Climate Change and Natural Resource Scarcity: A Literature Review on Dry Farming
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. VOSviewer Analysis
- The Red cluster, titled “Farmer inclusion and policy interventions”;
- The Green cluster, titled “Potential adaptations to climate change”;
- The Blue cluster, titled “The resilience of arid areas”;
- The Yellow cluster, titled “A variety of indices”;
- The Purple cluster, titled “The multifunctionality of agricultural systems”.
3.1.1. Red Cluster: Farmer Inclusion and Policy Interventions
3.1.2. Green Cluster: Potential Adaptations to Climate Change
3.1.3. Blue Cluster: The Resilience of Arid Areas
3.1.4. Yellow Cluster: A Variety of Indices
3.1.5. Purple Cluster: The Multifunctionality of Agricultural Systems
4. Discussion
5. Conclusions
6. Policy Implications
7. Limitations and Directions for Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Journal | Number of Papers |
---|---|
Climatic Change | 6 |
Sustainability (Switzerland) | 6 |
Nature Communications | 4 |
Agricultural Systems | 3 |
Ecology and Society | 3 |
Environmental Research Letters | 3 |
Land Use Policy | 3 |
Agriculture, Ecosystems and Environment | 2 |
Current Opinion in Environmental Sustainability | 2 |
International Journal of Water Resources Development | 2 |
Journal of Ecology | 2 |
Land Degradation and Development | 2 |
Science of the Total Environment | 2 |
Water (Switzerland) | 2 |
Arid Land Research and Management | 1 |
Biogeochemistry | 1 |
Biology Letters | 1 |
Carbon Balance and Management | 1 |
Climate and Development | 1 |
Diversity | 1 |
Ecological Indicators | 1 |
Ecosystems | 1 |
Environmental Management | 1 |
European Journal of Soil Science | 1 |
Field Crops Research | 1 |
Forests | 1 |
Forests Trees and Livelihoods | 1 |
Frontiers in Ecology and The Environment | 1 |
Gcb Bioenergy | 1 |
Geoforum | 1 |
Heliyon | 1 |
Ids Bulletin | 1 |
International Journal of Agricultural Sustainability | 1 |
International Journal of Environmental Research and Public Health | 1 |
Journal of Applied Ecology | 1 |
Journal of Environmental Management | 1 |
New Phytologist | 1 |
Njas - Wageningen Journal of Life Sciences | 1 |
Remote Sensing of Environment | 1 |
Science | 1 |
Soil Biology and Biochemistry | 1 |
Theoretical and Applied Climatology | 1 |
Water Sa | 1 |
VOS Label | Authors | Title | Journal | Year | Cluster | Citations | Norm. Citations |
---|---|---|---|---|---|---|---|
Abrouk M. (2020) | Abrouk M.; Ahmed H.I.; Cubry P.; Šimoníková D.; Cauet S.; Pailles Y.; Bettgenhaeuser J.; Gapa L.; Scarcelli N.; Couderc M.; Zekraoui L.; Kathiresan N.; Čížková J.; Hřibová E.; Doležel J.; Arribat S.; Bergès H.; Wieringa J.J.; Gueye M.; Kane N.A.; Leclerc C.; Causse S.; Vancoppenolle S.; Billot C.; Wicker T.; Vigouroux Y.; Barnaud A.; Krattinger S.G. | Fonio Millet Genome Unlocks African Orphan Crop Diversity For Agriculture In A Changing Climate | Nature Communications, 11(1) | 2020 | Red | 26 | 15.089 |
Young G. (2009) | Young G.; Zavala H.; Wandel J.; Smit B.; Salas S.; Jimenez E.; Fiebig M.; Espinoza R.; Diaz H.; Cepeda J. | Vulnerability And Adaptation In A Dryland Community Of The Elqui Valley, Chile | Climatic Change, 98(1–2), 245–276 | 2009 | Red | 65 | 14.943 |
Manaye A. (2021) | Manaye A.; Tesfamariam B.; Tesfaye M.; Worku A.; Gufi Y. | Tree Diversity And Carbon Stocks In Agroforestry Systems In Northern Ethiopia | Carbon Balance And Management, 16(1) | 2021 | Red | 8 | 13.521 |
Villamor G.B. (2016) | Villamor G.B.; Badmos B.K. | Grazing Game: A Learning Tool For Adaptive Management In Response To Climate Variability In Semiarid Areas Of Ghana | Ecology And Society, 21(1) | 2016 | Red | 28 | 12.174 |
Endale Y. (2017) | Endale Y.; Derero A.; Argaw M.; Muthuri C. | Farmland Tree Species Diversity And Spatial Distribution Pattern In Semi-Arid East Shewa, Ethiopia | Forests Trees And Livelihoods, 26(3), 199–214 | 2017 | Red | 32 | 12.075 |
Moreno-Jiménez E. (2022) | Moreno-Jiménez E.; Orgiazzi A.; Jones A.; Saiz H.; Aceña-Heras S.; Plaza C. | Aridity And Geochemical Drivers Of Soil Micronutrient And Contaminant Availability In European Drylands | European Journal Of Soil Science, 73(1) | 2022 | Red | 1 | 11.667 |
Kattumuri R. (2017) | Kattumuri R.; Ravindranath D.; Esteves T. | Local Adaptation Strategies In Semi-Arid Regions: Study Of Two Villages In Karnataka, India | Climate And Development, 9(1), 36–49 | 2017 | Red | 27 | 10.189 |
Tui S.H.-K. (2021) | Tui S.H.-K.; Descheemaeker K.; Valdivia R.O.; Masikati P.; Sisito G.; Moyo E.N.; Crespo O.; Ruane A.C.; Rosenzweig C. | Climate Change Impacts And Adaptation For Dryland Farming Systems In Zimbabwe: A Stakeholder-Driven Integrated Multi-Model Assessment | Climatic Change, 168(1–2) | 2021 | Red | 6 | 10.141 |
Scoones I. (2004) | Scoones I. | Climate Change And The Challenge Of Non-Equilibrium Thinking | Ids Bulletin, 35(3), 114–119 | 2004 | Red | 29 | 1 |
Weston P. (2015) | Weston P.; Hong R.; Kaboré C.; Kull C.A. | Farmer-Managed Natural Regeneration Enhances Rural Livelihoods In Dryland West Africa | Environmental Management, 55(6), 1402–1417 | 2015 | Red | 50 | 0.9363 |
