Is Climate Change Restoring Historical Fire Regimes across Temperate Landscapes of the San Juan Mountains, Colorado, USA?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Recent Fire Data
2.3. Historical Fire Data
3. Results
3.1. Recent Fire Patterns and Trends
3.2. Comparing Recent and Historical Fire
4. Discussion
4.1. Patterns of Change in Fire
4.2. Restoring Fire across San Juan Mountain Landscapes
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parks, S.A.; Abatzoglou, J.T. Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. Geophys. Res. Lett. 2020, 47, e2020GL089858. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Nat. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D.; Savage, M.; Falk, D.A.; Suckling, K.F.; Swetnam, T.W.; Schulke, T.; Stacey, P.B.; Morgan, P.; Hoffman, M.; Klingel, J.T. Ecological restoration of southwestern ponderosa pine ecosystems: A broad perspective. Ecol. Applic. 2002, 12, 1418–1433. [Google Scholar] [CrossRef]
- Marlon, J.R.; Bartlein, P.J.; Walsh, M.K.; Harrison, S.P.; Brown, K.J.; Edwards, M.E.; Higuera, P.E.; Power, M.J.; Anderson, R.S.; Briles, C.; et al. Wildfire responses to abrupt climate change in North America. Proc. Nat. Acad. Sci. USA 2009, 106, 2519–2524. [Google Scholar] [CrossRef] [PubMed]
- Fried, J.S.; Torn, M.S.; Mills, E. The impact of climate change on wildfire severity: A regional forecast for northern California. Clim. Change 2004, 64, 169–191. [Google Scholar] [CrossRef]
- Fried, J.S.; Gilless, J.K.; Riley, W.J.; Moody, T.J.; Simon de Blas, C.; Hayhoe, K.; Moritz, M.; Stephens, S.; Torn, M. Predicting the effect of climate change on wildfire behavior and initial attack success. Clim. Change 2008, 87 (Suppl. 1), S251–S264. [Google Scholar] [CrossRef]
- Goss, M.; Swain, D.L.; Abatzoglou, J.T.; Sarhadi, A.; Kolden, C.A.; Williams, A.P.; Diffenbaugh, N.S. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 2020, 15, 094016. [Google Scholar] [CrossRef]
- Hessburg, P.F.; Prichard, S.J.; Hagmann, R.K.; Povak, N.A.; Lake, P.K. Wildfire and climate change adaptation of western North American forests: A case for intentional management. Ecol. Applic. 2021, 31, e02432. [Google Scholar] [CrossRef]
- Caggiano, M.D.; Hawbaker, T.J.; Gannon, B.J.; Hoffman, C.M. Building loss in WUI disasters: Evaluating the core components of the wildland-urban interface definition. Fire 2020, 3, 73. [Google Scholar] [CrossRef]
- Mahood, A.L.; Balch, J.L. Repeated fires reduce plant diversity in low-elevation Wyoming big sagebrush ecosystems (1984–2014). Ecosphere 2019, 10, e02591. [Google Scholar] [CrossRef] [Green Version]
- Landres, P.B.; Morgan, P.; Swanson, F.J. Overview of the use of natural variability concepts in managing ecological systems. Ecol. Applic. 1999, 9, 1179–1188. [Google Scholar]
- Baker, W.L. Are high-severity fires burning at much higher rates recently than historically in dry-forest landscapes of the western USA? PLoS ONE 2015, 10, e0136147. [Google Scholar]
- Baker, W.L. Fire Ecology in Rocky Mountain Landscapes; Island Press: Washington, DC, USA, 2009; pp. 1–605. [Google Scholar]
