömer open cast. Int. J. Coal Geol. 2011, 86, 20–26. [Google Scholar] [CrossRef]
- Buczyńska, A. Remote sensing and GIS technologies in land reclamation and landscape planning processes on post-mining areas in the Polish and world literature. AIP Conf. Proc. 2020, 2209, 040002. [Google Scholar] [CrossRef]
- McKenna, P.B.; Lechner, A.M.; Phinn, S.; Erskine, P.D. Remote sensing of mine site rehabilitation for ecological outcomes: A global systematic review. Remote Sens. 2020, 12, 3535. [Google Scholar] [CrossRef]
- Soendjoto, M.A.; Riefani, M.K.; Triwibowo, D.; Metasari, D. Birds observed during the monitoring period of 2013–2017 in the revegetation area of ex-coal mining sites in South Kalimantan, Indonesia. Biodiversitas 2018, 19, 323–329. [Google Scholar] [CrossRef]
- Rayadin, Y.; Ayatussurur, M.; Pradesta, H.; Pratama, A.A.; Maharani, R. Kawasan Konservasi Multifungsi di PT Jembayan Muara Bara; PT Ecositrop: Samarinda, Indonesia, 2020. [Google Scholar]
- Rayadin, Y.; Ayatussurur, M.; Pradesta, H.; Pratama, A.A.; Maharani, R. Kawasan Konservasi Multifungsi di PT Kideco Jaya Agung; PT Ecositrop: Samarinda, Indonesia, 2020. [Google Scholar]
- Rayadin, Y.; Ayatussurur, M.; Pradesta, H.; Pratama, A.A.; Maharani, R. Kawasan Konservasi Multifungsi di PT Multi Harapan Utama; PT Ecositrop: Samarinda, Indonesia, 2020. [Google Scholar]
- Pranoto, K.; Febrianto, A.; Ikhsan, M.Z.; Wahyudi, E.; Sudrajat, J. Utilization of ex-mining pits (voids) as a source of water in the Jupiter pit PT Kaltim Prima Coal. In Proceedings of the Annual Scientific Meeting XXXV HATHI, Medan, Indonesia, 7–9 September 2018. [Google Scholar]
- Tuheteru, E.J.; Gautama, R.S.; Kusuma, G.J.; Pranoto, K. Pit lake sebagai alternatif kegiatan pascatambang (Hasil Review Pustaka). In Proceedings of the Prosiding XXVII dan Kongres X Perhapi, Jakarta, Indonesia, 30 October–1 November 2018. [Google Scholar]
- Santoso, A.D.; Setiawan, A. Why is the pH of ex-mining ponds relatively stable? Case Study on Solar Pond and Sangatta North in Areal of PT KPC Sangatta Kalimantan Timur. J. Hidrosfir Indones. 2009, 4, 9–15. [Google Scholar]
- Caesarina, H.M.; Hirsan, F.P. Danau Seran, a pit lake in an ex-mining area as an opportunity for sustainable tourism. IOP Conf. Ser. Earth Environ. Sci. 2020, 413, 012026. [Google Scholar] [CrossRef]
- Haigh, M.; Woodruffe, P.; D’Aucourt, M.; Alun, E.; Wilding, G.; Fitzpatrick, S.; Filcheva, E.; Noustorova, M. Successful ecological regeneration of opencast coal mine spoils through forestation: From cradle to grove. Minerals 2020, 10, 461. [Google Scholar] [CrossRef]
- Rayadin, Y.; Pradesta, H.; Hadiyana, I. Keanekaragaman Jenis Mamalia di Kawasan Reklamasi dan Pascatambang PT Kideco Jaya Agung; Pustaka Tropis: Bandung, Indonesia, 2020. [Google Scholar]
- Suba, R.B. Kehadiran jenis-jenis mamalia di areal reklamasi-rehabilitasi pasca tambang batubara: Respon terhadap perubahan habitat. In Proceedings of the Prosiding Seminar Nasional Taksonomi Fauna Indonesia III, Puslit Biologi LIPI, REA KON, CI and IRATA, Bogor, Indonesia, 10–11 November 2009; pp. 1–16. [Google Scholar]
- Rayadin, Y.; Pradesta, H.; Hadiyana, I. Keanekaragaman Jenis Mamalia di Kawasan Reklamasi dan Pascatambang PT Indominco Mandiri; Ecositrop and Indominco Mandiri: Bontang, Indonesia, 2020. [Google Scholar]
- Muslim, T. Herpetofauna pada kawasan tambang di Kalimantan Timur. In Reklamasi Lahan Pasca Tambang: Aspek Kebijakan, Konservasi dan Teknologi; Balitek KSDA: Samboja, Indonesia, 2013; pp. 129–178. [Google Scholar]