Antwi-Agyei P. (2015) | Antwi-Agyei P.; Dougill A.J.; Stringer L.C. | Impacts Of Land Tenure Arrangements On The Adaptive Capacity Of Marginalized Groups: The Case Of Ghana’s Ejura Sekyedumase And Bongo Districts | Land Use Policy, 49, 203–212 | 2015 | Red | 41 | 0.7678 |
Sun Y. (2021) | Sun Y.; Sun Y.; Yao S.; Akram M.A.; Hu W.; Dong L.; Li H.; Wei M.; Gong H.; Xie S.; Aqeel M.; Ran J.; Degen A.A.; Guo Q.; Deng J. | Impact Of Climate Change On Plant Species Richness Across Drylands In China: From Past To Present And Into The Future | Ecological Indicators, 132 | 2021 | Red | 4 | 0.6761 |
Recha J.W. (2016) | Recha J.W.; Mati B.M.; Nyasimi M.; Kimeli P.K.; Kinyangi J.M.; Radeny M. | Changing Rainfall Patterns And Farmers’ Adaptation Through Soil Water Management Practices In Semi-Arid Eastern Kenya | Arid Land Research And Management, 30(3), 229–238 | 2016 | Red | 15 | 0.6522 |
Kalame F.B. (2011) | Kalame F.B.; Luukkanen O.; Kanninen M. | Making The National Adaptation Programme Of Action (Napa) More Responsive To The Livelihood Needs Of Tree Planting Farmers, Drawing On Previous Experience In Dryland Sudan | Forests, 2(4), 948–960 | 2011 | Red | 5 | 0.4762 |
Ndhleve S. (2017) | Ndhleve S.; Nakin M.D.V.; Longo-Mbenza B. | Impacts Of Supplemental Irrigation As A Climate Change Adaptation Strategy For Maize Production: A Case Of The Eastern Cape Province Of South Africa | Water Sa, 43(2), 222–228 | 2017 | Red | 12 | 0.4528 |
Galvin K.A. (2021) | Galvin K.A. | Transformational Adaptation In Drylands | Current Opinion In Environmental Sustainability, 50, 64–71 | 2021 | Red | 2 | 0.338 |
Arficho M. (2020) | Arficho M.; Thiel A. | Does Land-Use Policy Moderate Impacts Of Climate Anomalies On Lulc Change In Dry-Lands? An Empirical Enquiry Into Drivers And Moderators Of Lulc Change In Southern Ethiopia | Sustainability (Switzerland), 12(15) | 2020 | Red | 4 | 0.2321 |
Mulligan M. (2015) | Mulligan M. | Climate Change And Food-Water Supply From Africa’s Drylands: Local Impacts And Teleconnections Through Global Commodity Flows | International Journal Of Water Resources Development, 31(3), 450–460 | 2015 | Red | 5 | 0.0936 |
Gebru K.M. (2020) | Gebru K.M.; Woldearegay K.; Van Steenbergen F.; Beyene A.; Vera L.F.; Gebreegziabher K.T.; Alemayhu T. | Adoption Of Road Water Harvesting Practices And Their Impacts: Evidence From A Semi-Arid Region Of Ethiopia | Sustainability (Switzerland), 12(21), 1–25 | 2020 | Red | 1 | 0.058 |
Chanza N. (2022) | Chanza N.; Musakwa W. | Ecological And Hydrological Indicators Of Climate Change Observed By Dryland Communities Of Malipati In Chiredzi, Zimbabwe | Diversity, 14(7) | 2022 | Red | 0 | 0 |
Samuel J. (2022) | Samuel J.; Rao C.A.R.; Raju B.M.K.; Reddy A.A.; Pushpanjali, Reddy A.G.K.; Kumar R.N.; Osman M.; Singh V.K.; Prasad J.V.N.S. | Assessing The Impact Of Climate Resilient Technologies In Minimizing Drought Impacts On Farm Incomes In Drylands | Sustainability (Switzerland), 14(1) | 2022 | Red | 0 | 0 |
Hassani A. (2021) | Hassani A.; Azapagic A.; Shokri N. | Global Predictions Of Primary Soil Salinization Under Changing Climate In The 21st Century | Nature Communications, 12(1) | 2021 | Green | 18 | 30.423 |
Cotterman K.A. (2018) | Cotterman K.A.; Kendall A.D.; Basso B.; Hyndman D.W. | Groundwater Depletion And Climate Change: Future Prospects Of Crop Production In The Central High Plains Aquifer | Climatic Change, 146(1–2), 187–200 | 2018 | Green | 43 | 22.114 |
Macfadyen S. (2018) | Macfadyen S.; Mcdonald G.; Hill M.P. | From Species Distributions To Climate Change Adaptation: Knowledge Gaps In Managing Invertebrate Pests In Broad-Acre Grain Crops | Agriculture, Ecosystems And Environment, 253, 208–219 | 2018 | Green | 34 | 17.486 |
Tack J. (2017) | Tack J.; Barkley A.; Hendricks N. | Irrigation Offsets Wheat Yield Reductions From Warming Temperatures | Environmental Research Letters, 12(11) | 2017 | Green | 45 | 16.981 |
Stöckle C.O. (2018) | Stöckle C.O.; Higgins S.; Nelson R.; Abatzoglou J.; Huggins D.; Pan W.; Karimi T.; Antle J.; Eigenbrode S.D.; Brooks E. | Evaluating Opportunities For An Increased Role Of Winter Crops As Adaptation To Climate Change In Dryland Cropping Systems Of The U.S. Inland Pacific Northwest | Climatic Change, 146(1–2), 247–261 | 2018 | Green | 33 | 16.971 |
Thamo T. (2017) | Thamo T.; Addai D.; Pannell D.J.; Robertson M.J.; Thomas D.T.; Young J.M. | Climate Change Impacts And Farm-Level Adaptation: Economic Analysis Of A Mixed Cropping–Livestock System | Agricultural Systems, 150, 99–108 | 2017 | Green | 41 | 15.472 |
Luo Y. (2020) | Luo Y.; Zhang Z.; Li Z.; Chen Y.; Chen Y.; Zhang L.; Cao J.; Tao F.; Tao F. | Identifying The Spatiotemporal Changes Of Annual Harvesting Areas For Three Staple Crops In China By Integrating Multi-Data Sources | Environmental Research Letters, 15(7) | 2020 | Green | 25 | 14.509 |
Yang C. (2019) | Yang C.; Fraga H.; Van Ieperen W.; Trindade H.; Santos J.A. | Effects Of Climate Change And Adaptation Options On Winter Wheat Yield Under Rainfed Mediterranean Conditions In Southern Portugal | Climatic Change, 154(1–2), 159–178 | 2019 | Green | 39 | 12.857 |
Ghahramani A. (2016) | Ghahramani A.; Moore A.D. | Impact Of Climate Changes On Existing Crop-Livestock Farming Systems | Agricultural Systems, 146, 142–155 | 2016 | Green | 26 | 11.304 |