- Pinto, G.A.S.J.; Niklasson, M.; Ryzhkova, N.; Drobyshev, I. A 500-year history of forest fires in Sala area, central Sweden, shows the earliest known onset of fire suppression in Scandinavia. Reg. Environ. Change 2020, 20, 130. [Google Scholar] [CrossRef]
- Williams, A.N.; Mooney, S.D.; Sisson, S.D.; Marlon, J. Exploring the relationship between Aboriginal population indices and fire in Australia over the last 20,000 years. Palaeogeogr. Palaeoclim. Palaeoecol. 2015, 432, 49–57. [Google Scholar] [CrossRef]
- Conedera, M.; Tinner, W.; Neff, C.; Meurer, M.; Dickens, A.F.; Krebs, P. Reconstructing past fire regimes: Methods, applications, and relevance to fire management and conservation. Quat. Sci. Rev. 2009, 28, 555–576. [Google Scholar] [CrossRef]
- Marcisz, K.; Tinner, W.; Colombaroli, D.; Kolaczek, P.; Slowiński, M.; Fialkiewicz-Koziel, C.; Lokas, E.; Lamentowicz, M. Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quat. Sci. Rev. 2015, 112, 138–152. [Google Scholar] [CrossRef]
- Hamilton, T.; Wittkuhn, R.S.; Carpenter, C. Creation of a fire history database for southeastern Australia: Giving old maps new life in a geographic information system. Conserv. Sci. W Aust. 2009, 7, 429–450. [Google Scholar]
- Rangwala, I.; Miller, J.R. Twentieth century temperature trends in Colorado’s San Juan Mountains. Arct. Antarct. Alpine Res. 2010, 42, 89–97. [Google Scholar] [CrossRef]
- Lukas, J.; Barsugli, J.; Doesken, N.; Rangwala, I.; Wolter, K. A report for the Colorado Water Conservation Board by Western Water Assessment, Cooperative Institute for Research in Environmental Sciences (CIRES). Climate change in Colorado: A Synthesis to Support Water Resources Management and Adaptation, 2nd ed.; University of Colorado: Boulder, CO, USA, 2014. [Google Scholar]
- Baker, W.L. Restoration of forest resilience to fire from old trees is possible across a large Colorado dry-forest landscape by 2060, but only under the Paris 1.5 °C goal. Global Change Biol. 2021, 27, 4074–4095. [Google Scholar] [CrossRef]
- Arendt, P.A.; Baker, W.L. Northern Colorado Plateau piñon-juniper woodland decline over the past century. Ecosphere 2013, 4, 103. [Google Scholar] [CrossRef]
- Short, K.C. A spatial database of wildfires in the United States, 1992–2011. Earth Syst. Sci. Data 2014, 6, 1–27. [Google Scholar] [CrossRef]
- Short, K.C. Sources and implications of bias and uncertainty in a century of US wildfire activity data. Int. J. Wildl. Fire 2015, 24, 883–891. [Google Scholar] [CrossRef]
- Kolden, C.A.; Smith, A.M.S.; Abatzoglou, J.T. Limitations and utilisation of Monitoring Trends in Burn Severity produces for assessing wildfire severity in the USA. Int. J. Wildl. Fire 2015, 24, 1023–1028. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Vanderhoof, M.K.; Schmidt, G.L.; Beal, Y.-J.; Picotte, J.J.; Takacs, J.D.; Falgout, J.T.; Dwyer, J.L. The Landsat burned area algorithm and products for the conterminous United States. Rem. Sens. Envir. 2020, 244, 111801. [Google Scholar] [CrossRef]
- U.S. Forest Service. Forest Service. Fire Statistics System (FIRESTAT) User Guide for the Individual Wildland Fire Report; FS-5100-29; USDA Forest Service: Washington, DC, USA, 2016.
