Urban Avian Conservation Planning Using Species Functional Traits and Habitat Suitability Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Avian Species Data
2.3. Landscape Characteristics Data
2.3.1. Patch Quality
2.3.2. Habitat Connectivity
2.4. Methodological Approach
2.4.1. Functional Trait Analysis/RLQ-Fourth Corner
2.4.2. Habitat Suitability Analysis (HSA)
2.4.3. Combining Trait-Based and Habitat Suitability Analysis
3. Results
3.1. Functional Trait Analysis/RLQ-Fourth Corner
3.2. Habitat Suitability Analysis
4. Discussion
5. Limitations & Future Steps
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; He, C.; Wu, J. The Relationship between Habitat Loss and Fragmentation during Urbanization: An Empirical Evaluation from 16 World Cities. PLoS ONE 2016, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Scolozzi, R.; Geneletti, D. A Multi-Scale Qualitative Approach to Assess the Impact of Urbanization on Natural Habitats and Their Connectivity. Environ. Impact Assess. Rev. 2012, 36, 9–22. [Google Scholar] [CrossRef]
- Johnson, M.T.J.; Munshi-South, J. Evolution of Life in Urban Environments. Science 2017, 358, eaam8327. [Google Scholar] [CrossRef] [Green Version]
- Turrini, T.; Knop, E. A Landscape Ecology Approach Identifies Important Drivers of Urban Biodiversity. Glob. Chang. Biol. 2015, 21, 1652–1667. [Google Scholar] [CrossRef]
- UN-DESA. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); UN-DESA: New York, NY, USA, 2019. [Google Scholar]
- Xu, C.; Haase, D.; Pauleit, S. The Impact of Different Urban Dynamics on Green Space Availability: A Multiple Scenario Modeling Approach for the Region of Munich, Germany. Ecol. Indic. 2018, 93, 1–12. [Google Scholar] [CrossRef]
- Aronson, M.F.J.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the City: Key Challenges for Urban Green Space Management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Kowarik, I. Novel Urban Ecosystems, Biodiversity, and Conservation. Environ. Pollut. 2011, 159, 1974–1983. [Google Scholar] [CrossRef]
- Filazzola, A.; Shrestha, N.; MacIvor, J.S. The Contribution of Constructed Green Infrastructure to Urban Biodiversity: A Synthesis and Meta-Analysis. J. Appl. Ecol. 2019, 56, 2131–2143. [Google Scholar] [CrossRef]
- Fernández-Juricic, E. Bird Community Composition Patterns in Urban Parks of Madrid: The Role of Age, Size and Isolation. Ecol. Res. 2000, 15, 373–383. [Google Scholar] [CrossRef]
- Almas, A.D.; Conway, T.M. The Role of Native Species in Urban Forest Planning and Practice: A Case Study of Carolinian Canada. Urban For. Urban Green. 2016, 17, 54–62. [Google Scholar] [CrossRef]
- Shoffner, A.; Wilson, A.M.; Tang, W.; Gagné, S.A. The Relative Effects of Forest Amount, Forest Configuration, and Urban Matrix Quality on Forest Breeding Birds. Sci. Rep. 2018, 8, 17140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouillot, D.; Graham, N.A.J.; Villéger, S.; Mason, N.W.H.; Bellwood, D.R. A Functional Approach Reveals Community Responses to Disturbances. Trends Ecol. Evol. 2013, 28, 167–177. [Google Scholar] [CrossRef]
- Volaire, F.; Gleason, S.M.; Delzon, S. What Do You Mean “Functional” in Ecology? Patterns versus Processes. Ecol. Evol. 2020, 10, 11875–11885. [Google Scholar] [CrossRef]
- Croci, S.; Butet, A.; Clergeau, P. Does Urbanization Filter Birds on the Basis of Their Biological Traits? Condor 2008, 110, 223–240. [Google Scholar] [CrossRef]