Karimi T. (2021) | Karimi T.; Stöckle C.O.; Higgins S.S.; Nelson R.L. | Impact Of Climate Change On Greenhouse Gas Emissions And Water Balance In A Dryland-Cropping Region With Variable Precipitation | Journal Of Environmental Management, 287 | 2021 | Green | 6 | 10.141 |
Asseng S. (2013) | Asseng S.; Pannell D.J. | Adapting Dryland Agriculture To Climate Change: Farming Implications And Research And Development Needs In Western Australia | Climatic Change, 118(2), 167–181 | 2013 | Green | 53 | 1 |
Monjardino M. (2010) | Monjardino M.; Revell D.; Pannell D.J. | The Potential Contribution Of Forage Shrubs To Economic Returns And Environmental Management In Australian Dryland Agricultural Systems | Agricultural Systems, 103(4), 187–197 | 2010 | Green | 39 | 1 |
Shayanmehr S. (2020) | Shayanmehr S.; Henneberry S.R.; Sabouni M.S.; Foroushani N.S. | Drought, Climate Change, And Dryland Wheat Yield Response: An Econometric Approach | International Journal Of Environmental Research And Public Health, 17(14), 1–18 | 2020 | Green | 14 | 0.8125 |
Antle J.M. (2018) | Antle J.M.; Zhang H.; Mu J.E.; Abatzoglou J.; Stöckle C. | Methods To Assess Between-System Adaptations To Climate Change: Dryland Wheat Systems In The Pacific Northwest United States | Agriculture, Ecosystems And Environment, 253, 195–207 | 2018 | Green | 15 | 0.7714 |
Lawrence P.G. (2018) | Lawrence P.G.; Maxwell B.D.; Rew L.J.; Ellis C.; Bekkerman A. | Vulnerability Of Dryland Agricultural Regimes To Economic And Climatic Change | Ecology And Society, 23(1) | 2018 | Green | 13 | 0.6686 |
Zhang H. (2018) | Zhang H.; Mu J.E.; Mccarl B.A. | Adaptation To Climate Change Via Adjustment In Land Leasing: Evidence From Dryland Wheat Farms In The U.S. Pacific Northwest | Land Use Policy, 79, 424–432 | 2018 | Green | 3 | 0.1543 |
Burrell A.L. (2020) | Burrell A.L.; Evans J.P.; De Kauwe M.G. | Anthropogenic Climate Change Has Driven Over 5 Million Km2 Of Drylands Towards Desertification | Nature Communications, 11(1) | 2020 | Blue | 77 | 44.688 |
Smith W.K. (2019) | Smith W.K.; Dannenberg M.P.; Yan D.; Herrmann S.; Barnes M.L.; Barron-Gafford G.A.; Biederman J.A.; Ferrenberg S.; Fox A.M.; Hudson A.; Knowles J.F.; Macbean N.; Moore D.J.P.; Nagler P.L.; Reed S.C.; Rutherford W.A.; Scott R.L.; Wang X.; Yang J. | Remote Sensing Of Dryland Ecosystem Structure And Function: Progress, Challenges, And Opportunities | Remote Sensing Of Environment, 233 | 2019 | Blue | 107 | 35.275 |
Bonachela J.A. (2015) | Bonachela J.A.; Pringle R.M.; Sheffer E.; Coverdale T.C.; Guyton J.A.; Caylor K.K.; Levin S.A.; Tarnita C.E. | Termite Mounds Can Increase The Robustness Of Dryland Ecosystems To Climatic Change | Science, 347(6222), 651–655 | 2015 | Blue | 147 | 27.528 |
Twyman C. (2011) | Twyman C.; Fraser E.D.G.; Stringer L.C.; Quinn C.; Dougill A.J.; Ravera F.; Crane T.A.; Sallu S.M. | Climate Science, Development Practice, And Policy Interactions In Dryland Agroecological Systems | Ecology And Society, 16(3), 19 | 2011 | Blue | 16 | 15.238 |
Kusch E. (2022) | Kusch E.; Davy R.; Seddon A.W.R. | Vegetation-Memory Effects And Their Association With Vegetation Resilience In Global Drylands | Journal Of Ecology, 110(7), 1561–1574 | 2022 | Blue | 1 | 11.667 |
Cai L. (2022) | Cai L.; Wang H.; Liu Y.; Fan D.; Li X. | Is Potential Cultivated Land Expanding Or Shrinking In The Dryland Of China? Spatiotemporal Evaluation Based On Remote Sensing And Svm | Land Use Policy, 112 | 2022 | Blue | 1 | 11.667 |
He L. (2021) | He L.; Li Z.-L.; Wang X.; Xie Y.; Ye J.-S. | Lagged Precipitation Effect On Plant Productivity Is Influenced Collectively By Climate And Edaphic Factors In Drylands | Science Of The Total Environment, 755 | 2021 | Blue | 6 | 10.141 |
Gaitán J.J. (2014) | Gaitán J.J.; Bran D.; Oliva G.; Maestre F.T.; Aguiar M.R.; Jobbagy E.; Buono G.; Ferrante D.; Nakamatsu V.; Ciari G.; Salomone J.; Massara V. | Plant Species Richness And Shrub Cover Attenuate Drought Effects On Ecosystem Functioning Across Patagonian Rangelands | Biology Letters, 10(10) | 2014 | Blue | 17 | 1 |
Pervez Bharucha Z. (2021) | Pervez Bharucha Z.; Attwood S.; Badiger S.; Balamatti A.; Bawden R.; Bentley J.W.; Chander M.; Davies L.; Dixon H.; Dixon J.; D’souza M.; Butler Flora C.; Green M.; Joshi D.; Komarek A.M.; Ruth Mcdermid L.; Mathijs E.; Rola A.C.; Patnaik S.; Pattanayak S.; Pingali P.; Vara Prasad V.P.; Rabbinge R.; Ramanjaneyulu G.V.; Ravindranath N.H.; Sage C.; Saha A.; Salvatore C.; Patnaik Saxena L.; Singh C.; Smith P.; Srinidhi A.; Sugam R.; Thomas R.; Uphoff N.; Pretty J. | The Top 100 Questions For The Sustainable Intensification Of Agriculture In India’s Rainfed Drylands | International Journal Of Agricultural Sustainability, 19(2), 106–127 | 2021 | Blue | 4 | 0.6761 |
Gaitán J.J. (2019) | Gaitán J.J.; Maestre F.T.; Bran D.E.; Buono G.G.; Dougill A.J.; García Martínez G.; Ferrante D.; Guuroh R.T.; Linstädter A.; Massara V.; Thomas A.D.; Oliva G.E. | Biotic And Abiotic Drivers Of Topsoil Organic Carbon Concentration In Drylands Have Similar Effects At Regional And Global Scales | Ecosystems, 22(7), 1445–1456 | 2019 | Blue | 15 | 0.4945 |