- Baker, W.L. Restoring and managing low-severity fire in dry-forest landscapes of the western USA. PLoS ONE 2017, 12, e0172288. [Google Scholar] [CrossRef]
- Agee, J.K. Fire Ecology of Pacific Northwest Forests; Island Press: Washington, DC, USA, 1993; pp. 1–493. [Google Scholar]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Baker, W.L. Historical fire regimes in ponderosa pine and mixed-conifer landscapes of the San Juan Mountains, Colorado, USA, from multiple sources. Fire 2018, 1, 23. [Google Scholar] [CrossRef]
- Romme, W.H.; Floyd, M.L.; Hanna, D. Historical Range of Variability and Current Landscape Condition Analysis: South-Central Highlands Section, Southwestern Colorado & Northwestern New Mexico; Colorado Forest Restoration Institute, Colorado State University: Fort Collins, CO, USA, 2009; pp. 1–186. [Google Scholar]
- Bukowski, B.E.; Baker, W.L. Historical fire in sagebrush landscapes of the Gunnison sage-grouse range from land-survey records. J. Arid Environ. 2013, 98, 1–9. [Google Scholar] [CrossRef]
- Baker, W.L. Variable forest structure and fire reconstructed across historical ponderosa pine and mixed conifer landscapes of the San Juan Mountains, Colorado. Land 2020, 9, 3. [Google Scholar] [CrossRef]
- Bigio, E.R. Late Holocene Fire and Climate History of the Western San Juan Mountains, Colorado, Results from Alluvial Stratigraphy and Tree-Ring Methods. Ph.D Dissertation, University of Arizona, Tucson, AZ, USA, 2013. [Google Scholar]
- Shinneman, D.J.; Baker, W.L. Historical fire and multidecadal drought as context for piñon-juniper woodland restoration in western Colorado. Ecol. Applic. 2009, 19, 1231–1245. [Google Scholar] [CrossRef]
- Floyd, M.L.; Hanna, D.D.; Romme, W.H. Historical and recent fire regimes in piñon-juniper woodlands on Mesa Verde, Colorado, USA. For. Ecol. Manage. 2004, 198, 269–289. [Google Scholar] [CrossRef]
- Fitch, E.P. Holocene fire-related alluvial chronology and geomorphic implications in the Jemez Mountains, New Mexico. Master’s Thesis, University of New Mexico, Albuquerque, NM, USA, 2013. [Google Scholar]
- Toney, J.L.; Anderson, R.S. A postglacial palaeoecological record from the San Juan Mountains of Colorado USA: Fire, climate and vegetation history. Holocene 2006, 16, 505–517. [Google Scholar] [CrossRef]
- Floyd, M.L.; Romme, W.H.; Hanna, D.D. Fire history and vegetation pattern in Mesa Verde National Park, Colorado, USA. Ecol. Applic. 2000, 10, 1666–1680. [Google Scholar] [CrossRef]
- Hart, S.J.; Veblen, T.T.; Schneider, D.; Molotch, N.P. Summer and winter drought drive the initiation and spread of spruce beetle outbreak. Ecology 2017, 98, 2698–2707. [Google Scholar] [CrossRef]
- Williams, M.A.; Baker, W.L. Comparison of the higher-severity fire regime in historical (A.D. 1800s) and modern (A.D. 1984-2009) montane forests across 624,156 ha of the Colorado Front Range. Ecosystems 2012, 15, 832–847. [Google Scholar] [CrossRef]
- Baker, W.L. Indians and fire in the Rocky Mountains: The wilderness hypothesis renewed. In Fire, Native Peoples, and the Natural Landscape; Vale, T.R., Ed.; Island Press: Washington, DC, USA, 2002; pp. 41–76. [Google Scholar]