- Lerman, S.B.; Nislow, K.H.; Nowak, D.J.; DeStefano, S.; King, D.I.; Jones-Farrand, D.T. Using Urban Forest Assessment Tools to Model Bird Habitat Potential. Landsc. Urban Plan. 2014, 122, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.M.; Segurado, P.; Santos, J.M.; Teixeira, A.; Ferreira, M.T.; Cortes, R.V. Modelling Stream-Fish Functional Traits in Reference Conditions: Regional and Local Environmental Correlates. PLoS ONE 2012, 7, e45787. [Google Scholar] [CrossRef] [PubMed]
- Devictor, V.; Julliard, R.; Clavel, J.; Jiguet, F.; Lee, A.; Couvet, D. Functional Biotic Homogenization of Bird Communities in Disturbed Landscapes. Glob. Ecol. Biogeogr. 2008, 17, 252–261. [Google Scholar] [CrossRef]
- Dray, S.; Choler, P.; Dolédec, S.; Peres-Neto, P.R.; Thuiller, W.; Pavoine, S.; ter Braak, C.J.F. Combining the Fourth-Corner and the RLQ Methods for Assessing Trait Responses to Environmental Variation. Ecology 2014, 95, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, L.A.; Hayes, S.; Tozer, D.C.; Clayton, D.; Burns, M.A.; Lewis, D.; Gaetz, N.; Shrestha, N. Assessing Terrestrial Wildlife Populations in the Toronto and Region Area of Concern. J. Great Lakes Res. 2021, 47, 273–282. [Google Scholar] [CrossRef]
- Statistics Canada. Canada’s Large Urban Centres Continue to Grow and Spread. 2022. Available online: https://www150.statcan.gc.ca/n1/daily-quotidien/220209/dq220209b-eng.htm (accessed on 1 September 2022).
- Ontario Ministry of Municipal Affairs and Housing (OMMAH) Greenbelt Plan (2017). 2017. Available online: https://files.ontario.ca/greenbelt-plan-2017-en.pdf (accessed on 1 September 2022).
- Toronto and Region Conservation Authority. Toronto and Region Watersheds: Report Card 2018; Toronto and Region Conservation Authority: Downsview, ON, Canada, 2018. [Google Scholar]
- Toronto and Region Conservation Authority. Scoring and Ranking TRCA’s Vegetation Communities, Flora, and Fauna Species; Toronto and Region Conservation Authority: Downsview, ON, Canada, 2017. [Google Scholar]
- Cadman, M.D.; Sutherland, D.A.; Beck, G.G.; Lepage, D.; Couturier, A.R. Atlas of the Breeding Birds of Ontario, 2001–2005; Bird Studies Canada, Environment Canada, Ontario Field Ornithologists, Ontario Ministry of Natural Resources, and Ontario Nature: Toronto, ON, Canada, 2007. [Google Scholar]
- Lee, H.T.; Bakowsky, W.D.; Riley, J.; Bowles, J.; Puddister, M.; Uhlig, P.; McMurray, S. Ecological Land Classification for Southern Ontario: First Approximation and Its Application; Ontario Ministry of Natural Resources, Southcentral Science Section: North Bay, ON, Canada, 1998. [Google Scholar]
- City of Toronto Forest and Land Cover-City of Toronto Open Data Portal. 2018. Available online: https://open.toronto.ca/dataset/forest-and-land-cover/ (accessed on 14 September 2018).
- Timmins, T.; Sawka, M. 2021 York Region Canopy Cover Assessment Technical Report; Toronto and Region Conservation Authority: Vaughan, ON, Canada, 2022. [Google Scholar]
- Soverel, N.; Dranga, S.; Blackwell, B.A. An Assessment of Urban Tree Canopy Cover in Peel Region 2015; B.A. Blackwell & Associates Ltd.: North Vancouver, BC, Canada, 2017. [Google Scholar]
- ESRI. ArcGIS, Version 10.4.1; Environmental Systems Research Institute: Redlands, CA, USA, 2015.