Browning D.M. (2015) | Browning D.M.; Rango A.; Karl J.W.; Laney C.M.; Vivoni E.R.; Tweedie C.E. | Emerging Technological And Cultural Shifts Advancing Drylands Research And Management | Frontiers In Ecology And The Environment, 13(1), 52–60 | 2015 | Blue | 24 | 0.4494 |
Kwiecinski J.V. (2020) | Kwiecinski J.V.; Stricker E.; Sinsabaugh R.L.; Collins S.L. | Rainfall Pulses Increased Short-Term Biocrust Chlorophyll But Not Fungal Abundance Or N Availability In A Long-Term Dryland Rainfall Manipulation Experiment | Soil Biology And Biochemistry, 142 | 2020 | Blue | 7 | 0.4062 |
Stavi I. (2021) | Stavi I.; Yizhaq H.; Szitenberg A.; Zaady E. | Patch-Scale To Hillslope-Scale Geodiversity Alleviates Susceptibility Of Dryland Ecosystems To Climate Change: Insights From The Israeli Negev | Current Opinion In Environmental Sustainability, 50, 129–137 | 2021 | Blue | 2 | 0.338 |
Schreiner-Mcgraw A.P. (2019) | Schreiner-Mcgraw A.P.; Ajami H.; Vivoni E.R. | Extreme Weather Events And Transmission Losses In Arid Streams | Environmental Research Letters, 14(8) | 2019 | Blue | 8 | 0.2637 |
Bharucha Z.P. (2019) | Bharucha Z.P. | This Is What Nature Has Become: Tracing Climate And Water Narratives In India’s Rainfed Drylands | Geoforum, 101, 285–293 | 2019 | Blue | 7 | 0.2308 |
Zhang Y. (2022) | Zhang Y.; Gentine P.; Luo X.; Lian X.; Liu Y.; Zhou S.; Michalak A.M.; Sun W.; Fisher J.B.; Piao S.; Keenan T.F. | Increasing Sensitivity Of Dryland Vegetation Greenness To Precipitation Due To Rising Atmospheric Co2 | Nature Communications, 13(1) | 2022 | Blue | 0 | 0 |
Delgado-Baquerizo M. (2018) | Delgado-Baquerizo M.; Maestre F.T.; Eldridge D.J.; Bowker M.A.; Jeffries T.C.; Singh B.K. | Biocrust-Forming Mosses Mitigate The Impact Of Aridity On Soil Microbial Communities In Drylands: Observational Evidence From Three Continents | New Phytologist, 220(3), 824–835 | 2018 | Yellow | 30 | 15.429 |
Baldauf S. (2021) | Baldauf S.; Porada P.; Raggio J.; Maestre F.T.; Tietjen B. | Relative Humidity Predominantly Determines Long-Term Biocrust-Forming Lichen Cover In Drylands Under Climate Change | Journal Of Ecology, 109(3), 1370–1385 | 2021 | Yellow | 8 | 13.521 |
Eldridge D.J. (2020) | Eldridge D.J.; Delgado-Baquerizo M.; Quero J.L.; Ochoa V.; Gozalo B.; García-Palacios P.; Escolar C.; García-Gómez M.; Prina A.; Bowker M.A.; Bran D.E.; Castro I.; Cea A.; Derak M.; Espinosa C.I.; Florentino A.; Gaitán J.J.; Gatica G.; Gómez-González S.; Ghiloufi W.; Gutierrez J.R.; Gusmán-Montalván E.; Hernández R.M.; Hughes F.M.; Muiño W.; Monerris J.; Ospina A.; Ramírez D.A.; Ribas-Fernández Y.A.; Romão R.L.; Torres-Díaz C.; Koen T.B.; Maestre F.T. | Surface Indicators Are Correlated With Soil Multifunctionality In Global Drylands | Journal Of Applied Ecology, 57(2), 424–435 | 2020 | Yellow | 21 | 12.188 |
Krichels A.H. (2022) | Krichels A.H.; Homyak P.M.; Aronson E.L.; Sickman J.O.; Botthoff J.; Shulman H.; Piper S.; Andrews H.M.; Jenerette G.D. | Rapid Nitrate Reduction Produces Pulsed No And N2o Emissions Following Wetting Of Dryland Soils | Biogeochemistry, 158(2), 233–250 | 2022 | Yellow | 3 | 3.5 |
Delgado-Baquerizo M. (2020) | Delgado-Baquerizo M.; Doulcier G.; Eldridge D.J.; Stouffer D.B.; Maestre F.T.; Wang J.; Powell J.R.; Jeffries T.C.; Singh B.K. | Increases In Aridity Lead To Drastic Shifts In The Assembly Of Dryland Complex Microbial Networks | Land Degradation And Development, 31(3), 346–355 | 2020 | Yellow | 15 | 0.8705 |
Liang C. (2020) | Liang C.; Chen T.; Dolman H.; Shi T.; Wei X.; Xu J.; Hagan D.F.T. | Drying And Wetting Trends And Vegetation Covariations In The Drylands Of China | Water (Switzerland), 12(4) | 2020 | Yellow | 6 | 0.3482 |
Tfwala C.M. (2021) | Tfwala C.M.; Mengistu A.G.; Ukoh Haka I.B.; Van Rensburg L.D.; Du Preez C.C. | Seasonal Variations Of Transpiration Efficiency Coefficient Of Irrigated Wheat | Heliyon, 7(2) | 2021 | Yellow | 2 | 0.338 |
Suich H. (2017) | Suich H.; Boardman J. | Wheat Growing And Changing Farming Systems In South African Dryland Margins: The Case Of The Sneeuberg, South Africa | Land Degradation And Development, 28(1), 57–64 | 2017 | Yellow | 2 | 0.0755 |
Brendel A.S. (2020) | Brendel A.S.; Del Barrio R.A.; Mora F.; León E.A.O.; Flores J.R.; Campoy J.A. | Current Agro-Climatic Potential Of Patagonia Shaped By Thermal And Hydric Patterns | Theoretical And Applied Climatology, 142(3–4), 855–868 | 2020 | Yellow | 1 | 0.058 |
Hansen N.C. (2012) | Hansen N.C.; Allen B.L.; Baumhardt R.L.; Lyon D.J. | Research Achievements And Adoption Of No-Till, Dryland Cropping In The Semi-Arid U.S. Great Plains | Field Crops Research, 132, 196–203 | 2012 | Purple | 122 | 1 |
Harper R.J. (2014) | Harper R.J.; Sochacki S.J.; Smettem K.R.J.; Robinson N. | Managing Water In Agricultural Landscapes With Short-Rotation Biomass Plantations | Gcb Bioenergy, 6(5), 544–555 | 2014 | Purple | 17 | 1 |
Wang E. (2009) | Wang E.; Cresswell H.; Bryan B.; Glover M.; King D. | Modelling Farming Systems Performance At Catchment And Regional Scales To Support Natural Resource Management | Njas - Wageningen Journal Of Life Sciences, 57(1), 101–108 | 2009 | Purple | 22 | 0.5057 |