- Moritz, M.A.; Morais, M.E.; Summerell, L.A.; Carlson, J.M.; Doyle, J. Wildfires, complexity, and highly optimized tolerance. Proc. Nat. Acad. Sci. USA 2005, 102, 17912–17917. [Google Scholar] [CrossRef]
- Pielke, R.A.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Niyogi, D.S.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R Soc. A Math. Phys. Eng. Sci. 2002, 360, 1705–1719. [Google Scholar] [CrossRef]
- Ingalsbee, T. Ecological fire use for ecological fire management: Managing large wildfires by design. In Proceedings of the Large Wildland Fires Conference, Missoula, MT, USA, 19–23 May 2014; Keane, R.M., Jolly, J., Parsons, R., Riley, K., Eds.; USDA Forest Service Proceedings RMRS-P-73, Rocky Mountain Research Station: Fort Collins, CO, USA, 2015; pp. 120–127. [Google Scholar]
- Dugan, A.J.; Baker, W.L. Sequentially contingent fires, droughts and pluvials structured a historical dry forest landscape and suggest future contingencies. J. Veg. Sci. 2015, 26, 697–710. [Google Scholar] [CrossRef]
- DellaSala, D.A.; Baker, B.C.; Hanson, C.T.; Ruediger, L.; Baker, W. Have western USA fire suppression and megafire active management approaches become a contemporary Sisyphus? Biol. Cons. 2022, 268, 109499. [Google Scholar] [CrossRef]
- Downing, W.M.; Dunn, C.J.; Thompson, M.P.; Caggiano, M.D.; Short, K.C. Human ignitions on private lands drive USFS cross-boundary wildfire transmission and community impacts in the western US. Sci. Rep. 2022, 12, 2624. [Google Scholar] [CrossRef]
Pooled Types | Landfire Values | Area (ha) | Area (%) |
---|---|---|---|
FORESTS AND WOODLANDS | |||
Piñon-juniper | 7016, 7059, 7102, 7115 | 115,645 | 4.4 |
Ponderosa pine | 7054, 7117 | 264,536 | 10.0 |
Mixed conifer | 7011, 7051, 7052, 7061 | 562,427 | 21.3 |
Subalpine | 7050, 7055–7057 | 759,506 | 28.7 |
Unknown forest | 7191–7193, 7197, 7200 | 19,902 | 0.8 |
Total forest | 1,722,016 | 65.2 | |
GRASSLANDS/SHRUBLANDS | |||
Grassland | 7135, 7145, 7146, 7195, 7198 | 164,119 | 6.2 |
Sagebrush and salt desert shrubland | 7064, 7066, 7080, 7081, 7126, 7127, 7153, 9009 | 240,643 | 9.1 |
Mixed mountain and misc. shrubland | 7086, 7093, 7107, 7196, 7199 | 157,563 | 6.0 |
Total grasslands and shrublands | 562,325 | 21.3 | |
Total forests, grasslands, shrublands | 2,284,341 | 86.4 | |
Excluded: alpine, exotics and ruderal, human features, rock, water and ice, wetlands and riparian | 7070, 7143–4, 7292, 7295–9, 7735, 7900–4, 7920–4, 7942–4, 7961–8, 9001, 9004, 9011, 9016–9, 9021–2, 9307–9, 9327–9, 9336, 9519, 9827–9 | 358,264 | 13.6 |
Total study area | 2,642,606 | 100.0 |
Dataset Type and Name | Source 1 | Fire Years |
---|---|---|
Wildfire perimeters | ||
BLM National Fire Perimeters Polygon | https://data.doi.gov/dataset/blm-national-fire-perimeter-polygon1 | 1980–2020 |
Interagency Fire Perimeter History-All Years | https://data-nifc.opendata.arcgis.com | (1966, 1974) 1980–2020 |
National USFS Fire Perimeter Feature Layer | https://catalog.data.gov/dataset/national-usfs-fire-perimeter-feature-layer-bb844 | (1956, 1974) 1980–2020 |
USGS Wildland Fire Decision Support Syst. | https://wfdss.usgs.gov/wfdss/WFDSS_Data_Downloads.shtml | 1980–2020 |
Wildfire points | ||
Fire Program Analysis Fire Occurrence Data | https://www.fs.usda.gov/rds/archive/Catalog/RDS-2013-0009.4/ | 1992–2015 |