- Tremblay, M.A.; St. Clair, C.C. Permeability of a Heterogeneous Urban Landscape to the Movements of Forest Songbirds. J. Appl. Ecol. 2011, 48, 679–688. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Siriwardena, G.M.; Plummer, K.E.; Harris, J.A. A Bird’s Eye View: Using Circuit Theory to Study Urban Landscape Connectivity for Birds. Landsc. Ecol. 2017, 32, 1771–1787. [Google Scholar] [CrossRef] [Green Version]
- Marzluff, J.M.; DeLap, J.H.; Oleyar, M.D.; Whittaker, K.A.; Gardner, B. Breeding Dispersal by Birds in a Dynamic Urban Ecosystem. PLoS ONE 2016, 11, 1–20. [Google Scholar] [CrossRef] [Green Version]
- McRae, B.; Kavanagh, D. Linkage Mapper Connectivity Analysis Software; The Nature Conservancy: Seattle, WA, USA, 2011. [Google Scholar]
- DeGraaf, R.M.; Tilghman, N.G.; Anderson, S.H. Foraging Guilds of North American Birds. Environ. Manage. 1985, 9, 493–536. [Google Scholar] [CrossRef]
- Ferenc, M.; Sedláček, O.; Fuchs, R. How to Improve Urban Greenspace for Woodland Birds: Site and Local-Scale Determinants of Bird Species Richness. Urban Ecosyst. 2014, 17, 625–640. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Dray, S.; Dufour, A.-B. The Ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography. 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Leathwick, J.R.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Greenwell, B.; Boehmke, B.; Cunningham, J.; GBM Developers. Gbm: Generalized Boosted Regression Models; R Package Version 2.1.8.1. 2020. Available online: https://CRAN.R-project.org/package=gbm (accessed on 1 September 2022).
- Hijmans, R.J.; Steven, P.; Leathwick, J.; Elith, J. Dismo: Species Distribution Modeling; R Package Version 1.3-9. 2017. Available online: https://CRAN.R-project.org/package=dismo (accessed on 1 September 2022).
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling; R Package Version 3.6-3. 2020. Available online: https://CRAN.R-project.org/package=raster (accessed on 1 September 2022).
- Møller, A.P.; Diaz, M.; Flensted-Jensen, E.; Grim, T.; Ibáñez-Álamo, J.D.; Jokimäki, J.; Mänd, R.; Markó, G.; Tryjanowski, P. High Urban Population Density of Birds Reflects Their Timing of Urbanization. Oecologia 2012, 170, 867–875. [Google Scholar] [CrossRef]
- Evens, R.; Beenaerts, N.; Neyens, T.; Witters, N.; Smeets, K.; Artois, T. Proximity of Breeding and Foraging Areas Affects Foraging Effort of a Crepuscular, Insectivorous Bird. Sci. Rep. 2018, 8, 3008. [Google Scholar] [CrossRef]
- Razeng, E.; Watson, D.M. Nutritional Composition of the Preferred Prey of Insectivorous Birds: Popularity Reflects Quality. J. Avian Biol. 2015, 46, 89–96. [Google Scholar] [CrossRef]
- Ares, A.; Neill, A.R.; Puettmann, K.J. Understory Abundance, Species Diversity and Functional Attribute Response to Thinning in Coniferous Stands. For. Ecol. Manage. 2010, 260, 1104–1113. [Google Scholar] [CrossRef]
- Whitaker, D.M.; Carroll, A.L.; Montevecchi, W.A. Elevated Numbers of Flying Insects and Insectivorous Birds in Riparian Buffer Strips. Can. J. Zool. 2000, 78, 740–747. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Foppen, R.P.B.; Van Turnhout, C.A.M.; De Kroon, H.; Jongejans, E. Declines in Insectivorous Birds Are Associated with High Neonicotinoid Concentrations. Nature 2014, 511, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Environment Canada. How Much Habitat Is Enough? 3rd ed.; Environment Canada: Toronto, ON, Canada, 2013.