Hart B. (2020) | Hart B.; Walker G.; Katupitiya A.; Doolan J. | Salinity Management In The Murray-Darling Basin, Australia | Water (Switzerland), 12(6) | 2020 | Purple | 8 | 0.4643 |
Acharya P. (2019) | Acharya P.; Biradar C.; Louhaichi M.; Ghosh S.; Hassan S.; Moyo H.; Sarker A. | Finding A Suitable Niche For Cultivating Cactus Pear (Opuntia Ficus-Indica) As An Integrated Crop In Resilient Dryland Agroecosystems Of India | Sustainability (Switzerland), 11(21) | 2019 | Purple | 6 | 0.1978 |
Wang Y. (2018) | Wang Y.; Gao F.; Yang J.; Zhao J.; Wang X.; Gao G.; Zhang R.; Jia Z. | Spatio-Temporal Variation In Dryland Wheat Yield In Northern Chinese Areas: Relationship With Precipitation, Temperature And Evapotranspiration | Sustainability (Switzerland), 10(12) | 2018 | Purple | 3 | 0.1543 |
References
- Stanciu, S.; Virlanuta, F.O.; Dinu, V.; Zungun, D.; Antohi, V.M. The perception of the social economy by agricultural producers in the north-east development region of Romania. Transform. Bus. Econ. 2019, 18, 879–899. [Google Scholar]
- Volkov, A.; Žičkienė, A.; Morkunas, M.; Baležentis, T.; Ribašauskienė, E.; Streimikiene, D. A Multi-Criteria Approach for Assessing the Economic Resilience of Agriculture: The Case of Lithuania. Sustainability 2021, 13, 2370. [Google Scholar] [CrossRef]
- Marinov, P. Index of localization of agricultural holdings and employees in the rural areas of the south central region for Bulgaria. Bulg. J. Agric. Sci. 2019, 25, 464–467. [Google Scholar]
- Conceição, P.; Levine, S.; Lipton, M.; Warren-Rodríguez, A. Toward a food secure future: Ensuring food security for sustainable human development in Sub-Saharan Africa. Food Policy 2016, 60, 1–9. [Google Scholar] [CrossRef]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate Extremes: Observations, Modeling, and Impacts. Science 2019, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.; Bausch, C. Climate Change and Natural Disasters: Scientific evidence of a possible relation between recent natural disasters and climate change. Policy Dep. Econ. Sci. Policy 2006, 2, 1–30. [Google Scholar]
- Anjum, S.A.; Farooq, M.; Xie, X.-Y.; Liu, X.-J.; Ijaz, M.F. Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci. Hortic. 2012, 140, 66–73. [Google Scholar] [CrossRef]
- Johnson, J.M.-F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef]
- Sarker, A.R.; Alam, K.; Gow, J. Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data. Agric. Syst. 2012, 112, 11–16. [Google Scholar] [CrossRef]
- Ghahramani, A.; Moore, A.D. Impact of climate changes on existing crop-livestock farming systems. Agric. Syst. 2016, 146, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Bagula, E.M.; Majaliwa, J.G.M.; Mushagalusa, G.N.; Basamba, T.A.; Tumuhairwe, J.-B.; Mondo, J.-G.M.; Musinguzi, P.; Mwimangire, C.B.; Chuma, G.B.; Egeru, A.; et al. Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo. Land 2022, 11, 1409. [Google Scholar] [CrossRef]
- Cabrera, J.S.; Lee, H.S. Impacts of Climate Change on Flood-Prone Areas in Davao Oriental, Philippines. Water 2018, 10, 893. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.C. Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. J. Exp. Bot. 2004, 55, 2413–2425. [Google Scholar] [CrossRef] [PubMed]
- International Center for Agriculture Research in the Dry Areas ICARDA ICARDA’s New Strategic Plan 2017-2026 Highlights Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA). 2017. Available online: https://repo.mel.cgiar.org/handle/20.500.11766/8235 (accessed on 13 October 2022).
- Seckler, D.; Barker, R.; Amarasinghe, U. Water Scarcity in the Twenty-first Century. Int. J. Water Resour. Dev. 1999, 15, 29–42. [Google Scholar] [CrossRef]
- Samuel, J.; Rao, C.A.R.; Raju, B.M.K.; Reddy, A.A.; Pushpanjali; Reddy, A.G.K.; Kumar, R.N.; Osman, M.; Singh, V.K.; Prasad, J.V.N.S. Assessing the Impact of Climate Resilient Technologies in Minimizing Drought Impacts on Farm Incomes in Drylands. Sustainability 2021, 14, 382. [Google Scholar] [CrossRef]
- Sadiku, M.N.O.; Ashaolu, T.J.; Musa, S.M. Emerging Technologies in Agriculture. Int. J. Sci. Adv. 2020, 1, 31–34. [Google Scholar] [CrossRef]
- Tui, S.H.-K.; Descheemaeker, K.; Valdivia, R.O.; Masikati, P.; Sisito, G.; Moyo, E.N.; Crespo, O.; Ruane, A.C.; Rosenzweig, C. Climate change impacts and adaptation for dryland farming systems in Zimbabwe: A stakeholder-driven integrated multi-model assessment. Clim. Chang. 2021, 168, 10. [Google Scholar] [CrossRef]
- Ahmed, M.; Hayat, R.; Ahmad, M.; Ul-Hassan, M.; Kheir, A.M.S.; Ul-Hassan, F.; Ur-Rehman, M.H.; Shaheen, F.A.; Raza, M.A.; Ahmad, S. Impact of Climate Change on Dryland Agricultural Systems: A Review of Current Status, Potentials, and Further Work Need. Int. J. Plant Prod. 2022, 16, 341–363. [Google Scholar] [CrossRef]
- ECA. European Court of Auditors; Desertification in the EU. 15 June 2018. Available online: https://www.eca.europa.eu/Lists/ECADocuments/BP_DESERTIFICATION/BP_DESERTIFICATION_EN.pdf (accessed on 13 October 2022).
- European Parliament and of the Council, Regulation (EU) No 1305/2013 of 17 December 2013 on Support for Rural Development. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32013R1305 (accessed on 13 October 2022).