National USFS Fire Occurrence Point Feature Layer | https://data-usfs.hub.arcgis.com/datasets/national-usfs-fire-occurrence-point-feature-layer/ | 1970–2020 |
National Wildfire Coordinating Group: Fire and Weather Data | https://ftp.wildfire.gov/public/weatherfirecd/data/co/ | 1972–2017 |
WFIGS-Wildland Fire Locations Full History | https://data-nifc.opendata.arcgis.com/search?collection=Dataset | 2014–2020 |
Prescribed fire perimeters | ||
Integrated Interagency Fuels Treatments | https://services.arcgis.com/4OV0eRKiLAYkbH2J/arcgis/rest/services/Integrated_Interagency_Fuels_Treatments_View/FeatureServer | 2003–2020 |
Fire-severity rasters | ||
Monitoring Trends in Burn Severity | https://www.mtbs.gov | 1984–2019 |
Cause | Area (ha) | % of Human | % of Human + Natural | % of Grand Total |
---|---|---|---|---|
Human | ||||
Arson | 47 | 0.1 | 0.0 | 0.0 |
Camping/campfires | 594 | 1.1 | 0.4 | 0.4 |
Children | 19 | 0.0 | 0.0 | 0.0 |
Debris burning | 245 | 0.5 | 0.2 | 0.1 |
Equipment use | 30 | 0.1 | 0.0 | 0.0 |
Miscellaneous | 544 | 1.0 | 0.4 | 0.3 |
Railroad | 23,224 | 44.6 | 17.7 | 13.8 |
Smoking | 130 | 0.3 | 0.1 | 0.1 |
Prescribed fires | 27,271 | 52.3 | 20.8 | 16.2 |
Total human | 52,103 | 100.0 | 39.7 | 30.9 |
Natural (lightning) | 79,052 | 60.3 | 46.9 | |
Human + natural known | 131,155 | 100.0 | 77.9 | |
Unknown cause | 37,292 | 22.1 | ||
Grand total | 168,447 | 100.0 |
Ecosystem Type 1 | Area (ha) | 1980–2010 (31 yr) | 2011–2020 (10 yr) | 10 yr vs. 31 yr (%) | |||
---|---|---|---|---|---|---|---|
Density 2 | Rotation2 | Density 2 | Rotation 2 | Density 3 | Rotation 3 | ||
Piñon-juniper | 115,645 | 11.60 | 1635 | 26.89 | 470 | 232 | 29 and 348 |
Ponderosa pine | 264,536 | 14.57 | 528 | 28.01 | 140 | 192 | 27 and 376 |
Low severity | 1297 | 204 | 16 and 636 | ||||
Low-moderate severity | 956 | 182 | 19 and 525 | ||||
Moderate-high severity | 2552 | 1544 | 61 and 165 | ||||
High severity | 8566 | 9821 | 115 and 87 | ||||
Mixed conifer | 562,427 | 7.76 | 924 | 12.94 | 218 | 167 | 24 and 423 |
Low severity | 2199 | 309 | 14 and 712 | ||||
Low-moderate severity | 1528 | 240 | 16 and 637 | ||||
Moderate-high severity | 1756 | 245 | 14 and 717 | ||||
High severity | 3130 | 4810 | 154 and 65 | ||||
Subalpine forests | 759,506 | 2.74 | 6299 | 4.06 | 549 | 148 | 9 and 1147 |
Unknown forest | 19,902 | - | - | - | - | - | - |
Total forest | 1,722,016 | 6.95 | 1303 | 12.67 | 222 | 182 | 17 and 586 |
Grassland | 164,119 | 7.49 | 1160 | 22.06 | 193 | 295 | 17 and 602 |
Sagebrush/salt desert | 240,643 | 4.22 | 2948 | 9.68 | 797 | 229 | 27 and 370 |
Mixed mountain shrubs | 157,563 | 10.77 | 420 | 26.53 | 107 | 246 | 26 and 392 |
Total grass/shrub | 562,325 | 7.01 | 939 | 18.01 | 214 | 257 | 23 and 439 |
Grand total | 2,284,341 | 6.97 | 1,190 | 13.99 | 220 | 201 | 19 and 540 |
Watershed 1 | Area (ha) | 1980–2010 (31 yr) | 2011–2020 (10 yr) | 10 yr vs. 31 yr (%) | |||
---|---|---|---|---|---|---|---|
Density 2 | Rotation 2 | Density 2 | Rotation 2 | Density 3 | Rotation 3 | ||
Alamosa-Trinchera | 145,259 | 1.53 | 202,930 | 2.13 | 9255 | 139 | 5 and 2193 |
Animas | 226,161 | 6.20 | 354 | 9.24 | 97 | 149 | 27 and 366 |