- Boer, C.; Soetedjo; Harmonis; Suba, R.B. Analisis interelasi tumbuhan dan satwa di areal reklamasi-rehabilitasi pasca tambang batubara. In Pusat Penelitian Hutan Tropis (PPHT) Universitas Mulawarman and PT; Kaltim Prima Coal: Samarinda, Indonesia, 2009. [Google Scholar]
Coal and Mineral Mining Land | Plant Species | Treatments | Experiment Sites | Sources |
---|---|---|---|---|
Coal (East Kalimantan Province) | Albizia saman Paraserianthes falcataria | Glomus clarum/Rhizophagus clarus Gigaspora decipiens Scutellespora sp. | Nursery and field | [151] |
Pongamia pinnata | G. clarum | Nursery | [41] | |
Arachis hypogea | Rhizobium sp. + compost | Nursery | [168] | |
Glycine max. L. | AMF + liquid organic fertilizer | Nursery | [169] | |
Coal (South Kalimantan Province) | Sesbania granfolia P. falcataria | G. clarum + compost + manure | Nursery and field | [150] |
Coal (Jambi Province) | Elaeis guineensis | Glomus spp. | Nursery | [170] |
soybean, corn, setaria and cover crops | AMF + Manure | Nursery | [127] | |
G. max L. | Glomus spp., Acaulospora, Scutellospora spp. | Nursery | [171] | |
Bauxite (Riau Archipelago Province, Sumatera) | Gmelina arborea Samanea saman Falcataria moluccana Enterelobium cyclocarpum | G. clarum/Rhizophagus clarus G. decipiens | Nursery and field | [151] |
Tin (Bangka, Sumatera) | Reutealis trispermum | AMF + Rhizobium sp. + Phosphate solubilizing bacteria + soil amendments (volcanic ash, biogas) | Nursery | [172] |
Tin (Bangka, Sumatera) | G. max L. | Rhizobium sp. + organic fertilizer (compost, husk, empty palm fruit bunch) | Nursery | [173] |
Gold (West Java) | Samanea saman | G. manihotis Rhizobium sp. | Nursery and field | [153] |
Gold (Southeast Sulawesi) | Nauclea orientalis | Glomus spp., Glomus aggeratum, Acaulospora delicate | Nursery | [156] |
Gold (West Java) | Pericopsis mooniana | Glomus aggregate + Rhizobium sp. + Vermicompost | Nursery | [174] |
Nickel (South Sulawesi) | Canavalia ensiformis | Acaulospora sp. | Nursery | [155] |
Nickle (Southeast Sulawesi) | F. moluccana | Rhizobium sp. | Nursery | [158] |
Silica sand (West Java) | Ochroma bicolor | Glomus mosseae Gigaspora margarita Acaulospora sp. Rhizobium sp. Lime + Compost | Nursery | [154] |
Limestone (West Java) | Leucaena leucocephala | G. mosseae Gi. margarita Acaulospora sp. Scutellespora sp. | Nursery | [157] |
Limestone (South Sulawesi) | Vitex cofassus | Gigaspora sp. Acaulospora sp. Glomus sp. | Nursery and field | [159] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratiwi; Narendra, B.H.; Siregar, C.A.; Turjaman, M.; Hidayat, A.; Rachmat, H.H.; Mulyanto, B.; Suwardi; Iskandar; Maharani, R.; et al. Managing and Reforesting Degraded Post-Mining Landscape in Indonesia: A Review. Land 2021, 10, 658. https://doi.org/10.3390/land10060658
Pratiwi, Narendra BH, Siregar CA, Turjaman M, Hidayat A, Rachmat HH, Mulyanto B, Suwardi, Iskandar, Maharani R, et al. Managing and Reforesting Degraded Post-Mining Landscape in Indonesia: A Review. Land. 2021; 10(6):658. https://doi.org/10.3390/land10060658
Chicago/Turabian StylePratiwi, Budi H. Narendra, Chairil A. Siregar, Maman Turjaman, Asep Hidayat, Henti H. Rachmat, Budi Mulyanto, Suwardi, Iskandar, Rizki Maharani, and et al. 2021. "Managing and Reforesting Degraded Post-Mining Landscape in Indonesia: A Review" Land 10, no. 6: 658. https://doi.org/10.3390/land10060658