- Espejo-Pérez, A.J.; Rodríguez-Lizana, A.; Ordóñez, R.; Giráldez, J.V. Soil Loss and Runoff Reduction in Olive-Tree Dry-Farming with Cover Crops. Soil Sci. Soc. Am. J. 2013, 77, 2140–2148. [Google Scholar] [CrossRef] [Green Version]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Santeramo, F.G.; Miljkovic, D.; Lamonaca, E. Agri-food trade and climate change. Econ. Agro-Aliment. 2021, 23, 1–18. [Google Scholar] [CrossRef]
- Weston, P.; Hong, R.; Kaboré, C.; Kull, C.A. Farmer-Managed Natural Regeneration Enhances Rural Livelihoods in Dryland West Africa. Environ. Manag. 2015, 55, 1402–1417. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, J.; Gartzia, R.; Alcalá, F.J.; Martínez-Valderrama, J. The Importance of Prevention in Tackling Desertification: An Approach to Anticipate Risks of Degradation in Coastal Aquifers. Land 2022, 11, 1626. [Google Scholar] [CrossRef]
- Recha, J.W.; Mati, B.M.; Nyasimi, M.; Kimeli, P.K.; Kinyangi, J.M.; Radeny, M. Changing rainfall patterns and farmers’ adaptation through soil water management practices in semi-arid eastern Kenya. Arid Land Res. Manag. 2016, 30, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Galvin, K.A. Transformational adaptation in drylands. Curr. Opin. Environ. Sustain. 2021, 50, 64–71. [Google Scholar] [CrossRef]
- Haileslassie, A.; Craufurd, P.; Thiagarajah, R.; Kumar, S.; Whitbread, A.; Rathor, A.; Blummel, M.; Ericsson, P.; Kakumanu, K.R. Empirical evaluation of sustainability of divergent farms in the dryland farming systems of India. Ecol. Indic. 2016, 60, 710–723. [Google Scholar] [CrossRef] [Green Version]
- Shayanmehr, S.; Henneberry, S.R.; Sabouni, M.S.; Foroushani, N.S. Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity. Sustainability 2020, 12, 9890. [Google Scholar] [CrossRef]
- Gao, Y.; Wong, S.L.; Khambari, M.N.M.; Noordin, N. A bibliometric analysis of online faculty professional development in higher education. Res. Pract. Technol. Enhanc. Learn. 2022, 17, 17. [Google Scholar] [CrossRef]
- Del Río-Rama, M.; Maldonado-Erazo, C.; Álvarez-García, J.; Durán-Sánchez, A. Cultural and Natural Resources in Tourism Island: Bibliometric Mapping. Sustainability 2020, 12, 724. [Google Scholar] [CrossRef] [Green Version]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29, e290103. [Google Scholar] [CrossRef] [Green Version]
- Manaye, A.; Tesfamariam, B.; Tesfaye, M.; Worku, A.; Gufi, Y. Tree diversity and carbon stocks in agroforestry systems in northern Ethiopia. Carbon Balance Manag. 2021, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Abrouk, M.; Ahmed, H.I.; Cubry, P.; Šimoníková, D.; Cauet, S.; Pailles, Y.; Bettgenhaeuser, J.; Gapa, L.; Scarcelli, N.; Couderc, M.; et al. Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nat. Commun. 2020, 11, 4488. [Google Scholar] [CrossRef] [PubMed]
- Barnaud, A.; Vigouroux, Y.; Diallo, M.T.; Saidou, S.I.; Piquet, M.; Barry, M.B.; Bakasso, Y.; Zekraoui, L.; Rivallan, R.; Kane, N.A.; et al. High selfing rate inferred for white fonio [Digitaria exilis (Kippist.) Stapf] reproductive system opens up opportunities for breeding programs. Genet. Resour. Crop Evol. 2017, 64, 1485–1490. [Google Scholar] [CrossRef]
- Ayenan, M.A.T.; Sodedji, K.A.F.; Nwankwo, C.I.; Olodo, K.F.; Alladassi, M.E.B. Harnessing genetic resources and progress in plant genomics for fonio (Digitaria spp.) improvement. Genet. Resour. Crop Evol. 2017, 65, 373–386. [Google Scholar] [CrossRef]
- Adoukonou-Sagbadja, H.; Wagner, C.; Ordon, F.; Friedt, W. Reproductive system and molecular phylogenetic relationships of fonio millets (Digitaria spp., Poaceae) with some polyploid wild relatives. Trop. Plant Biol. 2010, 3, 240–251. [Google Scholar] [CrossRef]
- Antwi-Agyei, P.; Dougill, A.J.; Stringer, L.C. Impacts of land tenure arrangements on the adaptive capacity of marginalized groups: The case of Ghana’s Ejura Sekyedumase and Bongo districts. Land Use Policy 2015, 49, 203–212. [Google Scholar] [CrossRef]
- Arficho, M.; Thiel, A. Does Land-Use Policy Moderate Impacts of Climate Anomalies on LULC Change in Dry-Lands? An Empirical Enquiry into Drivers and Moderators of LULC Change in Southern Ethiopia. Sustainability 2020, 12, 6261. [Google Scholar] [CrossRef]
- Villamor, G.B.; Badmos, B.K. Grazing game: A learning tool for adaptive management in response to climate variability in semiarid areas of Ghana. Ecol. Soc. 2016, 21, 1. [Google Scholar] [CrossRef] [Green Version]
- Kalame, F.B.; Luukkanen, O.; Kanninen, M. Making the National Adaptation Programme of Action (NAPA) More Responsive to the Livelihood Needs of Tree Planting Farmers, Drawing on Previous Experience in Dryland Sudan. Forests 2011, 2, 948–960. [Google Scholar] [CrossRef] [Green Version]
- Samaké, O.; Dakouo, J.M.; Kalinganire, A.; Bayala, J.; Koné, B. Régénération naturelle assistée Gestion des arbres champêtres au Sahel. In ICRAF Technical Manual; World Agroforestry Centre: Nairobi, Kenya, 2011. [Google Scholar]
- Young, G.; Zavala, H.; Wandel, J.; Smit, B.; Salas, S.; Jimenez, E.; Fiebig, M.; Espinoza, R.; Diaz, H.; Cepeda, J. Vulnerability and adaptation in a dryland community of the Elqui Valley, Chile. Clim. Chang. 2009, 98, 245–276. [Google Scholar] [CrossRef] [Green Version]
- Endale, Y.; Derero, A.; Argaw, M.; Muthuri, C. Farmland tree species diversity and spatial distribution pattern in semi-arid East Shewa, Ethiopia. For. Trees Livelihoods 2016, 26, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Sun, Y.; Yao, S.; Akram, M.A.; Hu, W.; Dong, L.; Li, H.; Wei, M.; Gong, H.; Xie, S.; et al. Impact of climate change on plant species richness across drylands in China: From past to present and into the future. Ecol. Indic. 2021, 132, 108288. [Google Scholar] [CrossRef]
- Franzel, S. Socioeconomic factors affecting the adoption potential of improved tree fallows in Africa. Agrofor. Syst. 1999, 47, 305–321. [Google Scholar] [CrossRef]