Arkansas Headwaters | 8792 | 6.60 | 106,055 | 23.88 | 156 | 362 | 0 and 67952 |
Conejos | 88,619 | 3.53 | 3665 | 2.82 | 2114 | 80 | 58 and 173 |
Mancos | 24,234 | 5.99 | 15,625 | 9.49 | 10,423 | 158 | 67 and 150 |
Middle San Juan | 13,686 | 7.07 | 12,978 | 26.31 | 75,196 | 372 | 579 and 17 |
Montezuma | 5851 | 4.96 | 647 | 94.00 | 5 | 1895 | 1 and 12994 |
Piedra | 150,078 | 13.03 | 1476 | 19.92 | 73 | 153 | 5 and 2028 |
Rio Chama | 21,222 | 1.52 | 150,542 | 0.94 | 326,485 | 62 | 217 and 46 |
Rio Grande Headw. | 346,438 | 2.17 | 2490 | 1.47 | 99 | 68 | 4 and 2515 |
Saguache | 240,008 | 1.64 | 3828 | 2.25 | 577 | 137 | 15 and 664 |
San Luis | 34,766 | 2.60 | 3561 | 3.45 | 649 | 133 | 18 and 548 |
San Miguel | 106,254 | 2.82 | 6615 | 1.88 | 19,640 | 67 | 297 and 34 |
Tomichi | 175,724 | 2.63 | 2872 | 1.82 | 1272 | 69 | 44 and 226 |
Uncompahgre | 95,891 | 3.77 | 8319 | 2.71 | 2742 | 72 | 33 and 303 |
Upper Dolores | 298,661 | 6.57 | 793 | 9.81 | 114 | 149 | 14 and 697 |
Upper Gunnison | 359,220 | 2.02 | 8072 | 1.84 | 4659 | 91 | 58 and 173 |
Upper San Juan | 301,937 | 7.44 | 635 | 11.06 | 327 | 149 | 52 and 194 |
Grand total | 2,642,799 | 4.37 | 1339 | 6.01 | 196 | 138 | 15 and 682 |
Ecosystem Type 1 | Fire Severity | Fire Rotation (years) | Source(s) | Location(s) | Type of Evidence |
---|---|---|---|---|---|
Piñon-juniper | High | 400–600+ | [36] | Uncompahgre Plateau | Tree-ring reconstr. |
High | 400+ | [37] | Mesa Verde | Tree-ring reconstr. | |
Ponderosa pine | Low | 34 | [31] Table 5 | Southwestern San Juans | Tree-ring reconstr. |
Moderate-high | 135 | [34] Table 12 | Southwestern San Juans | GLO reconstr. | |
Moderate-high | 185 | [31] Table 1 | Southwestern San Juans | Forest atlases | |
Moderate-high | 688 | [31] Table 1 | Eastern San Juans | Forest atlases | |
High | 280 | [34] Table 12 | Southwestern San Juans | GLO reconstr. | |
High | 358 | [31] Table 1 | Southwestern San Juans | Forest atlases | |
High | >471 2 | [35] | Southwestern San Juans | Charcoal reconstr. | |
High | 1145 | [31] Table 1 | Eastern San Juans | Forest atlases | |
Dry mixed conifer | Low | 106 | [31] Table 5 | Southwestern San Juans | Tree-ring reconstr. |
Moderate-high | 120 | [34] Table 12 | Southwestern San Juans | GLO reconstr. | |
Moderate-high | 145 | [31] Table 1 | Southwestern San Juans | Forest atlases | |
Moderate-high | 156 | [31] Table 1 | Eastern San Juans | Forest atlases | |
High | 184 | [34] Table 12 | Southwestern San Juans | GLO reconstr. | |
High | 265 | [31] Table 1 | Southwestern San Juans | Forest atlases | |
High | 267 | [31] Table 1 | Eastern San Juans | Forest atlases | |
High | >471 2 | [35] | Southwestern San Juans | Charcoal reconstr. | |
High | 500? 2 | [38] | Jemez Mts. 200 km SE | Charcoal reconstr. | |
Moist mixed conifer | Low | 133 | [31] Table 5 | Southwestern San Juans | Tree-ring reconstr. |
Moderate-high | 94 | [34] Table 12 | Southwestern San Juans | GLO reconstr. | |
Moderate-high | 144 | [31] Table 1 | Southwestern San Juans | Forest atlases | |
Moderate-high | 133 | [31] Table 1 | Eastern San Juans | Forest atlases | |
High | 121 | [34] Table 12 | Southwestern San Juans | GLO reconstr. | |
High | 254 | [31] Table 1 | Southwestern San Juans | Forest atlases | |