- Schueler, T.R. The Importance of Imperviousness. Watershed Prot. Tech. 1994, 1, 100–111. [Google Scholar]
- Miller, S.G.; Knight, R.L.; Miller, C.K. Influence of Recreational Trails on Breeding Bird Communities. Ecol. Appl. 1998, 8, 162–169. [Google Scholar] [CrossRef]
- Keyser, A.J.; Hill, G.E.; Soehren, E.C. Effects of Forest Fragment Size, Nest Density, and Proximity to Edge on the Risk of Predation to Ground-Nesting Passerine Birds. Conserv. Biol. 1998, 12, 986–994. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Aronson, M.F.J.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; Macivor, J.S. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation. Bioscience 2017, 67, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B. Recreational Trails Reduce the Density of Ground-Dwelling Birds in Protected Areas. Environ. Manage. 2015, 55, 1181–1190. [Google Scholar] [CrossRef]
- Hazen, E.L.; Abrahms, B.; Brodie, S.; Carroll, G.; Welch, H.; Bograd, S.J. Where Did They Not Go? Considerations for Generating Pseudo-Absences for Telemetry-Based Habitat Models. Mov. Ecol. 2021, 9, 5. [Google Scholar] [CrossRef]
- Blair, R.R.B. Land Use and Avian Species Diversity along an Urban Gradient. Ecol. Appl. 1996, 6, 506–519. [Google Scholar] [CrossRef]
- Zurita, G.; Pe’er, G.; Bellocq, M.I.; Hansbauer, M.M. Edge Effects and Their Influence on Habitat Suitability Calculations: A Continuous Approach Applied to Birds of the Atlantic Forest. J. Appl. Ecol. 2012, 49, 503–512. [Google Scholar] [CrossRef]
- Possingham, H.; Ball, I.; Andelman, S. Mathematical Methods for Identifying Representative Reserve Network. In Quantitative Methods for Conservation Biology; Springer: New York, NY, USA, 2000; pp. 291–306. [Google Scholar]
- Dray, S.; Legendre, P. Testing the Species Traits Environment Relationships: The Fourth-Corner Problem Revisited. Ecology 2008, 89, 3400–3412. [Google Scholar] [CrossRef] [PubMed]
Functional Trait Group | Variable | Relative Influence |
---|---|---|
Aerial insectivore | LC_marsh | 39.7 |
LC_deciduous | 17.4 | |
C_local_forest | 5.5 | |
LC_swamp | 5.2 | |
LC_beach | 4.7 | |
LC_residential_lowmed | 4.4 | |
LC_woodland | 3.1 | |
C_regional_forest | 2.3 | |
LC_savannah | 2.1 | |
E_meadow | 2.0 | |
LC_thicket | 1.7 | |
C_local_wetland | 1.6 | |
P_wetland | 1.2 | |
LC_commercial | 1.1 | |
P_forest | 1.0 | |
Forest canopy | C_local_forest | 44.1 |
LC_deciduous | 41.6 | |
LC_marsh | 2.6 | |
LC_residential_lowmed | 1.9 | |
P_forest | 1.3 | |
LC_urbanforest | 1.0 | |
Forest insectivore | C_ local_forest | 59.6 |
LC_deciduous | 18.6 | |
LC_swamp | 4.7 | |
C_regional_forest | 3.7 | |
LC_marsh | 3.0 | |
LC_residential_lowmed | 2.3 | |
P_forest | 2.3 | |
LC_mixedforest | 1.9 | |
Ground-nesting | LC_mixedforest | 35.9 |
P_forest | 26.9 | |
C_local_forest | 22.5 | |
LC_urbanforest | 4.9 | |
C_regional_forest | 3.5 | |
LC_deciduous | 2.5 | |
LC_swamp | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chin, A.T.M.; Ruppert, J.L.W.; Shrestha, N.; Fortin, M.-J. Urban Avian Conservation Planning Using Species Functional Traits and Habitat Suitability Mapping. Land 2022, 11, 1831. https://doi.org/10.3390/land11101831
Chin ATM, Ruppert JLW, Shrestha N, Fortin M-J. Urban Avian Conservation Planning Using Species Functional Traits and Habitat Suitability Mapping. Land. 2022; 11(10):1831. https://doi.org/10.3390/land11101831
Chicago/Turabian StyleChin, Andrew Tim Man, Jonathan Leo William Ruppert, Namrata Shrestha, and Marie-Josée Fortin. 2022. "Urban Avian Conservation Planning Using Species Functional Traits and Habitat Suitability Mapping" Land 11, no. 10: 1831. https://doi.org/10.3390/land11101831