- Cunningham, P.; Abasse, T. Reforesting the Sahel: Farmer managed natural regeneration. In Domestication Des Espèces Agroforestières Au Sahel: Situation Actuelle et Perspectives; Kalinganire, A., Niang, A., Koné, B., Eds.; ICRAF Working Paper; World Agroforestry Centre: Nairobi, Kenya, 2005; pp. 75–80. [Google Scholar]
- Thorlakson, T.; Neufeldt, H. Reducing subsistence farmers’ vulnerability to climate change: Evaluating the potential contri- butions of agroforestry in western Kenya. Agric Food Secur. 2012, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Reij, C.; Smaling, E. Analyzing successes in agriculture and land management in Sub-Saharan Africa: Is macro-level gloom obscuring positive micro-level change? Land Use Policy 2008, 25, 410–420. [Google Scholar] [CrossRef]
- Brown, D.R.; Dettmann, P.; Rinaudo, T.; Tefera, H.; Tofu, A. Poverty alleviation and environmental restoration using the clean devel- opment mechanism: A case study from Humbo, Ethiopia. Environ Manag. 2011, 48, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Gebru, K.; Woldearegay, K.; Van Steenbergen, F.; Beyene, A.; Vera, L.; Gebreegziabher, K.T.; Alemayhu, T. Adoption of Road Water Harvesting Practices and Their Impacts: Evidence from a Semi-Arid Region of Ethiopia. Sustainability 2020, 12, 8914. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Li, Z.; Chen, Y.; Zhang, L.; Cao, J.; Tao, F. Identifying the spatiotemporal changes of annual harvesting areas for three staple crops in China by integrating multi-data sources. Environ. Res. Lett. 2020, 15, 074003. [Google Scholar] [CrossRef]
- Monjardino, M.; Revell, D.; Pannell, D. The potential contribution of forage shrubs to economic returns and environmental management in Australian dryland agricultural systems. Agric. Syst. 2010, 103, 187–197. [Google Scholar] [CrossRef]
- Yang, C.; Fraga, H.; van Ieperen, W.; Trindade, H.; Santos, J.A. Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal. Clim. Chang. 2019, 154, 159–178. [Google Scholar] [CrossRef] [Green Version]
- Hansen, N.C.; Allen, B.L.; Baumhardt, R.; Lyon, D.J. Research achievements and adoption of no-till, dryland cropping in the semi-arid U.S. Great Plains. Field Crops Res. 2012, 132, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Meena, S.K.; Dwivedi, B.S.; Meena, M.C.; Datta, S.P.; Singh, V.K.; Mishra, R.P.; Chakraborty, D.; Dey, A.; Meena, V.S. Impact of Long-Term Nutrient Supply Options on Soil Aggregate Stability after Nineteen Years of Rice–Wheat Cropping System. Land 2022, 11, 1465. [Google Scholar] [CrossRef]
- Thamo, T.; Addai, D.; Pannell, D.J.; Robertson, M.J.; Thomas, D.T.; Young, J.M. Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system. Agric. Syst. 2017, 150, 99–108. [Google Scholar] [CrossRef]
- Mishra, A.K.; El-Osta, H.S. Managing risk in agriculture through hedging and crop insurance: What does a national survey reveal? Agric. Financ. Rev. 2002, 62, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.; et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Macfadyen, S.; McDonald, G.; Hill, M. From species distributions to climate change adaptation: Knowledge gaps in managing invertebrate pests in broad-acre grain crops. Agric. Ecosyst. Environ. 2018, 253, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Tack, J.; Barkley, A.; Hendricks, N. Irrigation offsets wheat yield reductions from warming temperatures. Environ. Res. Lett. 2017, 12, 114027. [Google Scholar] [CrossRef]
- Lawrence, P.G.; Maxwell, B.D.; Rew, L.J.; Ellis, C.; Bekkerman, A. Vulnerability of dryland agricultural regimes to economic and climatic change. Ecol. Soc. 2018, 23, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Gentine, P.; Luo, X.; Lian, X.; Liu, Y.; Zhou, S.; Michalak, A.M.; Sun, W.; Fisher, J.B.; Piao, S.; et al. Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nat. Commun. 2022, 13, 4875. [Google Scholar] [CrossRef]
- Twyman, C.; Fraser, E.D.G.; Stringer, L.; Quinn, C.; Dougill, A.; Ravera, F.; Crane, T.; Sallu, S. Climate Science, Development Practice, and Policy Interactions in Dryland Agroecological Systems. Ecol. Soc. 2011, 16, 3. [Google Scholar] [CrossRef]
- Browning, D.M.; Rango, A.; Karl, J.W.; Laney, C.; Vivoni, E.; Tweedie, C.E. Emerging technological and cultural shifts advancing drylands research and management. Front. Ecol. Environ. 2015, 13, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, C.P.; de Lima, R.B.; Junior, F.T.A.; Pessoa, M.M.D.L.; da Silva, A.F.; dos Santos, N.A.T.; Lopes, I.J.C.; de Melo, C.L.S.-M.S.; Silva, E.A.; da Silva, J.A.A.; et al. Dynamic Modeling of Land Use and Coverage Changes in the Dryland Pernambuco, Brazil. Land 2022, 11, 998. [Google Scholar] [CrossRef]
- Gaitán, J.J.; Maestre, F.T.; Bran, D.E.; Buono, G.G.; Dougill, A.J.; Martínez, G.G.; Ferrante, D.; Guuroh, R.T.; Linstädter, A.; Massara, V.; et al. Biotic and Abiotic Drivers of Topsoil Organic Carbon Concentration in Drylands Have Similar Effects at Regional and Global Scales. Ecosystems 2019, 22, 1445–1456. [Google Scholar] [CrossRef] [Green Version]
- FAO. Land Degradation Assessment in Drylands: Manual for Local Level Assessment of Land Degradation and Sustainable Land Management. Part 2: Field Methodology and Tools; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Stavi, I.; Yizhaq, H.; Szitenberg, A.; Zaady, E. Patch-scale to hillslope-scale geodiversity alleviates susceptibility of dryland ecosystems to climate change: Insights from the Israeli Negev. Curr. Opin. Environ. Sustain. 2021, 50, 129–137. [Google Scholar] [CrossRef]
- Bharucha, Z.P. This is what Nature has become: Tracing climate and water narratives in India’s rainfed drylands. Geoforum 2018, 101, 285–293. [Google Scholar] [CrossRef]
- Kusch, E.; Davy, R.; Seddon, A.W.R. Vegetation-memory effects and their association with vegetation resilience in global drylands. J. Ecol. 2022, 110, 1561–1574. [Google Scholar] [CrossRef]