High | 224 | [31] Table 1 | Eastern San Juans | Forest atlases | |
Subalpine | High | 300 | [32] | Southwestern San Juans | Tree-ring reconstr. |
High | 95 | [39] | Southwestern San Juans | Charcoal reconstr. | |
Grasslands | High | 90–300 3 | [13] | Rocky Mountains | Adjacent forests |
Sagebrush/salt desert shrubl. | |||||
Mountain big sagebrush | High | 90–178 | [33] | Southwestern Colorado | GLO reconstr. |
Wyoming big sagebrush | High | 160–692 | [33] | Southwestern Colorado | GLO reconstr. |
Mixed/misc. shrubl. | High | 100 | [40] | Mesa Verde | Tree-ring reconstr. |
Cumulative Area | Cumulative % | ||||||
---|---|---|---|---|---|---|---|
No. | Year | Fire Name | Area (ha) | (ha) | % | Of 4716 Total Fires | Of 379 Fires > 4 ha |
1 | 2002 | Missionary Ridge | 27,907 | 27,907 | 19.8 | ||
2 | 2013 | West Fork | 22,895 | 50,802 | 36.0 | ||
3 | 2018 | 416 | 22,326 | 73,128 | 51.8 | ||
4 | 2013 | Papoose | 19,018 | 92,146 | 65.3 | 0.1 | 1.0 |
5 | 2012 | Little Sand | 10,621 | 102,767 | 72.8 | ||
6 | 2018 | Plateau | 8003 | 110,770 | 78.5 | ||
7 | 2009 | Narraguinnep | 3161 | 113,931 | 80.7 | ||
8 | 2002 | Million | 3003 | 116,934 | 82.8 | 2.0 | |
9 | 2018 | Burro | 2124 | 119,058 | 84.3 | 0.2 | |
10 | 1996 | Disappointment | 1476 | 120,534 | 85.4 | ||
11 | 2012 | Vallecito | 1119 | 121,653 | 86.2 | 3.0 | |
12 | 2019 | Doe Canyon | 1036 | 122,689 | 86.9 | ||
13 | 2009 | Bradfield | 1033 | 123,722 | 87.6 | ||
14 | 2002 | Unnamed | 769 | 124,491 | 88.2 | 0.3 | |
15 | 2003 | Bear Creek | 756 | 125,247 | 88.7 | 4.0 | |
16 | 1996 | Unnamed | 746 | 125,993 | 89.2 | ||
17 | 2016 | Long Draw | 702 | 126,695 | 89.7 | ||
18 | 2003 | Bolt | 595 | 127,290 | 90.2 | ||
19 | 2013 | Windy Pass | 574 | 127,864 | 90.6 | 0.4 | 5.0 |
20 | 2017 | Draw | 572 | 128,436 | 91.0 | ||
21 | 2018 | Horse Park | 546 | 128,982 | 91.4 | ||
22 | 1984 | Unnamed | 541 | 129,523 | 91.7 | ||
23 | 1988 | Unnamed | 492 | 130,015 | 92.1 | 6.0 | |
24 | 2005 | Far Draw | 473 | 130,488 | 92.4 | 0.5 | |
25 | 2005 | Rio Blanco | 438 | 130,926 | 92.7 | ||
26 | 2012 | Goblin | 435 | 131,361 | 93.0 | ||
27 | 2018 | West Guard | 425 | 131,786 | 93.3 | 7.0 | |
28 | 1999 | Sandoval3 | 355 | 132,141 | 93.6 | 0.6 | |
29 | 2019 | Cow Creek | 348 | 132,489 | 93.8 | ||
30 | 2018 | Horse | 298 | 132,787 | 94.1 | 8.0 | |
31 | 1998 | House Creek | 281 | 133,068 | 94.3 | ||
32 | 2017 | East Rim | 269 | 133,337 | 94.4 | ||
33 | 2002 | West Beaver | 258 | 133,595 | 94.6 | 0.7 | |
34 | 2020 | Ice | 242 | 133,837 | 94.8 | 9.0 | |
35 | 2002 | Schaff II | 225 | 134,062 | 95.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baker, W.L. Is Climate Change Restoring Historical Fire Regimes across Temperate Landscapes of the San Juan Mountains, Colorado, USA? Land 2022, 11, 1615. https://doi.org/10.3390/land11101615
Baker WL. Is Climate Change Restoring Historical Fire Regimes across Temperate Landscapes of the San Juan Mountains, Colorado, USA? Land. 2022; 11(10):1615. https://doi.org/10.3390/land11101615
Chicago/Turabian StyleBaker, William L. 2022. "Is Climate Change Restoring Historical Fire Regimes across Temperate Landscapes of the San Juan Mountains, Colorado, USA?" Land 11, no. 10: 1615. https://doi.org/10.3390/land11101615