- Pimm, S.L.; Donohue, I.; Montoya, J.M.; Loreau, M. Measuring resilience is essential to understand it. Nat. Sustain. 2019, 2, 895–897. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Chen, T.; Dolman, H.; Shi, T.; Wei, X.; Xu, J.; Hagan, D.F.T. Drying and Wetting Trends and Vegetation Covariations in the Drylands of China. Water 2020, 12, 933. [Google Scholar] [CrossRef] [Green Version]
- Brendel, A.S.; del Barrio, R.A.; Mora, F.; León, E.A.O.; Flores, J.R.; Campoy, J.A. Current agro-climatic potential of Patagonia shaped by thermal and hydric patterns. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2020, 142, 855–868. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Eldridge, D.J.; Bowker, M.A.; Jeffries, T.C.; Singh, B.K. Biocrust-forming mosses mitigate the impact of aridity on soil microbial communities in drylands: Observational evidence from three continents. New Phytol. 2018, 220, 824–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Gao, F.; Yang, J.; Zhao, J.; Wang, X.; Gao, G.; Zhang, R.; Jia, Z. Spatio-Temporal Variation in Dryland Wheat Yield in Northern Chinese Areas: Relationship with Precipitation, Temperature and Evapotranspiration. Sustainability 2018, 10, 4470. [Google Scholar] [CrossRef] [Green Version]
- Acharya, P.; Biradar, C.; Louhaichi, M.; Ghosh, S.; Hassan, S.; Moyo, H.; Sarker, A. Finding a Suitable Niche for Cultivating Cactus Pear (Opuntia ficus-indica) as an Integrated Crop in Resilient Dryland Agroecosystems of India. Sustainability 2019, 11, 5897. [Google Scholar] [CrossRef]
- Harper, R.J.; Sochacki, S.J.; Smettem, K.; Robinson, N. Managing water in agricultural landscapes with short-rotation biomass plantations. GCB Bioenergy 2013, 6, 544–555. [Google Scholar] [CrossRef]
- Loch, A.; Gregg, D. Salinity Management in the Murray-Darling Basin: A Transaction Cost Study. Water Resour. Res. 2018, 54, 8813–8827. [Google Scholar] [CrossRef]
- Wang, E.; Cresswell, H.; Bryan, B.; Glover, M.; King, D. Modelling farming systems performance at catchment and regional scales to support natural resource management. NJAS Wagening. J. Life Sci. 2009, 57, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Sica, E.; Sisto, R.; Bianchi, P.; Cappelletti, G. Inclusivity and Responsible Tourism: Designing a Trademark for a National Park Area. Sustainability 2020, 13, 13. [Google Scholar] [CrossRef]
- Bianchi, P.; Cappelletti, G.M.; Mafrolla, E.; Sica, E.; Sisto, R. Accessible tourism in Natural Park Areas: A Social Network Analysis to discard barriers and provide information for disabled people. Sustainability 2020, 12, 9915. [Google Scholar] [CrossRef]
- Dolan, A.H.; Smit, B.; Skinner, M.W.; Bradshaw, B.; Bryant, C.R. Adaptation to climate change in agriculture: Evaluation of options. Occas. Pap. 2001, 26. [Google Scholar]
- Foudi, S.; Erdlenbruch, K. The role of irrigation in farmers’ risk management strategies in France. Eur. Rev. Agric. Econ. 2011, 39, 439–457. [Google Scholar] [CrossRef] [Green Version]
- Coletta, A.; Giampietri, E.; Santeramo, F.G.; Severini, S.; Trestini, S. A preliminary test on risk and ambiguity attitudes, and time preferences in decisions under uncertainty: Towards a better explanation of participation in crop insurance schemes. Bio-Based Appl. Econ. 2018, 7, 265–277. [Google Scholar] [CrossRef]
- Meraner, M.; Finger, R. Risk perceptions, preferences and management strategies: Evidence from a case study using German livestock farmers. J. Risk Res. 2017, 22, 110–135. [Google Scholar] [CrossRef]
- Enjolras, G.; Capitanio, F.; Aubert, M.; Adinolfi, F. Direct payments, crop 366 insurance and the volatility of farm income. Some evidence in France and in Italty. In Proceedings of the 123rd EAAE Seminar “Price Volatility and Farm Income Stabilisation: Modelling Outcomes & Assessing Market & Policy Based Responses”, Dublin, Ireland, 23–24 February 2012; p. 19. [Google Scholar]
Journal | Number of Papers |
---|---|
Climatic Change | 6 |
Sustainability (Switzerland) | 6 |
Nature Communications | 4 |
Agricultural Systems | 3 |
Ecology and Society | 3 |
Environmental Research Letters | 3 |
Land Use Policy | 3 |
Agriculture, Ecosystems and Environment | 2 |
Current Opinion in Environmental Sustainability | 2 |
International Journal of Water Resources Development | 2 |
Journal of Ecology | 2 |
Land Degradation and Development | 2 |
Science of the Total Environment | 2 |
Water (Switzerland) | 2 |
Number of Papers | Total Citations | Total Normalised Citations | Total Citations/Number of Articles | |
---|---|---|---|---|
Red Cluster | 21 | 361 | 99.804 | 17.19 |
Green Cluster | 16 | 447 | 168.262 | 27.93 |
Blue Cluster | 16 | 439 | 156.207 | 27.44 |
Yellow Cluster | 9 | 88 | 41.134 | 9.77 |
Purple Cluster | 6 | 178 | 3.321 | 26.67 |
The Adaptation Strategies | ||
---|---|---|
Enhancing the Incorporation of Crop Residues into Soil | Careful Selection of the Most Resilient Crops | Flexible Rotations |
Attention to Planting Times | Mixed Crops | Choice of Irrigation Timing and Technology |
Agroforestry | Insurance of Crops | Diversified Livestock Farms |
Risk management tools adoption | Assignment to Institutional Development Programs | Land Lease |
Supplementary Irrigation | Use of Technologies: Sensors And Digital Mapping, Remote Sensing, Meteorological Recording Station | Reduction Of Groundwater Withdrawals. |
Alteration of Plant Population Density | Stubble Retention | Improved Weed Control |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
di Santo, N.; Russo, I.; Sisto, R. Climate Change and Natural Resource Scarcity: A Literature Review on Dry Farming. Land 2022, 11, 2102. https://doi.org/10.3390/land11122102
di Santo N, Russo I, Sisto R. Climate Change and Natural Resource Scarcity: A Literature Review on Dry Farming. Land. 2022; 11(12):2102. https://doi.org/10.3390/land11122102
Chicago/Turabian Styledi Santo, Naomi, Ilaria Russo, and Roberta Sisto. 2022. "Climate Change and Natural Resource Scarcity: A Literature Review on Dry Farming" Land 11, no. 12: 2102. https://doi.org/10.3390/land11122102